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Abstract: Data-driven simulations are gaining popularity in mechanics of biomaterials since they do
not require explicit form of constitutive relations. Data-driven modeling based on neural networks
lacks interpretability. In this study, we propose an interpretable data-driven finite element modeling
for hyperelastic materials. This approach employs the Laplace stretch as the strain measure and
utilizes response functions to define constitutive equations. To validate the proposed method,
we apply it to inflation of anisotropic membranes on the basis of synthetic data for porcine skin
represented by Holzapfel-Gasser-Ogden model. Our results demonstrate applicability of the method
and show good agreement with reference displacements, although some discrepancies are observed
in the stress calculations. Despite these discrepancies, the proposed method demonstrates its potential
usefulness for simulation of hyperelastic biomaterials.
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1. Introduction

Material behaviour is of great importance in many fields of engineering, especially
for soft materials. Examples include biomedical engineering [1,2] and soft robotics [3].
A hyperelastic material model is often used to describe rubber-like materials [4,5] and
biological soft tissues [4,6]. Hyperelasticity implies the existence of an elastic potential
that defines the constitutive equations, i.e., the mechanical behaviour of the material [7].
The elastic potential has to obey the objectivity and the symmetries of the material, as well
as the polyconvexity of the elastic potential that provides a sufficient condition for the
existence of solutions to boundary value problems in hyperelasticity [7].

Dozens of hyperelastic models have been proposed for soft materials [4]. Most of
these models meet the necessary requirements such as objectivity, material symmetry and
polyconvexity through an invariant-based approach [6]. This means that a set of invariants
is chosen to define the strain measure and the elastic potential is the function of the
invariants. It is the common practice to use the invariants of the right/left Cauchy-Green
tensors [6].

One of the main advantages of hyperelastic models is that there is no real need to know
the exact form of the elastic potential. To define the constitutive equations of a hyperelastic
material, we only need to know the derivatives of the elastic potential with respect to the
chosen strain measure, so-called response functions [8,9]. The response functions may be
constructed from experimental data on mechanical behaviour. To characterize nonlinear
materials, one test them under a wide range of deformation modes. These include uniaxial,
biaxial, shear and sometimes triaxial deformation [10]. The resulting data from these tests
are stress-strain curves. There are few approaches to constructing response functions from
experimental curves. One of them, the most popular, is the phenomenological approach.
In other words, the forms of the response functions are suggested a priori as analytical
functions with model parameters, the latter are found by fitting to the experimental curves.
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The main disadvantages of this approach are the non-uniqueness of the optimal set of
model parameters [11] and the lack of any guidance on how to select the form of the
function from a variety of expert-constructed models [12], since no universal model has yet
been proposed.

Data-driven (model-free) approaches overcome such problems and are becoming more
attractive with the development of full-field experimental techniques. Data-driven compu-
tational mechanics is an actively developing field (see e.g., [13–17]). One of the main trends
in data-driven hyperelasticity is constitutive equations based on neural networks. Input
data for neural networks are given strain measures and output data are elastic potential or
response functions or some stress measures [13,18,19]. There are several neural networks
that consider physically based requirements such as polyconvexity [13,19,20]. However,
a constitutive equation based on neural networks is a black box and such approach raises
the question of its non-interpretability [21,22], i.e., transparency of the mechanism by which
the model works [23].

In the scope of data-driven hyperelasticity we want to overcome the problem of
interpretability. Namely, we want to perform finite element forward simulations for data-
driven constitutive equations. To this end, we choose as the strain measure the Laplace
stretch based on the QR-decomposition of the deformation gradient [24,25]. In this case
the response function is equal to the corresponding component of the stress tensor [25].
This means that we can reformulate our experimental data explicitly in terms of the response
functions and the Laplace stretch, which are nothing else but data-driven constitutive equa-
tions. To perform data-driven finite element forward simulations, we use the hyperelastic
nodal force version of the P1 finite element method [26–28] with a simple interpolation
method for response functions in the 3D space of the Laplace stretch variables that is
requested in the iterative solution of the equilibrium problem. For the case of an isotropic
material such approach was proposed in [29]. However, the advantage of using the Laplace
stretch as the strain measure and the response function based approach is its applicability
to both isotropic and anisotropic materials. In this study we test our approach for data-
driven simulation of anisotropic membranes using the similar steps proposed in [29] for
the isotropic material, except for virtual experimental protocols applicable to real-world
scenarios and material anisotropy. To this end, we use synthetic data based on virtual
experiments for Holzapfel-Gasser-Ogden model [30] with parameters corresponding to
porcine skin [31]. For virtual experiments we use experimental protocols proposed for soft
tissue [32] which are enriched for the sake of data completeness. The obtained experimental
synthetic data is used explicitly for the finite element forward simulation of the inflation of
a square membrane defined by the data-driven constitutive equation without any prescrip-
tion about material anisotropy. The corresponding nonlinear algebraic system is solved by
a simple relaxation method where an inverse weighted distance interpolation method finds
requested values of the response functions at each iteration at any point of the 3D Laplace
stretch space. The relative difference between computed and reference displacements is
very small, whereas the relative difference between computed and reference stresses may
achieve 10% at the membrane corners and diagonals.

