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Abstract: Small submersible drainage pumps are used to discharge leaking water and rainwater in
buildings. In an emergency (e.g., heavy rain or accident), advance monitoring of the flow rate is
essential to enable optimal operation, considering the point where the pump operates abnormally
when the water level is increased rapidly. Moreover, pump performance optimization is crucial
for energy-saving policy. Therefore, it is necessary to meet the challenges of submersible pump
systems, including sustainability and pump efficiency. The final goal of this study was to develop
an energy-saving and highly efficient submersible drainage pump capable of performing efficiently
in emergencies. In particular, this paper targeted the hydraulic performance improvement of a
submersible drainage pump model. Prior to the development of driving-mode-related technology
capable of emergency response, a way to improve the performance characteristics of the existing
submersible drainage pump was found. Disassembling of the current pump followed by reverse
engineering was performed instead of designing a new pump. Numerical simulation was performed
to analyze the flow characteristics and pump efficiency. An experiment was carried out to obtain
the performance, and it was validated with numerical results. The results reveal that changing the
cross-sectional shape of the impeller reduced the flow separation and enhanced velocity and pressure
distributions. Also, it reduced the power and increased efficiency. The results also show that the
pump’s efficiency was increased to 5.56% at a discharge rate of 0.17 m3/min, and overall average
efficiency was increased to 6.53%. It was concluded that the submersible pump design method
is suitable for the numerical designing of an optimized pump’s impeller and casing. This paper
provides insight on the design optimization of pumps.

Keywords: submersible pump; computational fluid dynamics; experiment; impeller shape; flow
balance block; optimum model

1. Introduction

This study focused on the performance improvement of submersible drainage pumps.
Submersible drainage pumps are divided into two categories. One is referred to as “large
submersible pumps”, which are used for drainage (rainwater) pumping stations, and
the other is known as “small submersible pumps”, which are used in buildings. Small
submersible drainage pumps are used for draining from buildings when leakage and rain-
water flow into the basement [1–3]. The TRL (Technology Readiness Level) of submersible
drainage pumps is 7–9, and it is a situation from which no unique technology will arise.
Existing technology patents also utilize technology used in other fields. According to
patent acquisition, vibration sensors are installed on the pump shaft to solve the blocking
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phenomenon caused by foreign substances and vibration problems caused by, e.g., cavita-
tion. The shape of the impeller can be changed without impacting performance to prevent
the clogging of foreign substances or improve existing monitoring technologies. Pump
efficiency is a significant energy-saving policy factor [4,5]. If pump efficiency increases, a
significant amount of energy will be saved.

Due to the complicated, implicit relationship between hydraulic performance and the
complex geometry shape of impeller passages, the study of optimization and the inverse
problem of the submersible pump is moving slowly [6,7]. Shi et al. [8] started to design
a new submersible pump for deep wells with the computational fluid dynamics (CFD)
technique. They achieved sufficient pump efficiency compared with that of traditional
pumps. Zhu et al. [9] investigated a mechanistic model for improving system performance
with gas–liquid flow in a submersible pump. Manivannan [10] conducted a study on the
computational fluid dynamics of a mixed-flow pump to predict the flow pattern inside the
impeller. Different parameters and optimization techniques were used to obtain optimal
output for the pump impeller numerically [11]. The pump impeller head was optimized
using various optimization algorithms to reduce frictional loss during pump operation [12].
Using an inverse design, Zangeneth et al. [13] investigated using a mixed-flow pump for
suppressing secondary flows. Afterwards, they [14] performed an experimental study to
confirm the validity of the model pump. Kim et al. [15] attempted to improve suction
performance and efficiency by optimizing a mixed-flow pump with the CFD technique.
Another researcher [16] studied the suction performance improvement of mixed-flow
pumps. The result exhibited that the specific speed and shape of the pump’s impeller
greatly influence the suction performance.

