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Abstract: Brain tumor diagnosis traditionally relies on the manual examination of magnetic reso-
nance images (MRIs), a process that is prone to human error and is also time consuming. Recent
advancements leverage machine learning models to categorize tumors, such as distinguishing be-
tween “malignant” and “benign” classes. This study focuses on the supervised machine learning
task of classifying “firm” and “soft” meningiomas, critical for determining optimal brain tumor
treatment. The research aims to enhance meningioma firmness detection using state-of-the-art deep
learning architectures. The study employs a YOLO architecture adapted for meningioma classifi-
cation (Firm vs. Soft). This YOLO-based model serves as a machine learning component within a
proposed CAD system. To improve model generalization and combat overfitting, transfer learning
and data augmentation techniques are explored. Intra-model analysis is conducted for each of the
five YOLO versions, optimizing parameters such as the optimizer, batch size, and learning rate
based on sensitivity and training time. YOLOv3, YOLOv4, and YOLOv7 demonstrate exceptional
sensitivity, reaching 100%. Comparative analysis against state-of-the-art models highlights their
superiority. YOLOv7, utilizing the SGD optimizer, a batch size of 64, and a learning rate of 0.01,
achieves outstanding overall performance with metrics including mean average precision (99.96%),
precision (98.50%), specificity (97.95%), balanced accuracy (98.97%), and F1-score (99.24%). This
research showcases the effectiveness of YOLO architectures in meningioma firmness detection, with
YOLOv7 emerging as the optimal model. The study’s findings underscore the significance of model
selection and parameter optimization for achieving high sensitivity and robust overall performance
in brain tumor classification.

Keywords: brain tumor firmness detection; deep learning; meningioma; MRI; YOLO

1. Introduction

Cancer remains a global challenge, with millions of lives lost annually. Brain tumor
diagnosis, particularly meningioma firmness detection, presents complexities and uncer-
tainties in manual magnetic resonance imaging (MRI) analysis. Existing processes, subject
to human variation, are time consuming and may lack accuracy. To bridge this gap, this
study proposes a You Only Look Once YOLO-based approach for automated meningioma
firmness classification, addressing the need for precise and efficient brain tumor diagno-
sis. The research problem revolves around optimizing the performance of meningioma
firmness detection by leveraging cutting-edge deep learning architectures, specifically the
YOLO model. Objectives include adapting YOLO for meningioma classification, evaluating
variants, and optimizing parameters for sensitivity and training time. This study aims
to contribute to the medical and computing communities by enhancing tumor detection
and classification accuracy. This introduction establishes the context, underscores the
significance of automated tumor detection, and introduces YOLO as a promising solution.
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In 2020 alone, there were approximately 19.3 million new cancer cases and nearly
10.0 million cancer-related deaths worldwide, highlighting the urgency for advanced di-
agnostic methods [1,2]. Conventional MRI tumor detection lacks consistency, prompting
the demand for automated systems coupling machine learning with image processing.
Meningioma tumors vary from soft to firm, necessitating distinct treatments. The proposed
YOLO model aligns with the growing trend of utilizing machine learning (ML) and deep
learning (DL) for medical applications, offering potential improvements in efficiency and
accuracy. The subsequent sections delve into the methodology, results, and conclusions,
detailing this study’s contribution to both the medical and computational realms.

Brain tumors, with diverse categories such as gliomas, medulloblastoma, and menin-
gioma, underscore the need for accurate and swift detection [3]. Among these, glioblastoma
and meningioma present distinct challenges, with the latter exhibiting a spectrum from
soft to firm consistency. It is a tumor that grows from the membranes that surround the
brain and spinal cord (meninges). Most of the meningiomas are noncancerous. In this
regard, the presence of soft meningioma requires tissue suction, while finding a firm one
necessitates surgery by opening the skull to eradicate the tumor. Thus, the prescription of
an appropriate treatment in order to preserve the chances of a patient’s survival requires
the identification and classification of brain tumors into a soft or firm category using an
effective and accurate detection system.

Current medical imaging techniques, notably magnetic resonance imaging (MRI),
play a pivotal role in identifying brain tumors [3]. However, challenges persist in precise
and swift classification. The proposed YOLO-based approach aims to overcome these
challenges by offering a real-time object detection system with the potential for enhanced
sensitivity and accuracy. Magnetic resonance imaging (MRI) is an advanced medical
scan that utilizes radio waves and powerful magnetic fields to create detailed images of
the body’s organs and tissues. Its versatility allows examination of various body parts,
including the brain, bones, and heart, making it effective for detecting diverse diseases. MRI
plays a crucial role in identifying areas of injury, particularly by visualizing water, a key
component of the human body. A water molecule is made up of two hydrogen atoms and
one oxygen atom (denoted as H2O). This method relies on the alignment and manipulation
of hydrogen nuclei (protons) through powerful magnets and radio frequency, ultimately
producing images based on the protons’ behavior in a magnetic field. The resulting signals,
generated during a process called precession, are measured and translated into meaningful
images [3]. Figure 1 shows a real meningioma classification process with clear labels from
the KKUH dataset.
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Figure 1. Two sample MRI images from the KKUH dataset, where the yellow part in the image is the
tumor location and the left image exhibits a firm brain tumor and the one on the right discloses a soft
brain tumor. The two brain tumors are of type meningioma.

This study also explores the broader landscape of ML and DL in medical applications,
particularly in computer-aided diagnosis (CAD). ML techniques aid in feature extraction,
and DL, with its ability to discern patterns without explicit programming, proves advanta-
geous. The proposed YOLO system aligns with the paradigm shift toward deep learning,
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demonstrating its potential for meningioma firmness classification. The utilized technique
splits the input image into a grid of cells, and each cell directly predicts the coordinates of
a bounding box, where the large number of candidate bounding boxes are consolidated
into a final class probability prediction for these bounding boxes. The subsequent sec-
tions detail the experimental setup, results, and comparisons, providing insights into the
model’s performance.

In conclusion, this research addresses the limitations of current meningioma firmness
detection methods through a YOLO-based approach. By combining advancements in deep
learning with medical imaging, this study contributes to the fields of both medicine and
computing. The subsequent sections elucidate the methodology, showcase experimental
results, and draw conclusions on the efficacy of the proposed YOLO model in enhancing
meningioma detection accuracy. Here is a brief explanation of the several metrics used in
evaluating the performance of a model. Specificity corresponds to the ability to correctly
identify patients who have a soft tumor as being negative [4]. The mAP is a metric used
to evaluate the accuracy of object detection models, while the F1-score is defined as the
harmonic mean of precision and recall. It is used as a statistical measure to rate classification
performance across the entire dataset. Balanced accuracy serves as a comprehensive
measure of a model’s performance, taking into account both sensitivity and specificity. This
metric is especially valuable in handling imbalanced datasets, as it calculates the average
of sensitivity and specificity with equal weighting. A high level of balanced accuracy
reflects an effective balance between correctly predicting positives and negatives. Precision
assesses the accuracy of positive predictions, representing the ratio of correctly predicted
positive observations to the total predicted positives. A higher precision signals a lower
occurrence of false positives.