It is important to highlight that the utilization of the actual protocols established for
cruciform specimens [32] serves multiple purposes. First and foremost, the authors [32]
have proposed a “series of mechanical tests designed to maximize inhomogeneous strain
fields and in-plane shear forces”, which means that it is not necessary to introduce holes in
order to achieve a heterogeneous deformation field as it was done previously for isotropic
case by [13,29]. Furthermore, through the implementation of high resolution imaging and
digital image correlation techniques, it becomes possible to capture accurately the complete
displacement field. Secondly, the biaxial extensions of the specimens offer a wide range
of options that can be employed in real experimental setups. At the same time virtual
experiments act as an effective tool to provide additional insights that can aid in improving
the actual test protocols in terms of sufficiency of data. Naturally, in real-life scenarios, our
knowledge about the mechanics of materials is limited before conducting tests; however,
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if we can operate within the scope of hyperelastic behavior that is generally accepted
for biomaterials [4,6], we believe that utilizing virtual experiments can also contribute to
refining the design of experiments.

The main focus of this paper is to demonstrate the viability of our proposed forward
data-driven simulation, which utilizes Laplace stretch and response functions, in the
absence of any prior knowledge regarding the symmetry of the material. We aim to
determine whether the anisotropic deformation of the membrane can be achieved using
the constitutive equations provided in the tabulated data.

The outline of the paper is as follows. In Section 2 we briefly introduce the hyperelastic
nodal force method, our approach to data-driven constitutive modeling, the virtual exper-
iment for the 2D biaxial extension of a membrane sample. In Sections 3 and 4 we verify
our approach for the data-driven forward simulation of square patch inflation. Section 5
summarizes the proposed approach, discusses its advantages and drawbacks, and present
future directions of our research.

2. Materials and Methods
2.1. Equilibrium Equations and Finite Element Discretization

We consider deformation of an incompressible thin hyperelastic membrane with thick-
ness H. Its mid-surface kinematics fully characterizes the deformation of the membrane.
Let X and x denote positions of a material point in the reference (initial) Ω0 and current
(deformed) Ωt membrane mid-surface configurations, respectively. The deformation is
defined by the mapping x = x(X), the displacement of the mid-surface is u = x − X, and
the surface deformation gradient is F2d = ∂x/∂X.

We use the Laplace stretch ξ = (ξ1, ξ2, ξ3) as the strain measure for surface deforma-
tion [24]. The Laplace stretch is based on the QR-decomposition of F2d and is connected
with the right Cauchy-Green deformation C2d = FT

2dF2d via Cholesky factorization [25].
The form of the constitutive equations depends on the choice of the strain measure. In the
considered case of hyperelastic membrane the constitutive equation reduces to the defini-
tion of a hyperelastic potential as a function of the Laplace stretch ψ = ψ

(
ξ
(
FT

2dF2d
))

.
For a body at rest in the current configuration we impose mixed boundary conditions

on ∂Ωt = Γu ∪ Γσ, Γu = Γu

u = ū on Γu, Tnt = t̄ on Γσ, (1)

where T is the Cauchy tension tensor, nt is the unit outward normal to ∂Ωt, ū and t̄ are
given displacement and tension on corresponding parts of the boundary.