Yan et al. [17] investigated a CFD-based pump redesign of a centrifugal to improve
efficiency and decrease unsteady radial forces. The CFD method was applied to study
the effect of the volute and the number of impeller blades and trailing-edge modifica-
tion of pumps [18,19]. Qian et al. [20] adopted the Plackett–Buram test design method
for the performance optimization of multistage centrifugal pumps. The results showed
a significantly impacted pump axial force and hydraulic performance when consider-
ing the blade exit angle, outlet diameter, blade wrap angle, etc. Liu et al. [21] studied
the RBF neural network and particle swarm optimization method to improve the perfor-
mance of submersible well pumps. They found that the pressure gradient in the impeller
was increased, and the pressure amplitude of the impeller was significantly reduced.
Ling Bai et al. [22] highlighted the performance improvement of an EPS impeller based on
the Taguchi approach and found that the front and rear shrouds of the impeller meridian
significantly affect the ESP performance. Chen et al. [23] studied performance improvement
of a mixed-flow pump based on the entropy production method. They found that the geo-
metric and hydrodynamic parameters greatly influenced the pump’s energy characteristics.
Suh et al. [24] optimized impeller and suction performance to increase the hydraulic effi-
ciency of a mixed-flow pump. Jeon et al. [25] conducted a study on a regenerative pump
impeller and enhanced the model’s efficiency by numerical simulation and design of ex-
periments (DoE). Siddique et al. [26] investigated the impeller design optimization of a
centrifugal pump by numerically enhancing the pump head and significantly reducing
the input power. Shim et al. [27] presented a study on enhancement flow recirculation
and cavitation of a centrifugal pump by controlling the meridional profile of the blade.
Yang et al. [28] investigated multistage ESP to improve hydraulic performance using the
Taguchi optimization method. The Taguchi method was a remarkably handy tool for
optimizing the ESP. Arocena et al. [29] designed and analyzed the intake structure of a
submersible pump numerically. Wei et al. [30] investigated the influence of impeller gap
drainage width on the performance of a low-specific-speed centrifugal pump, and the
results revealed that using a smaller gap width could significantly improve the perfor-
mance. Han et al. [31] presented the influence of various impeller blade outlet angles on the
performance of a high-speed ESP using experimental and computational methods. It was
found that the impeller vane exit angle had a significant effect on the pump performance
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curve. Tong et al. [32] conducted axial flow pump performance analysis experimentally
and numerically. The results showed that a higher head led to increased pump rotation
speed. Fakher et al. [33] studied the efficiency improvement of an electric submersible
pump. They replaced the conventional motor with a permanent magnetic one to achieve
prolonged ESP mean failure. The flow patterns inside an electrical submersible pump are
presented using CFD and compared with visualization experiments [34]. However, the
study did not show whether optimizing the shape of the pump casing and impeller can
improve the hydraulic performance in a single-stage submersible drainage pump.

Therefore, this study focused especially on the hydraulic performance optimization of
a centrifugal-type submersible drainage pump as a development target. To improve our
understanding of the flow characteristics inside pumps, existing and developed pumps’
performances were analyzed through simulations and experiments. Moreover, this study
was intended to provide a basic design of the pump shape to enhance the performance of
significant parts, manufacture parts and conduct pump tests using 3D printing technology.
In addition, primary research findings were patented based on the developed technology.

2. Materials and Methods

2.1. Pump Dimensions and 3D Model

Three-dimensional scanning was performed to accurately obtain the dimensions of
the pump casing and impeller to be analyzed. For this purpose, a DWE-08B submersible
drainage pump was disassembled, as shown in Figure 1. The exact dimensions of the pump
were required for analysis through computational methods. Of the pump components,
only the significant parts of the pump impeller and casing were scanned using a noncontact
portable 3D scanner (Creaform 50, with a tolerance of 1/100, Creaform, Lévis, QC, Canada).
The software generated the three-dimensional geometrical shape and imported it to CAD
software (ANSYS-ICEM (21R2)) for cleaning.
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Figure 1. Disassembling the submersible drainage pump (DWE-08).

This study used ANSYS-ICEM commercial software to clean-scan 3D geometry and
create an .STP file. Figure 2 shows an assembly and disassembly drawing of the vertical
semi-open-type submersible pump (model—DWE-08B). Figure 3 illustrates the cross-sectional
view of the main components of the pump. Table 1 presents the major design dimensions of
the pump impeller and the casing obtained from the pump company’s catalog.
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Figure 3. Cross-sectional view of the pump’s key components.

Table 1. Original submersible pump model (DWE-08B) design parameters.