The rest of this paper is organized as follows: Section 2 presents some of the literature
review for the detection of brain tumors using both shallow learning models and deep
learning models. In Section 3, we describe the methodology we used for detecting the
firmness of meningioma tumors. We experiment and discuss our results of using YOLO
versions and compare them with some of the other recent performance results in Section 4
before we conclude the paper.

2. Literature Review

Due to the scarcity of related research that addresses the tumor firmness detection
problem, we outline relevant machine learning methods that have been considered for
detecting brain tumors using magnetic resonance images (MRIs). In particular, this section
summarizes the relevant state-of-the-art contributions over the last 15 years. Broadly speak-
ing, shallow machine learning models require the extraction of relevant low-level features,
which consists of a manual process that involves a thorough data domain knowledge.
In other words, such shallow-model-based solutions rely on learning using predefined
features extracted from the considered data collection [5].

The authors in [5] proposed a clustering algorithm based on particle swarm optimiza-
tion (PSO) to find the centroids of a number of clusters that enclose together brain tumor
patterns obtained from MRI images. The solution introduced in [6] extracts discrete wavelet
transform (DWT) from input images as the feature extraction step. Then, the dimensional-
ity of the resulting feature vectors is reduced using principal component analysis (PCA).
To decide whether the image is normal or abnormal, forward back-propagation artificial
neural network (FP-ANN) or k-nearest neighbor (k-NN) classifiers are used leading to
different accuracy results. In [7], feature extraction has been implemented using MATLAB
7.9.0 (R2009B) to classify the input MRI brain images into normal and abnormal by using
support vector machine (SVM). The input data are mapped into a higher dimensional space
using a radiant basis function (RBF) kernel.

The researchers in [8] proposed a methodology for a CAD Brain MRI system. Specif-
ically, a feedback pulse-coupled neural network (FPCNN) is used for the segmentation
and the detection of the region of interest (ROI), while DWT is employed for feature ex-
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traction. One should note that PCA is also used for dimensionality reduction. In addition,
a backpropagation NN is used for classifying whether the image is normal or abnormal.
In [9], after applying generalized autoregressive conditional heteroscedasticity (GARCH),
the authors used PCA and linear discriminant analysis (LDA) to remove the redundancy
and extract the proper features. Then, to determine the tumor in a given MRI image, they
employed KNN and SVM classifiers. The work outlined in [10] relies mainly on a genetic
algorithm (GA), curve fitting, and support vector machine. In particular, GA was used to
extract segments from the images. Further, in order to properly segment the images with-
out the loss of information and improve the procedure of segmentation, the authors also
used curve fitting. The resulting features are then classified using SVM. The methodology
introduced in [11] consists of a set of stages starting from an MRI image input. The image
is then processed through the enhancement of MRI images, skull stripping, fuzzy c-means,
and feature extraction. Finally, the SVM classifier shows if the brain image has a tumor
or not.

The method in [12] used histogram fast segmentation-self organizing map (HFS-SOM)
clustering and texture feature extraction via a gray-level co-occurrence matrix (GLCM).
Moreover, principal component analysis (PCA) was used for feature selection followed
by proximal support vector machine (PSVM) to classify the image into normal, benign, or
malignant tumors. Similarly, the authors in [13] employed PCA to reduce the number of
features and fed the resulting features into two well-known algorithms: neural network
(NN) and support vector machine (SVM) for classification of human brain MRIs. In [14], the
authors investigated histogram-based features, shape descriptors, and fuzzy local binary
pattern (fLBP) features as well as multiresolution texture features to encode the image
visual properties. Moreover, they employed a random forest (RF) technique to classify
the extracted features into different brain tumor types. One should also mention that
rough entropy thresholding was deployed for feature quantification prior to the RF-based
classification task.

In [15], the researchers developed an adaptive neuro-fuzzy classifier based on lin-
guistic hedges (ANFC-LH) to select the significant features and predict the tumor grade.
Namely, they extracted gray-level statistic (GLS), gray-level co-occurrence matrix (GLCM),
geometrical shape and size (GSS), and gray-level run length (GLRL) features from the
collection of MRI images. The accuracy achieved using ANFC-LH was 85.83%. Similarly,
in [16], GLCM features were extracted from MRI images after a preprocessing phase in-
cluding noise removal and a median filter-based image enhancement task. Afterwards,
a genetic algorithm was applied as a metaheuristic optimization to predict the tumor
categories. In [17], the authors used a k-means clustering based segmentation technique
to extract the region of interest from a given image. Then, the discrete wavelet transform
(DWT) was used to extract the texture feature from the resulting regions. Next, the PCA
algorithm was deployed to reduce the features’ dimensionality. Finally, the obtained fea-
tures were conveyed into a support vector machine (SVM) algorithm in order to map
them into the predefined brain tumor categories. This classification approach yielded an
accuracy of 99%. In [18], a deep-learning-based feature extraction was coupled with the
handcrafted descriptor, modified gray-level co-occurrence matrix (MGLCM), to improve
the accuracy of the SVM-based classification task using MRI brain scans. The reported
accuracy attained 99.30%.

A hybrid feature extraction method was introduced by the authors of [19]. Initially,
the brain images were transformed into intensity images as a preprocessing step. Then,
the images’ visual properties were encoded using the PCA-based normalized GIST (PCA-
NGIST) hybrid method. Finally, brain tumors were detected using the robust layered
ensemble model (RLEM) classifier. This hybrid method’s accuracy reached 94.23%. Recently,
the work described in [4] aimed at recognizing meningioma tumor cases using a computer-
aided diagnosis (CAD) system that relies on a supervised machine learning technique.
Particularly, the authors investigated different feature extraction techniques and concluded
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that the local binary pattern descriptor exhibits a considerable discrimination capability
that allows for an accurate detection of meningioma tumor firmness.