The equilibrium equations for a hyperelastic body can be written in the following
variational form [7]: find such u ∈ H̃1(Ωt) =

{
v ∈ (H1(Ωt))3, v = ū on Γu

}
, that

δU − δWext = 0, (2)

δU = δ

(∫
Ω0

ψ(ξ(u))dX
)

, δWext =
∫

Γσ

t̄ · δu ds +
∫

Ωt
b · δu dx,

where b is the density of body forces.
For the approximate solution of Equation (2) we use the hyperelastic nodal force ver-

sion of the P1 finite element method [26–28]. For the reader’s convenience, we briefly review
its membrane variant in terms of the Laplace stretch [29]. We consider the deformation of a
consistent triangulation of the initial planar configuration Ω0. A triangle TP with vertices
P1, P2, P3 deforms into a triangle TQ with vertices Q1, Q2, Q3 via mapping x(X), rf. Figure 1.
The Jacobian of the deformation is J = AQ/AP, where AP is the area of the undeformed
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triangle TP and AQ the area of the deformed triangle TQ. If λ1(X), λ2(X), λ3(X) are the
barycentric coordinates of a material point X ∈ TP, then for X and x = x(X) ∈ TQ, it holds

X =
3

∑
i=1

λi(X)Pi, x =
3

∑
i=1

λi(X)Qi. (3)

Figure 1. Deformation of triangle.

Due to the linearity of P1 finite element basis functions the deformation gradient F2d
and the elastic potential ψ

(
ξ
(
FT

2dF2d
))

are constant on each triangle TP, and the internal
energy is

U|TP = APψ(X) ≡ const(TP),

for any point X ∈ TP.
The static equilibrium (2) implies a nonlinear system for new positions Qi, i = 1, . . . , K

of the mesh nodes

∑
TP∈Σi

(Fi(TP) + Fi,ext(TP)) = 0, (4)

Fi(TP) = −
∂U|TP

∂Qi
, Fi,ext(TP) =

∫
Γσ∩TQ

t̄λi ds +
∫

TQ

bλi dx,

where Σi is a set of triangles sharing the i-th node, Fi(TP) and Fi,ext(TP) are the elastic force
and the external force at the i-th node which are computed on triangle TP.

Using the chain rule we can obtain for the hyperelastic nodal force

Fi(TP) = −
∂U|TP

∂Qi
= −AP

3

∑
s=1

∂ψ

∂ξs

∂ξs

∂Qi
, (5)

where ∂ψ/∂ξs are so-called response functions [8,9]. The other factors ∂ξs/∂Qi are defined
completely by concise formulas [29]. Let the initially flat membrane in flat configuration
Ω0 be deformed so that its current configuration Ωt be defined in the three-dimensional
space with basis vectors e1, e2, e3 of global (fixed) Cartesian coordinates. Then for each
triangle TP one has

C2d =
3

∑
i,j=1

Cijei ⊗ ej =
3

∑
i=1

3

∑
j=1

(Qi · Qj)Di ⊗ Dj, Di = ∂λi/∂X, (6)

∂ξ1

∂Qi
=

1
2C11

∂C11

∂Qi
,

∂ξ2

∂Qi
=

C11

2(C11C22 − C2
12)

(
∂C22

∂Qi
− 2

C12

C11

∂C12

∂Qi
+

C2
12

C2
11

∂C11

∂Qi

)
,

∂ξ3

∂Qi
=

1
C11

(
∂C12

∂Qi
− C12

C11

∂C11

∂Qi

)
,

∂Cij

∂Qk
=

3

∑
n=1

Qn(Dn ⊗ Dk + Dk ⊗ Dn)ij.



Computation 2024, 12, 39 5 of 13

The shape vectors Di = ∂λi/∂X are orthogonal to each triangle edge and completely
defined by the reference mid-surface geometry [33]

Di =
1

2AP
(Pi+1 − Pi+2)

⊥, i = 1, 2, 3, (7)

with notations P4 := P1, P5 := P2, R := nP × (Pi+1 − Pi+2), nP for the unit normal to the
plane of triangle TP, and

(Pi+1 − Pi+2)
⊥ :=

{
R, if R · (Pi − Pi+1) ≥ 0
−R, otherwise.

Due to (5), the response functions (the derivatives of the elastic potential for a given
strain measure) fully define the constitutive relationships (mechanical behaviour) of a
hyperelastic material. The response functions may be derived from experimental data [8].
In case of the Laplace stretch, the derivation can be done explicitly from the deformation
curves, since in the 2D case the response function is equal to the corresponding component
of the stress tensor [25]. It is important to note that Equations (6) and (7) do not distinguish
between anisotropic and isotropic materials and are valid for any hyperelastic material.