Description Power Flow Rate Head

Impeller Casing

Blades D1 D2 Flow Path
Height

Inlet
Height Outlet Dia.

Model H.P. m3/min m No. mm mm mm mm mm

DWE-08B 1 0.16 10 2 25 105 54 135 60

2.2. Specifications of the Submersible Pump

The pump company only provided the major pump specifications. Figure 4 illustrates
the various pump models’ performance curves. The DWE-08B model performance data are
represented in the black curve with a circle and red line. Table 2 shows the submersible
pump’s data, as presented in the pump company’s catalog [2]. Specific points of the subject
pump were determined from the record. Figure 5 illustrates the hydraulic performance
optimization procedure.
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Table 2. Submersible pump performance data [2].

Model Outlet Height (mm) Power (H.P.) Flow Rate (m3/min) Head (m)

DWE-08B 50 1 0.16 10
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Figure 5. Procedure for hydraulic performance optimization of the submersible drainage pump.

2.3. Computational Domain and Boundary Conditions

The ANSYS ICEM-CFX commercial software (21R2, ANSYS Inc., Canonsburg, PA,
USA, 2021) based on the finite volume method was utilized for grid generation and analysis
of the pump. Then, unconstructed tetrahedral meshing grids were created, as shown in
Figure 6. Changing the number of meshing grids confirms the grid dependency [35]. Table 3
shows the various pump meshing grids performance and relative errors. The proposed
total meshed grids had 272,563 nodes and 1,374,829 elements.
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Table 3. Meshing grids of the DWE-08 submersible pump.

Description Elements Nodes Head (m) Relative Error (%)

Model 1 205,962 1,241,365 9.824 -
Model 2 272,563 1,374,829 9.871 0.47842
Model 3 532,924 2,733,319 9.853 0.18235
Model 4 1,085,683 5,648,730 9.816 0.37552
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To run the computer simulation, this study accounted for the Reynolds Average
Navier–Stokes (RANS) equations for calculating the flow analysis of the pump [36]. The
following assumptions were considered: (i) incompressible, (ii) steady-state flow and
(iii) turbulence model. The fluid was assumed to be Newtonian fluid, and the thermophysi-
cal properties were constant with temperature. Under the assumptions of incompressible
and steady state, the governing equations of the continuity and momentum equations
(known as Navier–Stokes) are expressed as [36,37]

∂ui
∂xi

= 0 (1)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂τij

∂xj
+ S (2)

In the above equations, ui represents the velocity vector, x is the component of the
position vector, p is the scalar pressure, ρ is the density of the fluid, τij designates the stress
tensor, S is the source term, and i and j represent tensor notations.

To calculate the turbulent flow, eddy viscosity was added. The SST (shear stress trans-
port turbulence) model was considered to calculate the fluid’s turbulent shear stress [38,39].
The standard k-ω model was originally developed by Wilcox [38]. The k-ω-based SST
model was developed by Menter [39] and can be used to effectively blend the robust and
accurate formulation of the model in the near-wall region. This model is widely applicable
in turbomachinery and pumps and can also predict the onset of flow separation under an
adverse pressure gradient. Therefore, the SST model was chosen for the current applica-
tion. Turbulent viscosity µt was determined by solving two-transport equations: turbulent
energy k and the turbulence frequency ω. The two k-ω-based equations can be expressed as

k-equation:

ρ
∂k
∂t

+ ρuj
∂k
∂xj

=
∂

∂xj

[(
µ +

µt

σk

)]
∂k
∂xj

+ Pk − ρβ∗kω + Pkb (3)

ω-equation:

ρ
∂ω

∂t
+ ρuj

∂ω

∂xj
=

∂

∂xj

[(
µ +

µt

σω

)]
∂ω

∂xj
+ α

ω

k
P

k
− ρβω2 + Pωb (4)

The turbulent eddy viscosity µt was calculated from

µt = ρ
k

max(ω, S·F2)
(5)

where Pkb and Pωb are the shear production of turbulence, S is the invariant measure of the
strain rate, and F2 is a blending function that restricts the limiter to the wall boundary layer
defined by

F2 = tanh

[
max

(
2
√

k
β∗ωy

;
500µ

ρy2ω

)]2

(6)