The authors in [20] proposed an extended Kalman filter with support vector machine
(EKF-SVM)-based method. Their algorithm has five components, including standardizing
all images. Afterwards, noise is removed with a nonlocal means filter, and contrast is
enhanced with improved dynamic histogram equalization. For feature extraction, a gray-
level co-occurrence matrix is used. In the third step, the extracted features are fed into an
SVM to classify the MRI initially, and an EKF is used to classify brain tumors in the MRIs.
The accuracy of the classifier is verified using cross-validation. Finally, a combination of
k-means clustering and region growth is used for detecting brain tumors as an automatic
segmentation method. They achieved 96.05% accuracy. The authors of [21] focused on a
multiclass support vector machine (M-SVM) classifier to identify the meningioma, glioma,
and pituitary tumors from the brain tumor dataset. Their proposed method has five steps.
First, the edges in the image were determined by linear contrast stretching. Second, the
segmentation of brain tumors was developed by a custom 17-layered deep neural network
(DNN). Third, they used modified MobileNetV2 architecture for feature extraction. Fourth,
they used an entropy-based controlled method, where the best features are selected based
on the entropy value. The final features are classified using an M-SVM classifier. The
obtained results for the accuracy, sensitivity, and specificity were 97.47%, 97.22%, and
97.94% respectively. In [22], the authors conducted their experiment on a collected database
from Aarthi Hospital, to detect glioma tumors into benign tumors and malignant tumors,
where the results they obtained were 100% for sensitivity, 97.2% for accuracy, and 90% for
specificity. Their proposed work is divided into three parts: preprocessing segmentation
and classification steps are applied on brain MRI images, texture features are extracted
using gray-level co-occurrence matrix (GLCM), DWT, and then classification is achieved
using SVM.

Based on the papers reviewed above, one can deduce that the most frequent classifica-
tion techniques used by researchers are SVM and CNN. These two classifiers were used in
eighteen papers and in nine papers, respectively. Another observation is that KNN was
used in four of the referenced works, while the rest of the classifiers were used less often.
One can also notice that CNN was used nine times, whereas RNN was only used once in
the last 15 years. On the other hand, the most used feature extraction methods are GLCM
and DWT. They were exploited in ten papers and seven papers, respectively, while PCA,
LBP, and GLRL were used about twice a time. The remaining feature extraction techniques
were employed about once. In addition, one can observe that over the last 15 years the
methods that were considered the most for tumor detection are supervised learning and
deep learning techniques. On the other hand, hybrid methods were used less frequently in
the detection of tumors. As it can be noticed, despite the considerable efforts made to tackle
brain tumor detection using machine learning techniques, only a few contributions have
been introduced to address the meningioma firmness detection problem. Moreover, and to
the best of our knowledge, the use of state-of-the-art pre-trained deep learning models has
not been employed before to classify meningioma cases into firm or soft classes.

3. Proposed Approach

The purpose of this research is to advance the detection of meningioma firmness
utilizing a YOLO (You Only Look Once)-based methodology, seeking an optimal balance
between detection speed and accuracy for assessing meningioma firmness.

The system’s workflow, as depicted in Figure 2, begins with the employment of a
YOLO model pretrained on the expansive COCO dataset. The weight parameters of this
model were trained with the COCO 20-class dataset. Leveraging this pretrained model
affords us a foundational weight parameter set, primed with a broad understanding
of visual features. Through the technique of transfer learning, we adapt this model to
concentrate on two classes of our specific classification task and differentiate between two
types of meningioma firmness. The rationale behind adopting transfer learning lies in
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its ability to expedite the learning process, enhance accuracy, and reduce the need for
extensive training data. Transfer learning involves leveraging knowledge acquired from
learning a related task, resulting in improved efficiency when applied to a new but related
task. To further enhance the model’s generalization and robustness, data augmentation
techniques were applied during the training phase. These techniques involve artificially
expanding the training dataset by applying random transformations to the input images,
such as rotations, flips, and changes in brightness. By exposing the model to a variety of
augmented images, the risk of overfitting to the original dataset is mitigated, contributing
to better generalization when presented with new and unseen data.
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The model’s output encompasses the coordinates of the bounding box, the class name
of each object (representing the tumor type), and a confidence score. If the predicted bound-
ing boxes deviate significantly from the labeled bounding boxes, the system fails to detect
the object accurately. This combined approach of transfer learning and data augmentation
serves the purpose of preventing overfitting and overtraining issues commonly associated
with deep learning networks when confronted with limited datasets. The following details
annotate the YOLO architecture specifically for meningioma classification:

• Input Layer Adjustments: Given that MRI images differ from the common objects
in the COCO dataset, the input layer is tuned to accommodate the unique grayscale
intensity distributions of MRI scans.

• Hyperparameter Optimization: The hyperparameters, including the learning rate,
batch size, and number of epochs, are calibrated specifically for the task, ensuring the
model learns effectively from the MRI data without overfitting.

• Custom Loss Function: The loss function is tailored to emphasize the precision of
bounding box localization and class prediction accuracy.

• Evaluation Metrics: The model’s performance is assessed using metrics such as inter-
section over union (IoU) for bounding box accuracy and F1 scores for classification,
reflecting the model’s efficacy in meningioma detection and firmness differentiation.

• Postprocessing Thresholds: Custom thresholds for confidence scores and nonmax-
imum suppression are established to refine the detection output, minimizing false
positives and false negatives.

This meticulous customization of the YOLO architecture to the domain of MRI analysis
for meningioma classification is anticipated to yield a model that not only performs with
high accuracy but also operates at a speed conducive to clinical application. This approach
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demonstrates a promising pathway to integrate deep learning models in medical imaging
diagnostics, providing valuable support to radiologists and enhancing the overall quality
of patient care.

Our system divides the input image into an S × S grid. If the center of an object falls
into a grid cell, that grid cell is accountable for detecting that object. The images are only
looked at once to predict objects of interest and their respective locations. In particular,
the algorithm relies on a single convolutional network whereby the prediction of multiple
bounding boxes and class probabilities are simultaneously performed. It is noted that the
training of YOLO is conducted using full images. In other words, no prior segmentation is
required by the utilized approach. As illustrated in Figure 3, YOLO’s main goal aims at
dividing the input image into many grid cells. Each grid cell is responsible for predicting
the object centered in that grid cell, the bounding boxes, and the confidence scores for the
corresponding detected boxes. The cells predict the class probabilities, which are used
to establish the class of each object. The intersection over union (IoU) measure ensures
that the predicted bounding boxes are equal to the real boxes of the objects. This removes
unnecessary bounding boxes that do not meet the characteristics of the objects. The final
detection consists of unique bounding boxes that fit the objects perfectly. The predicted
bounding box has its (x, y) coordinates, in terms of height and width, and class labels
as outputs, where (IoU) describes the relationship between two boundaries which are
the predicted boundary vs. ground-truth boundary box. A higher IoU implies a closer
match between the anticipated and actual bounding box coordinates, which gives better
prediction accuracy. To train an object detection model, usually, there are two inputs,
which are an image and ground-truth bounding boxes for each object in the image. IoU
Equation (1) divides intersection area by union area, where a higher IoU correlates with
better prediction.
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The YOLO framework has three main components. They are represented by the back-
bone, neck, and head. The backbone part mainly extracts the essential features of an image 
and feeds them to the head through the neck. The neck collects feature maps extracted by 
the backbone and creates feature pyramids. Finally, the head consists of output layers that 
have the final detections. Each version of YOLO introduces something new in terms of its 
characteristics and internal structure to improve its performance. 