The simplest relaxation method xn+1 = xn + δ · Rn is used in our numerical experi-
ments for the solution of the nonlinear system (4), where Rn ∈ R3K is the residual vector for
system (4), xn is the vector of mesh node positions at the n-th iteration, δ = 4 × 10−4 ≪ 1 is
the iteration parameter. We note that the solution of nonlinear system (4) may be obtained
by the Jacobian-free Newton-Krylov methods [34] as well.

2.2. Our Approach to Data-Driven Constitutive Modeling

Experimental data for the response functions ∂ψ/∂ξs and explicit formulae for ∂ξs/∂Qi
(6) and (7) provide forward simulations of hyperelastic membrane deformation on the basis of
data-driven constitutive models. The latter do not require assumptions on exact forms of elastic
potentials or response functions. Namely, for forward simulations we use experimentally
obtained points (ξ, ∂ψ/∂ξ) which define data-driven constitutive relations via (5) and (6).
To solve Equation (4), we use the weighted k-nearest neighbors interpolation method [35] for
calculating response functions ∂ψ/∂ξ at any requested point (ξ1, ξ2, ξ3). In our numerical
experiments we use k = 10 and weights 1/d2, where d is the distance from the requested
point to its neighbor. For small deformations (Euclidean norm ||ξ|| < 0.03) we use a linear
elasticity model instead of interpolating data from the experimentally obtained points [36].
The stiffness tensor components for the linear elasticity model are obtained by the least
squares method under the condition of positive definiteness of the matrix corresponding to
the stiffness tensor [37].

2.3. Virtual Experiments for 2D Membrane Deformation and Their Relevance for Data-Driven
Constitutive Modeling

We use synthetic experimental data to test our data-driven approach for anisotropic
membrane inflation. Namely, we generate data by virtual experiments on planar exten-
sions of a sample and use it as the input data for data-driven constitutive relations of a
hyperelastic membrane without any extra knowledge on sample anisotropy and form of
the potential.

For the virtual experiment, we use the Holzapfel-Gasser-Ogden (HGO) model with
one fiber family [30] proposed for porcine skin [18,38]. To define mid-surface strain energy
density function (elastic potential) ψ, we exploit the incompressibility condition and projec-
tion method presented in [39–41]. The surface HGO model written in terms of the Laplace
stretch has the form
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ψ(ξ) = HŴ(I1, J, I4) = H[µ/2(I1 + J−2 − 3) + ψ1], (8)

ψ1 =


k1

2k2

{
exp k2(I∗4 − 1)2 − 1

}
, I∗4 > 1

0, I∗4 ≤ 1,
(9)

I∗4 = κ(I1 + J−2) + (1 − 3κ)I4, (10)

where

I1 = tr C2d = e2ξ1(1 + ξ2
3) + e2ξ2 , J = detF2d = eξ1+ξ2 , (11)

I4 = C2d : (Mα ⊗ Mα) = e2ξ1 cos2 α + (ξ2
3e2ξ1 + e2ξ2) sin2 α + ξ3e2ξ1 sin(2α), (12)

Mα = (cos α, sin α, 0)T is the fiber family direction. For all numerical experiments,
the membrane thickness H is 1 mm. Parameters of ψ(ξ) recover the elastic properties of
the porcine skin [31]: µ = 8.41 kPa, k1 = 1.41 MPa, k2 = 79.53, κ = 0.31, α = 1.57 rad.

Generation of rich data from mechanical testing experiments is one of the main
directions in experimental mechanics [42]. This is essential for data-driven modelling
as well. To design our virtual experiments, we analyzed the protocols [32] proposed
for the soft tissue study, in terms of the sufficiency of experimental data for data-driven
modelling. The sample geometry and the sizes for the virtual sample correspond to real-
world analogs [32]: we stretch the cruciform sample with even arms and collect data only
in a small central region, rf. Figure 2.

Figure 2. The dimensions of the cruciform biomaterial sample. The radius of the cutout is the same
for all the cutouts. The central 5 × 5 mm2 region for data collection is marked by gray lines.