The first SST blending function is formulated as

F1 = tanh

[
min

{
max

( √
k

β∗ωy
;

500µ

ρy2ω

)
;

4ρk
CDkωσω2y2

}]4

(7)

where y is the distance to the nearest wall, and CDkω is the positive part of the cross-
diffusion term, i.e.,

CDkω = max

(
2ρ

1
σω2ω

∂k
∂xj

∂ω

∂xj
, 10−10

)
(8)
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The turbulence model coefficients are given as

α = 0.55, β = 0.075, β∗ = 0.09, σk = 2.0, σω = 2.0

In this work, the boundary conditions used for the simulation were mass flow rate as
the inlet and 0 Pa as the pressure outlet. All boundary walls were assumed to be smooth
walls with no-slip conditions. A frozen rotor operating at a specific rotational speed of
3450 rpm was selected for steady-state, incompressible flow analysis. Figure 7 represents
the boundary conditions for numerical analysis of the DWE-08 pump domain. The velocity
and pressure residual value was 1 × 10−5, controlled by convergence criteria.
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3. Results and Discussion

Section 3.1 provides the pump performance validation of the computed data.
Section 3.2 describes the performance analysis of the submersible pump under differ-
ent operating conditions. Additionally, design modifications of the casing and impeller are
illustrated in Section 3.3. Moreover, Section 3.4 presents the pump’s hydraulic performance
improvement and optimum model.

3.1. Verification of the Numerical Results

An experimental setup was constructed for comparison with the computed data to
verify the reliability of the test pump that the test facility employed to meet the KSB 6321
and ISO 5198 standards [40,41]. The measurement sensors used in the test pump to obtain
the test data allowed a standard deviation of ±2%. The test environmental working fluid
temperature and relative humidity were 13 ± 1 ◦C and 32 ± 5%, respectively.

The hydraulic performance parameters such as head, volume flow rate, power and
efficiency are sufficient for comparing the measured with the calculated data. The equations
for pump head, energy and efficiency are expressed as

H =
p2 − p1

ρg
+

V2
2 − V2

1
2g

+ (z2 − z1) (9)

P = ωT (10)

η =
ρgQH

ωT
(11)

where H represents the pump head in m, p is the static pressure of the pump in N/m2,
V is the velocity of the pump in m/s, z is the elevation of the pump in m, P is the shaft
power in kW, Q is the volumetric flow rate in m3/min, ω is the rotational speed in rad/s,
T is the toque in N·m, ρ is the working fluid density in kg/m3, and g is the gravitational
acceleration in m/s2, respectively. Subscripts 1 and 2 denote the inlet and outlet sections of
the pump.

Figure 8 presents the experimental measurement data tested by the KTC (Korea Testing
Certification Institute) at the pump test facility center. By examining the results in Figure 8,
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it can be seen that when the flow-specific point (volumetric flow rate) was 0.165 m3/min,
the total head was 10 m, and the overall efficiency was only 32.14%, which was not the same
as the pump efficiency. Because the test pump was in the water and could not measure
the torque, the motor’s power factor (0.78) must be considered in comparing it with the
experimental results. In addition, the catalog’s performance data, test data and analysis
data were all presented for each outcome. When comparing all data, the average head
error value was only 0.0456%, the power average error was only 0.0808%, and the efficiency
average error was only 0.0617%. The head and efficiency differences were only 0.07% and
10.18% at the design flow rate. The lower difference was observed at the higher flow rate of
the pump. The standard deviation of the pump head was 0.046%, the power was 0.0047%,
and the rotational speed was 1.54%. At the 95% confidence limit, the normal distribution
of the test pump was measured, revealing that the uncertainty of the pump head was
H ± 0.00989 m, the discharge rate was Q ± 0.00178 m3/min, the power was P ± 0.0102 kW,
and the rotational speed was N ± 3.298 rpm.
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First, looking at Figure 8a, there is a clear difference between the test and catalog
results. As observed from the H-Q curve, the analysis results agree relatively well with the
experimental data, except for the low flow rate. The two results do not match well in the
low-flow region due to the influence of the grid and y+. Therefore, we decided it would be
best to exclude or modify the catalog data. In comparing this with the test value, it was
found that the test results are well matched when considering the motor power factor of
0.78, as mentioned in the shaft power report. The values of Samples 1 and 2 in Figure 8b are
the efficiencies mentioned in the high-efficiency energy equipment report. Moreover, in this
study, the mechanical losses of the submersible pump were not taken into consideration in
the numerical analysis.