(1)
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The YOLO framework has three main components. They are represented by the
backbone, neck, and head. The backbone part mainly extracts the essential features of
an image and feeds them to the head through the neck. The neck collects feature maps
extracted by the backbone and creates feature pyramids. Finally, the head consists of output
layers that have the final detections. Each version of YOLO introduces something new in
terms of its characteristics and internal structure to improve its performance.
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3.1. YOLO Framework

In addition to the backbone, neck, and head components, YOLO also uses input images
as shown in Figure 4. During the training step, the data augmentation approach is applied
to the input to diversify the training data. In other words, the purpose of data augmentation
is to increase the variability of the input images. This would enhance the generalization
capability of the model. Specifically, photometric and geometric distortion are considered
to augment the data. In fact, the photometric distortion is intended to change the brightness,
contrast, saturation, and noise of the MRI image, while the geometric distortion includes
random scaling, cropping, flipping, and rotating MRIs, as illustrated in Figure 5. The
resulting diversified instances are then conveyed to the backbone for feature extraction
through the different network levels. The backbone mainly determines the feature extractor
representation ability. Meanwhile, its design has a critical influence on the inference
efficiency since it carries a large portion of the computational cost.
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The neck provides feature infusion using upsampling and feature concatenation
layers to add more details for the last part, which are used to aggregate the low-level
physical features with high-level semantic features and then build up pyramid feature
maps at all levels to fusion different stage feature maps. Moreover, the head provides
the final predictions to the classes as well as the bounding boxes of detected objects with
the confidence. Next, we proceed to describe each of the five versions of the YOLO deep
learning model starting with YOLOv3.

The adaptation of the YOLO architecture for meningioma classification involved sev-
eral key modifications. The grid system was customized for precise tumor localization,
opting for a full-image training approach due to the complex nature of meningioma tu-
mors. Integration of the intersection over union (IoU) measure during training ensured a
closer match between predicted and actual bounding box coordinates. Framework compo-
nents, including the backbone, neck, and head, were enhanced to focus on meningioma
characteristics. The performance measures have been updated in each YOLO version to
match our needs in detecting meningioma firmness. These modifications aimed at refining
detection accuracy and overall model performance in meningioma classification within
medical imaging.
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3.2. YOLOv3

For YOLOv3, a Darknet53 library [23,24] is typically used as the backbone to extract
relevant features from the input images. As explained above, the backbone is composed of
convolution layers whose function is to extract essential features from the input images.
On the other hand, a feature pyramid network (FPN) [25] forms the neck, which plays
an important role in extracting the feature maps from different stages. Finally, the head
role consists mainly in performing the final prediction and generating a vector containing
bounding box coordinates: width, height, class label, and class probability.

Accordingly, after an image is fed into Darknet53 for feature extraction, it is conveyed
to the feature pyramid network for feature fusion. The classification results are then
identified. What differentiates this YOLO version from the previous one is its ability to
make detections at three different scales. It also has 106 convolutional layers and 1024 filters
in Darknet53. The architecture of YOLOv3 is depicted in Figure 6. In fact, the first YOLO
version, known as YOLOv1, predicts a single object per grid cell. This makes the built
model simpler, but it creates issues when a single cell has more than one object. The next
version succeeding it, that is YOLOv2, allows for the prediction of five bounding boxes
from a single cell, while the backbone for YOLOv2 is DarkNet-19 containing a total of
19 convolutional layers. YOLOv3 overcomes the limitations of YOLOv2 and YOLOv1 by
detecting features at three different scales, especially in the detection of smaller objects [25].
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3.3. YOLOv4

YOLOv4 exhibits advantages over other object detection methods such as deformable
parts models (DPMs) and region-based convolutional neural networks (R-CNNs) [27].
As depicted in Figure 7, YOLOv4 relies on three main components [28]: the backbone,
then the neck, and finally the dense prediction as the head part. The backbone deals with
feature extraction and is handled by a pretrained model called CSPDarknet53. The latter
divides the current layer into two parts: one that passes through the convolution layer and
another that does not. This is followed by the aggregation of these results. The backbone
encloses five residual block modules, and the output feature maps are connected to the neck
component of YOLOv4. The neck part adds layers between the backbone and the dense



Computation 2024, 12, 44 10 of 25

prediction (head), where the neck contains a spatial pyramid pooling (SPP) module and a
path aggregation network (PAN). The SPP module in the neck combines the max-pooling
outputs of the low-resolution feature map to identify the most representative features. The
SPP module uses kernels of size 1-by-1, 5-by-5, 9-by-9, and 13-by-13 for the max-pooling
operation. The stride value is set to 1. Then, it fuses them with the high-resolution feature
maps by using a PAN, which combines the low-level and high-level features by using
upsampling and downsampling operations to set bottom-up and top-down paths. One
should note that PAN uses the feature maps collected for predictions. Furthermore, the
neck connects the feature maps from each layer of the backbone network and sends them
as inputs to the head. After the collected features are processed, the head determines the
bounding boxes, abjectness scores, and classification scores. The YOLOv4 network uses
one-stage object detectors, such as those of YOLOv3 [28,29].
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3.4. YOLOv5

YOLOv5 was developed by Ultralytics and uses CSPDark-net53 as the backbone. This
eliminates in large backbones the repetitive gradient information and integrates gradient
change into the feature map that decreases the inference speed, increases accuracy, and
decreases the model size by reducing the parameters. In particular, the model utilizes path
aggregation network (PANet) as the neck to raise the information flow, which enhances the
localization in lower layers and improves the localization accuracy of the object. PANet uses
a new frame proposal network (FPN) which includes multiple bottom-up and top-down
layers to enhance the propagation of low-level features in the model. The head generates
three different outputs of feature maps to realize multiscale prediction as with YOLOv4
and YOLOv3, thus enhancing the prediction. The architecture of this model is shown in
Figure 8. As it can be seen, Conv represents a convolution layer, while Conv3 encloses
three convolution layers and a module cascaded by various bottlenecks. On the other
hand, SPP is a pooling layer that is used to remove the fixed size constraint of the network.
In addition, the Upsample module is used to upsample the previous layer fusion in the
nearest node, while Concat is a slicing layer that is used to slice the previous layer. Finally,
the last three Conv2d are detection modules used in the head. The output image is entered
into CSPDarknet53 for feature extraction and then passed to PANet for feature fusion.
Ultimately, the bounding box, object class, and confidence score results are obtained by the
head [20,31]. The use of a focus structure with CSPdarknet53 as backbone represents the
main difference between YOLOv5 and the previous YOLO versions. In particular, YOLOv4
uses CSPdarknet53 only as its corresponding backbone. The advantage of using a focus
layer in YOLOv5 is the reduced requirement of CUDA memory, reduced number of layers
(single layer instead of three layers in YOLOv3), and increased forward propagation and
backpropagation [32].
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3.5. YOLOv6