The schematic representation of the protocols is shown in Figure 3, where wi ∈ [0, 1],
i ∈ 1, 4 is the percentage of the given maximum displacement umax for the i-th arm: wi = 0
yields the fixed arm and wi = 1 yields the maximum displacement. By varying wi, we
can obtain a range of different experiments. In our virtual experiments, we gradually
apply displacement with certain step ∆s until the maximum displacement is reached.
Displacement wi · n · ∆s is applied to the i-th arm at the n-th step, where n = 1, . . . , N,
N = umax/∆s is the number of steps. The triangular mesh for the sample is quasiuni-
form with mesh size h f it = 0.25 mm, the maximum displacement umax = 2 mm and
∆s = 0.025 mm. At each step we collect (ξ, ∂ψ/∂ξ) for all triangles belonging to the central
region. Since we use the linear (P1) finite elements, (ξ, ∂ψ/∂ξ) are constant on each triangle.
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Figure 3. The experimental protocols of cruciform sample extensions. For each arm with index
1, 2, 3, 4 we introduce displacement ratio wi, i = 1, . . . , 4. The displacement ratio is a percentage of the
given maximum displacement. The blue line indicates the direction of the material anisotropy.

To analyze sufficiency of experimental data, we studied protocols (Table 1 in [32])
represented by combinations of four values w1 : w2 : w3 : w4 = 1 : 1 : 1 : 1; 1 : 1 : 0 : 0;
1 : 0 : 0 : 0; 0 : 1 : 0 : 1; 1 : 0.67 : 0 : 1 with all possible permutations. In this case, we
lack experimental points in the region ξ2 < ξ1, rf. left plots in Figure 4. We varied the
weights wi to obtain a more even distribution of points in the experimental data cloud. Our
proposed testing protocol assumes five experiments:

w1 : w2 : w3 : w4 = 1 : 1 : 1 : 1

w1 : w2 : w3 : w4 = 1 : 0.75 : 1 : 0.75

w1 : w2 : w3 : w4 = 0.75 : 1 : 0.75 : 1 (13)

w1 : w2 : w3 : w4 = 1 : 0.5 : 1 : 0.5

w1 : w2 : w3 : w4 = 1 : 1/3 : 1 : 1/3

Figure 4 shows the virtual experimental data consisting of points ξ = (ξ1, ξ2, ξ3),
where we know the values of the response functions ∂ψ/∂ξ = (∂ψ/∂ξ1, ∂ψ/∂ξ2, ∂ψ/∂ξ3).
As one can see, our protocol (13) allows us to distribute the experimental data more evenly.
Note that we can always add more data by varying wi. Virtual experiments based on
the proposed protocol (13) form the data-driven constitutive equations or InputData for
data-driven simulation. In total we obtain 36,472 points in the InputData.
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Figure 4. The left plots demonstrate experimental data based on the protocol [32]. The right plots
demonstrate experimental data based on our protocol (13). The top plots show the distribution of
points in (ξ1, ξ2, ξ3) space. The bottom plots show the corresponding projection of the experimental
data onto the plane ξ3 = 0.

3. Data-Driven Forward Simulation of Square Patch Inflation

For data-driven simulation we consider inflation of a square patch of a hyperelastic
membrane with size R = 10 cm. The constitutive equation is defined by InputData
without any a priori knowledge of isotropy or anisotropy. The patch is clamped around
its perimeter and inflated by varying pressure p defined via the dimensionless pressure
p∗ = 3pR/(µH), where p∗ ∈ [0, 12] with increment in 1.

We compare the calculated membrane displacements and the second Piola-Kirchhoff
tensors with the displacements and tensors of a reference solution. The reference solution
for the HGO membrane was obtained by the hyperelastic nodal force version of the P1 finite
element method described in Section 2.1. The description of the method and its validation
are presented in detail in [28]. We consider two quasiuniform meshes: a coarse mesh with
mesh size h = 4 mm (1448 elements, 776 nodes) and a fine with mesh size h = 1 mm
(23,020 elements, 11,711 nodes).