3.2. Performance Analysis

Additionally, this study analyzed the flow pattern inside the pump and velocity
distributions at the design flow rate. Figure 9 shows the velocity vectors and velocity
streamline distribution of the pump. As can be observed, the flow recirculates in the pump
discharge region, where the energy dissipates, resulting in significant pump losses. The
flow separation in the casing caused relatively large vortices at the outlet of the pump
casing. Also, the clearance gap between the pump volute and impeller was large (more
than 2 mm). This clearance gap flow creates vortices that separate from the impeller blade
and reduce local pressure. Also, the impeller was located in the casing at the bottom
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of the pump, as shown in Figure 10. Henceforth, changing the impeller’s center further
reduced the pump’s efficiency. Therefore, a CFD-based design modification study and
research analyzing the behavior of the flow in various geometries are needed to enhance
pump performance.
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Based on the experimental and simulation results, we determined that there is a
possibility of increasing efficiency by using an efficient pump motor and designing or
shaping the part where the loss occurs. The use of an efficient pump motor was outside the
scope of this study; this study examined the cause of the decrease in efficiency and found a
way to supplement the design of the pump components. It was noted from the loss analysis
of the pump that the mechanical loss, the ratio of impeller loss to casing, and inlet loss were
also high [42]. The efficiency of the DWE-08B pump ranged from 30% to 40%, which is not
an optimal performance condition. Of course, since the impeller was a semi-open type, it
was less efficient than the closed type, but its efficiency was comparatively low compared
with other pumps. Therefore, this study considered improving the efficiency to create the
optimal design of the impeller and casing, suggesting improvements in the geometry of
the two components.

3.3. Design Modifications of the Casing and Impeller

In this study, two shapes that can reduce the large gap in the upper region of the pump
impeller were proposed and analyzed to optimize the shape of the casing. Model 1 was
created with a reduced flow path compared with the original model; model 2 was created
with a cochlear (tubular) flow passage in the intact casing. Figure 11 shows the casing
shape change model.
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Figure 12 displays the comparison of velocity streamlines for the casing shape change
model. As shown in Figure 12, the fluid flow formed a streamlined shape, eliminating the
idle space at the top; the fluid flow at the outlet of the pump casing was discharged without
swirling using a guide rib. Figure 13 shows the performance comparison for the casing
shape change model. Table 4 presents the pump efficiency of the casing shape change
models. By changing the casing shape, the relative efficiency was improved by up to 4~5%.

However, it is difficult to make a new one with die and casting; therefore, an in-depth
investigation is a prerequisite for optimization. We applied the optimization plan of the
casing shape to prevent the need for wood-shaped and casting work. One method involves
attaching a simple installable member to the pump casing to reduce the space. Optimizing
the casing shape utilizes an approach of changing the casing shape using a flow balance
block (FBB), which can be easily installed. Here, we employed an FBB instead of the casing
shape change model. Figure 14 shows the flow balance block model. We utilized an FBB to
reduce secondary and friction losses where the flow in the casing was stagnant.

Table 4. Comparison of pump efficiency for casing shape change model.

Flow Rate
(m3/min) Original (%) Model 1 (%) Model 2 (%)

Efficiency Improvement (%)

Model 1 Model 2

0.10 34.593 40.542 38.904 5.949 4.311
0.14 40.420 48.358 45.474 7.938 5.054
0.16 45.415 50.687 49.230 5.272 3.815
0.17 46.375 51.513 49.301 5.138 2.926
0.20 46.921 52.826 52.357 5.905 5.436
0.22 46.562 53.487 52.221 6.925 5.659
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Figure 14. Flow balance block model.

Also, we modified the three different shapes of the impeller. Impeller 1’s vanes were
created diagonal (oblique line) in the basic model. Impeller 2 had an extended tip compared
with Impeller model 1. Impeller model 3’s vanes were thicker compared with the vanes of
the basic model. Figure 15 shows the impeller shape change model. The impeller shape
change involved inclining the vane to improve the flow in front of the rear shroud. These
pump simulation data were compared to assess the performance characteristics of the
different impeller shapes to improve the efficiency of the original model.