YOLOv6 was developed by a Chinese company (Meituan, Inc., Beijing, China) and
was officially published in September of 2022. The backbone, denoted as EfficientRep, is
used for small models. The main component of the backbone is RepBlock, used during
the training phase. Each RepBlock is converted to stacks of 3 × 3 convolutional layers
(denoted as RepConv). However, for medium and large model networks, the backbone
is called the CSPStackRep Block. The neck of YOLOv6 is identified as Rep-PAN. To
build an efficient decoupled head, the hybrid-channel strategy was used by reducing the
number of the middle 3 × 3 convolutional layers to only one. The width of the head is
jointly scaled by the width multiplier for the backbone and the neck. These modifications
further reduce computational costs to achieve a lower inference latency [33]. Within the
brain, the classification and detection branches do not share the parameters and branch
out from the backbone independently. This increases accuracy while also reducing the
number of computations needed. The main differences from the previous model are that
YOLOv6 uses EfficientRep, RepBlock, and RepConv as a backbone, whereas YOLOv5 uses
a focus structure with Cross Stage Partial DarkNet 53 (CSPdarknet53), Figure 9 shows the
architecture of YOLOv6.
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3.6. YOLOv7

The official YOLOv7 was published in July of 2022. It was shown that it surpasses
all previous object detection models and YOLO versions in both speed and accuracy. In
particular, it is the fastest and most accurate real-time detector when using video and
surveillance cameras in the range from 5 frames per second (FPS) to 160 FPS [34].

The architecture in Figure 10 of YOLOv7 presents the backbone of YOLOv7, named
E-ELAN, which stands for extended efficient layer aggregation network. The YOLOv7
model’s E-ELAN architecture allows it to learn more effectively by utilizing expand, shuffle,
and merge cardinality to continuously enhance the network’s capacity for learning without
erasing the original gradient path. For the YOLOv7 architecture, the model scaling is
improved with a compound model scaling mechanism and by the coherent scaling of
the width and depth parameters for concatenation-based models. YOLOv7 uses multiple
heads, where the head responsible for the final output is called the lead head. Further, the
head used to assist the training process in the middle layers is called the auxiliary head.
YOLOv7 has introduced the bag of freebies (BoF) methods that increase the performance
of a model without increasing training cost by the use of re-parameterization, which is a
technique used after training to improve the model. Even though this approach increases
the training time, it improves the inference results to produce a final model that is robust in
performance. There are two types of re-parametrizations used to finalize models. These are
called model-level and module-level ensembles [34,35].
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3.7. Discussion

The main differences between YOLOv3, YOLOv4, YOLOv5, YOLOv6, and YOLOv7
are presented in Table 1. As it can be seen, YOLOv3 uses Darknet53 as its backbone while
the YOLOv4, YOLOv5, YOLOv6, and YOLOv7 models use CSPdarknet53, focus structure
with CSPDarknet53, RepBlock for small models and CSPStackRep Block for large models,
and E-ELAN as their respective backbone structures. In YOLOv3, the neck plays a crucial
role by extracting feature maps from various stages and using the feature pyramid network
(FPN); in YOLOv4, feature aggregation is accomplished through the use of the SPP layer
and PANet path aggregation, which enhances the receptive field and shorts out significant
features from the backbone. The neck in YOLOv5 uses PANet and adopts a new feature
pyramid network (FPN), but the YOLOv6 neck is denoted as Rep-PAN. The role of the
head in one stage detector is to perform the final prediction which generates three different
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outputs of feature maps to achieve a multiscale prediction. It also helps to enhance the
prediction of small to large objects efficiently in the model. Each successive version of
YOLO is an improvement over the previous one in terms of both speed and accuracy.

Table 1. Comparison between the structure of YOLOv3, YOLOv4, YOLOv5, YOLOv6, and YOLOv7
deep learning models.

Model Parts YOLOv3 YOLOv4 YOLOv5 YOLOv6 YOLOv7

Backbone Darknet-53
CSPDarknet53

(CSPNet in
Darknet)

CSPDarknet53
Focus structure RepBlock E-ELAN

Neck FPN SPP and PANet PANet Rep-PAN

Head

(Output layer)
Bounding box

Class score
Confidence

(Output layer)
Bounding box

Class score
Confidence

(Output layer)
Bounding box

Class score
Confidence

Hybrid-channel
strategy

Auxiliary head
Lead head

4. Experiments

In this section, we have implemented and assessed the performance of the proposed
YOLO-based DL approaches using a real collection of MRI images. As will be described
next, a set of standard performance measures have been used to evaluate the achieved
meningioma firmness detection across five different versions of the YOLO deep learning
models: YOLOv3, YOLOv4, YOLOv5, YOLOv6, and YOLOv7.

4.1. Dataset Description and Preprocessing

The research experiments utilized a genuine dataset of brain tumor images gener-
ously provided by King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia [4].
This dataset comprises 28 cases involving both female and male subjects diagnosed with
meningioma tumors. Out of these cases, 19 are identified as having firm tumors, while the
remaining cases exhibit soft tumors. The dataset was meticulously labeled by a skilled sur-
geon, who leveraged their diagnostic expertise to categorize each case as either firm or soft.
In total, the collected dataset encompasses 500 MRI images, which were subsequently parti-
tioned into a training set (70% of images) and a testing set (30% of images). The training set,
containing 350 MRI images, demonstrates a class distribution of 32% for soft meningioma
and 68% for firm meningioma. Similarly, the testing set comprises 150 MRI images, with
32% representing soft meningioma tumors and the remaining 68% corresponding to firm
cases. The two defined classes are as follows: soft tumor (class 1) and firm tumor (class 0).
All images in the dataset are accompanied by .txt file labels, and the image-labeling process
utilized the labelImg tool. Each object within an image is labeled in the following format:

<object-class> <x_center> <y_center> <width> <height>
The image-cropping procedure was executed manually by a qualified radiologist. This

process is initiated by selecting a region of interest (ROI) covering the entire area of the
brain tumor from the MRI images. The radiologist drew a rectangle box around the largest
tumor area, which varied in size across cases. Subsequently, the tumor type was classified
by the radiologist, as illustrated in Figure 11. This manual cropping step aimed to facilitate
the training of all employed YOLO models. The experiments were conducted on Google
Colaboratory, also known as “Colab”. It is an online tool by Google Corporation utilized
for data analysis, machine learning, and education. The hardware accelerator employed
was a NVIDIA Tesla T4 GPU, which is manufactured by NVIDIA Corporation. NVIDIA’s
headquarters are located in Santa Clara, California, United States. with 40 cores, a clock
rate of 1.59 GHz, and a random-access memory (RAM) of 16 GB [36].