We performed 600,000 iterations of the relaxation method for the fine grid and
150,000 iterations for the coarse grid. Further iterations do not improve the solution
accuracy compared to the reference finite element solution.
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For the anisotropic HGO material, the second Piola-Kirchhoff stress is computed as
follows [37]:

S =
2

∑
i,j=1

Sijei ⊗ ej, Sij = 2
∂ψ(ξ)

∂Cij
= 2

3

∑
k=1

∂ψ(ξ)

∂ξk

∂ξk
∂Cij

,

S11 = e−2ξ1

(
∂ψ

∂ξ1
− 2ξ3

∂ψ

∂ξ3

)
+ e−2ξ2 ξ2

3
∂ψ

∂ξ2
, S22 = e−2ξ2

∂ψ

∂ξ2
, (14)

S12 = −e−2ξ2 ξ3
∂ψ

∂ξ2
+ e−2ξ1

∂ψ

∂ξ3
,

since

C2d =
2

∑
i,j=1

Cijei ⊗ ej = e2ξ1 e1 ⊗ e1 + ξ3e2ξ1 e1 ⊗ e2 + ξ3e2ξ1 e2 ⊗ e1 + (ξ3e2ξ1 + e2ξ2)e2 ⊗ e2.

We estimate the integral relative errors for the displacement u and the second Piola-
Kirchhoff stress tensor S by integration over the reference configuration Ω0:

||u f − ue||2
||u f ||2

, where ||u||2 =
∫

Ω0

||u(x)||22dx, (15)

||S f − Se||F
||S f ||F

, where ||S||F =
∫

Ω0

||S(x)||2Fdx,

where || · ||2 denotes Euclidean norm of a vector, || · ||F denotes Frobenius norm of a
matrix, subscript f denotes the finite-element reference solution, and subscript e denotes
the data-driven forward simulation solution.

4. Results

The distribution of the relative differences in displacements and stresses for the fine
mesh and the dimensionless pressure p∗ = 8 are shown in Figure 5. The Euclidean norm is
used for the evaluation of displacements, the Frobenius norm is used for the evaluation of
stress tensors. The integral relative errors for both meshes and for various dimensionless
pressures are shown in Figure 6.

Figure 5. Distribution of relative differences in displacements and stresses for the fine mesh and the
dimensionless pressure p∗ = 8. The Euclidean norm is used for the evaluation of displacements,
the Frobenius norm is used for the evaluation of stress tensors. The subscript f denotes the finite
element reference solution and the subscript e denotes the data-driven forward simulation solution.
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According to Figure 5, the relative error in displacements is very small, less than 0.02%
almost everywhere. The error in stresses is less than 5% for the most part of the patch, it
can be higher than 10% in the corners of the patch and on its diagonals. This is due to
the fact that for corner boundary triangles there is a need to obtain stress values at points
ξ outside the convex hull of the data cloud, and data extrapolation results in incorrect
stresses. The integral relative error of the data-driven approach is almost independent
of the mesh size of the grid providing the calculations. As p∗ approaches its maximum,
the integral relative errors begin to grow both for displacements and stresses.

Figure 6. Integral relative errors (15) for two meshes and various dimensionless pressures. The sub-
script f denotes the finite element reference solution and the subscript e denotes the data-driven
forward simulation solution.

5. Discussion

In the paper we test the applicability of the data-driven forward simulation approach
based on the response functions and the Laplace stretch for anisotropic membranes. To the
best of our knowledge, this approach has been used for anisotropic materials for the first
time. To build the data-driven constitutive equation, we performed virtual experiments
based on real protocols for cruciform sample extensions of biomaterials [32]. The data-
driven constitutive equation is provided by a set of experimental points (Laplace stretch,
response functions) of some constitutive manifold. The sample material for the virtual ex-
periments corresponds to porcine skin characterized by the Holzapfel-Gasser-Ogden model.