Computation 2024, 12, x FOR PEER REVIEW 12 of 17 
 

 

Figure 13. Performance comparison for casing shape change model. 

 
Figure 14. Flow balance block model. 

Also, we modified the three different shapes of the impeller. Impeller 1’s vanes were 
created diagonal (oblique line) in the basic model. Impeller 2 had an extended tip com-
pared with Impeller model 1. Impeller model 3’s vanes were thicker compared with the 
vanes of the basic model. Figure 15 shows the impeller shape change model. The impel-
ler shape change involved inclining the vane to improve the flow in front of the rear 
shroud. These pump simulation data were compared to assess the performance charac-
teristics of the different impeller shapes to improve the efficiency of the original model. 

 
Figure 15. Impeller shape model 1. 

Furthermore, Figure 16 illustrates the pressure and velocity streamline distribution 
in other planes of the pump impeller. As observed, the flow losses could be reduced by 
improving the streamline in the lower area (planes 1, 2) via a change in the impeller 
shape. Figure 17 shows the performance comparison of various impeller shape change 
models. The result shows that changing the shape of the impeller increased the pump ef-
ficiency. Hence, changing the impeller shape reduces the shaft power and increases the 
efficiency to 5.56% by preventing flow disturbance. Therefore, this study found the im-
peller shape change model 1 optimal for manufacturing. 

Figure 15. Impeller shape model 1.

Furthermore, Figure 16 illustrates the pressure and velocity streamline distribution
in other planes of the pump impeller. As observed, the flow losses could be reduced by
improving the streamline in the lower area (planes 1, 2) via a change in the impeller shape.
Figure 17 shows the performance comparison of various impeller shape change models.
The result shows that changing the shape of the impeller increased the pump efficiency.
Hence, changing the impeller shape reduces the shaft power and increases the efficiency
to 5.56% by preventing flow disturbance. Therefore, this study found the impeller shape
change model 1 optimal for manufacturing.
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3.4. Optimum Model

The existing model’s performance analysis and modification of the casing and impeller
were reviewed. This study examined the flow around the impeller of the current model and
devised a strategy to increase efficiency. The pump efficiency was significantly increased
to 49.30%, less than 2.64% of that of the modified impeller, by modifying the casing shape
at a 0.17 m3/min flow rate. Also, changing the impeller shape of the pump enhanced the
internal pressure distribution and reduced the flow separation at the discharge side and its
efficiency. The design flow rate of the pump was shifted from 0.16 m3/min to 0.17 m3/min.

Moreover, the efficiency increased to 5.56% at 0.17 m3/min, and the average efficiency
increased to 6.27%. It is understood that changing the shape of the impeller and casing is the
best solution to improving a pump’s performance [43]. Figure 18 shows the cross-sectional
view of the original and newly designed impellers. Therefore, impeller shape change model
1 was considered optimal for manufacture.
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4. Conclusions

Hydraulic performance optimization in a submersible pump was performed. A new
pump impeller and flow balance block were designed, computational simulation was
performed, parts were manufactured, and experiments were conducted. The results of this
study on performance improvement are summarized as follows:

(a) The test data verified the computed results, confirming the pump’s performance.
(b) We modified the casing and impeller shape to improve hydraulic performance and

used a flow balance block to reduce the inner space of the pump.
(c) Changing the impeller shape reduced the power and increased efficiency, which can

prevent flow disturbance. The attachment of the flow balance block increased the
efficiency in the flow area more significantly than the operating point.
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(d) The flow separation inside the pump was significantly improved and increased pump
performance by up to 5.56% at the design flow rate.

(e) This research obtained two Korean patents based on the identified performance
improvement results.

(f) Further studies should consider conducting a performance test for the shape change
model for a submersible pump.

5. Patents

Impeller for submersible pump (patent no.: 20-2021-0001433) and centrifugal
submersible pump (patent no.: 10-2021-0058374). http://engpat.kipris.or.kr/engpat/
searchLogina.do?next=MainSearch (17 November 2023).
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