Computation 2024, 12, 44 14 of 25Computation 2024, 12, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 11. Selection and labeling of different meningioma tumor types using the labeling program, 
where in (a) a firm tumor is annotated, while in (b) a soft tumor is labeled. 

4.2. Experimental Setup and Evaluation Metrics 
The confusion matrix shown in Table 2 represents the positive class as the firm tumor 

while the negative class represents the soft tumor where the term (TP) stands for True 
Positive. It signifies the number of correctly classified positive samples. For example, the 
number of frames containing a tumor is correctly estimated as having a tumor. The term 
True Negative (TN) denotes the number of correctly classified negative samples, that is, 
the number of frames not containing a tumor is correctly predicted as not having a tumor.  

The False Positive (FP) term describes the number of samples incorrectly classified as 
positive. In other words, the number of frames not containing a tumor is incorrectly pre-
dicted as having a tumor. For the False Negative (FN) term, it signifies the number of 
samples classified incorrectly as negative, that is, the number of frames containing a tumor 
is incorrectly predicted as not having a tumor. 

Table 2. Confusion matrix parameters. 

Pr
ed

ic
te

d Actual 
 Firm (0) Soft (1) 

Firm (0) TP  FP  
Soft (1) FN  TN  

In order to evaluate the performance of the different YOLO-based approaches, we 
consider standard performance measures adopted by relevant state-of-the-art works [37]. 
Namely, these metrics are sensitivity (also known as recall), specificity (or selectivity), 
mean average precision (mAP), balanced accuracy, F1-score, and precision (also known 
as positive predictive value or PPV). They are presented in Equations (2) to (9) below. 
Further, the average precision (AP) for a given class i out of N classes is indicated by APi. 
Average precision AP is the area under the precision–recall curve. Precision and recall are 
always between 0 and 1. Therefore, AP falls within 0 and 1 also. Before calculating AP for 
the object detection, we often smooth out the zigzag pattern first as in Figure 12 by inter-
polating the precision at various recall levels in order to reduce the effect of the wiggles 
in the curve and obtain better results [38,39]. The interpolated precision P_interp at a cer-
tain recall level 𝑟 is defined as the highest precision found for any recall level r′ ≥ r(k+1) as 
in (6). In simple terms, it is the maximum precision value to the right, where the maximum 

Figure 11. Selection and labeling of different meningioma tumor types using the labeling program,
where in (a) a firm tumor is annotated, while in (b) a soft tumor is labeled.

4.2. Experimental Setup and Evaluation Metrics

The confusion matrix shown in Table 2 represents the positive class as the firm tumor
while the negative class represents the soft tumor where the term (TP) stands for True
Positive. It signifies the number of correctly classified positive samples. For example, the
number of frames containing a tumor is correctly estimated as having a tumor. The term
True Negative (TN) denotes the number of correctly classified negative samples, that is, the
number of frames not containing a tumor is correctly predicted as not having a tumor.

Table 2. Confusion matrix parameters.

Pr
ed

ic
te

d Actual

Firm (0) Soft (1)
Firm (0) TP FP
Soft (1) FN TN

The False Positive (FP) term describes the number of samples incorrectly classified
as positive. In other words, the number of frames not containing a tumor is incorrectly
predicted as having a tumor. For the False Negative (FN) term, it signifies the number of
samples classified incorrectly as negative, that is, the number of frames containing a tumor
is incorrectly predicted as not having a tumor.

In order to evaluate the performance of the different YOLO-based approaches, we
consider standard performance measures adopted by relevant state-of-the-art works [37].
Namely, these metrics are sensitivity (also known as recall), specificity (or selectivity),
mean average precision (mAP), balanced accuracy, F1-score, and precision (also known as
positive predictive value or PPV). They are presented in Equations (2) to (9) below. Further,
the average precision (AP) for a given class i out of N classes is indicated by APi. Average
precision AP is the area under the precision–recall curve. Precision and recall are always
between 0 and 1. Therefore, AP falls within 0 and 1 also. Before calculating AP for the object
detection, we often smooth out the zigzag pattern first as in Figure 12 by interpolating the
precision at various recall levels in order to reduce the effect of the wiggles in the curve
and obtain better results [38,39]. The interpolated precision P_interp at a certain recall
level r is defined as the highest precision found for any recall level r′ ≥ r(k+1) as in (6). In
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simple terms, it is the maximum precision value to the right, where the maximum precision
corresponds to the recall value greater than the current recall value. Graphically, at each
recall level, we replace each precision value with the maximum precision value to the right
of that recall level. In Figure 12, the orange line is transformed into the green lines, and the
curve will decrease monotonically instead of with a zigzag pattern.

Computation 2024, 12, x FOR PEER REVIEW 15 of 25 
 

 

precision corresponds to the recall value greater than the current recall value. Graphically, 
at each recall level, we replace each precision value with the maximum precision value to 
the right of that recall level. In Figure 12, the orange line is transformed into the green 
lines, and the curve will decrease monotonically instead of with a zigzag pattern. 

 
Figure 12. Example plot showing how to interpolate precision values. 

The calculated AP value will be less suspectable to small variations in the ranking. 
Mathematically, we replace the precision value for the recall with the maximum precision 
for any recall [38,39]. After removing the zigzags, we measure the precise area under the 
precision–recall curve at each unique recall value (r1, r2, ...). We sample p(rᵢ) whenever it 
drops, and we compute AP as the sum of the rectangular blocks, shown in Figure 13. This 
is calculated at IoU threshold 0.5 [38,39]. 

 
Figure 13. Area under the precision–recall curve. 