Since data-driven approaches need feasible data distribution, we analyzed experi-
mental protocols in terms of data sufficiency and proposed new experimental protocols
that give more uniform coverage of the Laplace stretch space (ξ1, ξ2, ξ3) than the protocols
proposed in [32]. In particular, the use of a non-equally armed cruciform specimen should
result in richer experimental data due to heterogeneous strain field. It is important to take
note that the proposed protocols for virtual experiments are essentially shortened versions
of the protocols used for studying soft tissue [32], with the addition of non-equibiaxial
extension protocols. This means that the feasibility, potential limitations, and applicability
of the proposed protocols are exactly the same as those for real experimental protocols
used in studying biomaterials. When it comes to real experimental protocols for biomateri-
als, the main challenge lies in estimating the corresponding stress field. The majority of
studies have relied on the assumption of a homogeneous stress field in regions of homoge-
neous deformation [43]. However, biomaterials are typically heterogeneous, and it is more
preferable to incorporate as much experimental information as possible when constructing
constitutive equations. Hence, it is important to develop a reliable technique for evaluating
the full stress fields, taking into account their heterogeneity. One possible method to tackle
this challenge is by assuming a hyperelastic potential and utilizing inverse techniques, such as
finite element model updating or the virtual field method [42]. However, as mentioned earlier,
there is currently no clear guidance on selecting the appropriate form of the hyperelastic po-
tential from a range of established models proposed by experts, and there is also no universal
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model that has been put forth. Furthermore, there exist inverse techniques that allow for the
evaluation of the heterogeneous stress field based on given experimental protocols [44]. These
techniques are based on finding an approximate solution to the weak form of the Cauchy
stress balance equation for a given set of displacements derived from experiments.

The important feature of our approach is the use of a linear elastic model for small
deformations ||ξ|| < 0.03. The elastic model provides us correct extrapolation of exper-
imental data to the region of compression deformations which are not available in our
virtual extension experiment [36].

We simulate membrane inflation with the data-driven constitutive relation without
any knowledge of material symmetry (isotropy/anisotropy) or the form of the elastic po-
tential. The data-driven constitutive equation in our framework is a set of known response
functions (∂ψ/∂ξ1, ∂ψ/∂ξ2, ∂ψ/∂ξ3) at points (ξ1, ξ2, ξ3) and an interpolation scheme. Note
that we do not introduce any additional invariants to describe the anisotropy, as this is done
according to the popular and elegant invariant-based approach [6]. The three response func-
tions can provide a description of the mechanical behaviour of any hyperelastic material in
two-dimensional setting. To interpolate the response functions when solving finite-element
equilibrium equations, we use the simple weighted k-nearest neighbors interpolation. Any
other interpolation method can be utilized as well.

According to our results, data-driven constitutive modeling is successful in finding
displacements for the square membrane inflation. The relative error in displacements is
very small, however, the relative error in stresses can be higher than 10% in the corners
of the patch and on its diagonals because of using data extrapolation instead of data
interpolation: we do not have enough information on ξ3 in the vicinity of the corner
points. Here we faced with the well-known issue of data-driven constitutive modeling
that insufficiency of experimental data require extrapolation with large errors. Possible
remedies are expanding experimental data and/or exploiting additional relationships for
response functions such as material symmetry. Also, the errors may be caused by our
simple interpolation/extrapolation scheme. More elaborated method should be used.

In the future, we will delve into the topic of piecewise linear interpolation utilizing
Delaunay triangulation as a means of analysis. However, the primary concern that persists
is the issue of extrapolation. To tackle this problem, there are a couple of strategies that can
be employed. One such strategy involves supplementing the existing experimental data
with novel protocols in order to broaden the dataset. Another approach entails imposing
additional constraints on the response functions, thereby enhancing the accuracy of the
results. As an illustration, when dealing with isotropic materials, it is crucial to ensure
that the isotropic condition is satisfied in terms of both the left Cauchy-Green deformation
tensor and the stress tensor [45]. This isotropic condition can be rewritten in terms of
response functions and the Laplace stretch. In the case of anisotropic materials, similar
conditions on response functions will be explored and discussed further in the future.

Nevertheless, the results are promising for the application of the proposed data-driven
approach to simulation of anisotropic biomaterials. The future work should be focused
on better interpolation scheme; avoiding data extrapolation via virtual experiments that
help to select appropriate protocols for data-driven simulation; account the polyconvexity
constraint on the second derivative of the elastic potential; account the material symmetry
in terms of response functions.

In addition to ensuring that our experiments are conducted under realistic conditions,
our research will involve an investigation into the technique of heterogeneous stress field
estimation put forth by [44]. To gain a more comprehensive understanding, we plan
to utilize various benchmark materials to estimate the errors that may arise from our
interpolation and extrapolation methods. Furthermore, in order to validate and verify the
effectiveness of our methodology, a wide range of deformation modes will be examined
through actual experiments. It is worth mentioning that our proposed approach will
not be limited to two-dimensional scenarios; rather, we will also extend it to encompass
three-dimensional cases.
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