The sensitivity and the specificity are measures of a test’s ability to correctly classify 
a patient as having a disease or not. The sensitivity refers to a test’s ability to correctly 
identify an individual with a firm tumor as being positive. On the other hand, the speci-
ficity corresponds to the ability to correctly identify patients who have a soft tumor as 
being negative [4]. The mAP is a metric used to evaluate the accuracy of object detection 
models, while the F1-score is expressed as the precision and recall harmonic mean. It is 
used as a statistical measure to rate classification performance across the entire dataset. 
The loss rate measures how bad the model’s prediction was on a single example. If the 
model’s prediction is perfect, the loss is zero; otherwise, the loss is higher. Thus, the goal 
of training a model is to obtain a set of weights that have a low loss [40]. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (2)

Figure 12. Example plot showing how to interpolate precision values.

The calculated AP value will be less suspectable to small variations in the ranking.
Mathematically, we replace the precision value for the recall with the maximum precision
for any recall [38,39]. After removing the zigzags, we measure the precise area under the
precision–recall curve at each unique recall value (r1, r2, . . .). We sample p(ri) whenever it
drops, and we compute AP as the sum of the rectangular blocks, shown in Figure 13. This
is calculated at IoU threshold 0.5 [38,39].
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The sensitivity and the specificity are measures of a test’s ability to correctly classify
a patient as having a disease or not. The sensitivity refers to a test’s ability to correctly
identify an individual with a firm tumor as being positive. On the other hand, the specificity
corresponds to the ability to correctly identify patients who have a soft tumor as being
negative [4]. The mAP is a metric used to evaluate the accuracy of object detection models,
while the F1-score is expressed as the precision and recall harmonic mean. It is used as
a statistical measure to rate classification performance across the entire dataset. The loss
rate measures how bad the model’s prediction was on a single example. If the model’s
prediction is perfect, the loss is zero; otherwise, the loss is higher. Thus, the goal of training
a model is to obtain a set of weights that have a low loss [40].
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Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

mAP =
1
N ∑N

i=1 APi (4)

AP = ∑ [rk+1 − rk] ∗ Pinterp(rk+1) (5)

Pinterp(rk+1) = maxP
(
r′
)

r′≥rk+1
(6)

Balanced Accuracy =
Speci f icity + Sensitivity

2
(7)

Precision =
TP

TP + FP
(8)

F1 − score =
2 × (Recall × Precision)

Precision + Recall
(9)

In this study, our intra-model analysis, the selection of optimizers, batch sizes, and
learning rates were guided by the aim of optimizing model performance, particularly in
terms of accuracy and training speed. We assessed two widely used optimizers, Adam
and stochastic gradient descent (SGD), both known for their effectiveness in machine
learning applications. The choice of optimizer is crucial, as it directly influences the model’s
accuracy and training efficiency. The optimizer is a mathematical function that modifies
the attributes of the neural network and is used for training a machine learning model to
minimize its error rate by updating its weights. Therefore, it helps to reduce the overall
loss and improve accuracy. A good optimizer is mainly focused on being faster and more
efficient while showing less overfitting compared to the other for the task at hand [41,42].

Adam, an adaptive optimization algorithm, was chosen for its suitability for training
deep neural networks with limited memory requirements. It computes adaptive learning
rates for different parameters based on estimates of the first and second moments of gradi-
ents. Its simplicity and appropriateness for nonstationary objectives made it a compelling
choice for our study [43,44].

SGD is a variant of the gradient descent method. Instead of performing computations
on the whole dataset, which is redundant and inefficient, SGD only utilizes a small subset
or random selection of data examples. SGD produces the same performance as regular
gradient descent when the learning rate is low. It tries to update the model’s parameters
more frequently, where the model parameters are changed after the computation of loss on
each training example. SGD is a good optimizer when we have a lot of data and a large
number of parameters. This is due to the fact that, at each step, SGD calculates an estimate
of the gradient from only a random subset of that data, called a mini-batch. This is unlike
gradient descent, which considers the entire dataset at each step. The advantages of SGD
include the frequent updating of parameters, resulting in fast convergence while requiring
less memory as there is no need to store the values of the loss functions. However, its disad-
vantages are its high variance in model parameters and the need to slowly reduce the value
of the learning rate in order to achieve the same convergence as gradient descent [44,45].

The objective of our initial analysis was to determine the optimal optimizer (SGD or
Adam) for each YOLO version. Subsequently, we conducted experiments involving varying
batch sizes and learning rates. These hyperparameters play a critical role in managing
the learning process and improving the resulting machine learning model’s performance.
The employed hyperparameters in our various experiments are shown in Table 3. The
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batch size is a term used in machine learning to refer to the number of training examples
utilized in one iteration. It is sometimes divided by the number of subdivisions to obtain
the mini-batch size, which in turn determines the number of images and samples that
would fit into the RAM memory of the computing platform.

Table 3. Hyperparameters used to train and test all five YOLO versions in the detection of meningioma
firmness.

Hyperparameter Value

Batch Size 16, 32, 64
Subdivisions 16

Learning Rate 0.0005, 0.001, 0.01, 0.1
Momentum 0.949

Decay 0.0005

In this work, batch sizes of 16, 32, and 64, as well as 16 subdivisions, are used. It
follows that the mini-batch size is equal to 64/16 = 4, 32/16 = 2, and 16/16 = 1, respectively.
Such a value reflects the number of samples to be processed in one iteration, where the
number of iterations is the number of batches needed to complete one epoch. An epoch
is the number of times the algorithm runs on the whole training dataset. In addition, the
learning rate is a hyperparameter that controls how much to change the model in response
to the estimated error each time the model’s weights are updated. Further, momentum
and decay are widely used parameters for gradient-based optimizers to speed up learning.
They are used to control the total contribution of a gradient to future updates.

Our goal in adjusting these hyperparameters was to strike a balance between model
convergence and resource efficiency. The selected hyperparameter values, as outlined in
Table 3, were carefully chosen based on their impact on sensitivity and training time. The
experimentation process involved systematic exploration to uncover the most effective
combination, contributing to the overall optimization of the YOLO-based model for menin-
gioma firmness detection. To enhance understanding of the model-tuning process and its
impact on performance, convergence, and the decision making behind choosing optimizers,
batch sizes, and learning rates for each version of YOLO involves careful considerations of
model complexity, dataset characteristics, and computational resources. Popular choices
like SGD and Adam have been selected based on factors such as convergence speed and
memory requirements. Batch sizes of 16, 32, and 64 have been chosen based on memory
constraints and training efficiency. Learning rates of 0.1, 0.01, 0.001, and 0.0005 have been
adjusted to balance convergence speed and stability. Experimentation and transfer learning
considerations further inform hyperparameter selection.

4.3. Performance Results
4.3.1. Impact of Varying the Optimizer

We began our experiments by running each YOLO version with the two different
optimizers, SGD and Adam, where the values used in this selection for the batch size and the
learning rate are 64 and 0.01, respectively. The training results and times to achieve optimal
outcomes over 400 epochs are summarized in Table 4, while Table 5 presents the testing
results. Notably, SGD consistently outperforms Adam in testing results across all YOLO
versions, except for YOLOv4, which exhibits better performance with Adam, particularly
in terms of mAP, precision, sensitivity, specificity, balanced accuracy, and F1-score.

To complete the subsequent experiments, we selected the best-performing optimizer
for each YOLO version based on the testing results. Sensitivity, representing the percentage
of correctly predicted positive cases with firm tumors among all actual positive cases, was
considered the most crucial metric in this context. This metric guided our choice of the
most suitable optimizer or the optimal hyperparameter value for further consideration.
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Table 4. Training results when using the two optimizers, Adam and SGD, with five performance
measures for each YOLO version.

Performance
Measure

YOLOv3 YOLOv4 YOLOv5 YOLOv6 YOLOv7

SGD Adam SGD Adam SGD Adam SGD Adam SGD Adam

mAP 99.50% 99.50% 92.41% 100% 99.50% 99.50% 99.50% 99.33% 100% 99.60%
Precision (PPV) 100% 100% 66.03% 100% 100% 100% 99.50% 99.30% 100% 100%

Sensitivity (Recall) 100% 100% 60.12% 99.32% 100% 100% 95.80% 94.10% 100% 99.60%
Specificity

(Selectivity) 96.55% 96.33% 82.87% 100% 100% 100% 100% 99.10% 100% 86.15%

Balanced Accuracy 98.27% 98.16% 71.49% 99.66% 100% 100% 97.90% 96.60% 100% 92.87%
F1-score 100% 100% 60.67% 99.66% 100% 100% 97.61% 96.63% 100% 100%

Training time 1 h 8 min 1 h 15 min 58 min 1 h 23 min 53 min 55 min 46 min 51 min 1 h 33 min 1 h 50 min

Table 5. Testing results when using the two optimizers, Adam and SGD, with five performance
measures for each YOLO version.

Performance
Measure

YOLOv3 YOLOv4 YOLOv5 YOLOv6 YOLOv7

SGD Adam SGD Adam SGD Adam SGD Adam SGD Adam

mAP 99.50% 90.80% 64.40% 99.95% 99.00% 87.00% 98.59% 88.95% 99.96% 89.00%
Precision (PPV) 98.20% 89.80% 59.00% 98.07% 94.40% 74.00% 98.60% 89.00% 98.50% 88.10%

Sensitivity (Recall) 100% 85.50% 90.40% 100% 98.00% 82.50% 92.40% 83.60% 100% 84.70%
Specificity

(Selectivity) 78.68% 54.54% 78.25% 95.83% 83.33% 69.09% 94.00% 54.00% 97.95% 61.53%

Balanced Accuracy 89.34% 70.02% 84.33% 97.92% 89.90% 75.80% 91.15% 69.00% 98.97% 73.11%
F1-score 99.00% 87.00% 71.40% 99.03% 95.00% 79.00% 93.16% 86.21% 99.24% 86.00%

The bold values are the best results obtained for each YOLO version.

4.3.2. Impact of Varying the Batch Size

After selecting the best optimizer for each YOLO version from the previous set of
experiments, we conducted additional experiments with different batch sizes of 16, 32,
and 64. This comparison across the three batch sizes helps determine the most effective
batch size for subsequent experiments. The corresponding training and testing results are
summarized in Tables 6 and 7, respectively. Notably, batch size 64 consistently demonstrates
superior performance in terms of sensitivity across all YOLO versions.

Table 6. Training results for three batch sizes obtained by adopting SGD in all YOLO versions, except
for YOLOv4.

Performance
Measure

YOLOv3, SGD YOLOv4, Adam YOLOv5, SGD YOLOv6, SGD YOLOv7, SGD

Batch Size Batch Size Batch Size Batch Size Batch Size

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

mAP 99.50% 99.50% 99.50% 99.12% 99.25% 100% 99.50% 99.50% 99.50% 99.48% 99.50% 99.50% 99.60% 99.60% 100%
Precision

(PPV) 100% 100% 100% 97.89% 98.19% 100% 100% 99.90% 100% 99.50% 99.50% 99.50% 100% 100% 100%

Sensitivity
(Recall) 100% 100% 100% 98% 98.87% 99.32% 100% 100% 100% 95.40% 95.30% 95.80% 100% 100% 100%

Specificity
(Selectivity) 89.60% 91.80% 96.55% 90.63% 98.94% 100% 100% 100% 100% 100% 100% 100% 99.11% 99.11% 100%

Balanced
Accuracy 94.80% 95.90% 98.27% 94.32% 98.91% 99.66% 100% 100% 100% 97.70% 97.65% 97.90% 99.55% 99.55% 100%

F1-score 100% 100% 100% 97.94% 98.52% 99.66% 100% 100% 100% 97.40% 97.35% 97.61% 100% 100% 100%
Training Time 32 min 31 min 30 min 44 min 39 min 38 min 27 min 28 min 26 min 28 min 25 min 23 min 50 min 50 min 40 min

The bold values are the best results obtained for each YOLO version.

4.3.3. Impact of Varying the Learning Rate

Having selected the optimal optimizer for each YOLO version in the previous section,
we conducted additional experiments using different batch sizes of 16, 32, and 64. This
allowed for a comparison of performance results across these three batch sizes, helping us
identify the superior batch size for subsequent experiments. The corresponding results
are presented in Table 8 for training and Table 9 for testing. Notably, the testing results
consistently indicate that a batch size of 64 excels in sensitivity for all YOLO versions.
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Table 7. Testing results for three batch sizes obtained by applying SGD in all YOLO versions, except
for YOLOv4.

Performance
Measure

YOLOv3, SGD YOLOv4, Adam YOLOv5, SGD YOLOv6, SGD YOLOv7, SGD

Batch Size Batch Size Batch Size Batch Size Batch Size

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

mAP 99.50% 99.10% 99.50% 83.64% 88.64% 99.95% 90.40% 97.80% 99% 91.95% 98.97% 98.59% 98.90% 99.50% 99.96%
Precision

(PPV) 99.10% 94.60% 98.20% 81.23% 87.52% 98.07% 82.60% 91.10% 94.40% 92% 99% 98.60% 93.80% 99% 98.50%

Sensitivity
(Recall) 100% 98% 100% 100% 100% 100% 91.20% 94.10% 98% 88.30% 91.70% 92.40% 94.10% 99% 100%

Specificity
(Selectivity) 66.66% 66.66% 78.68% 78.46% 73.64% 95.83% 68.11% 82.14% 83.33% 77.04% 100% 94% 76.19% 83.01% 97.95%

Balanced
Accuracy 83.33% 82.33% 89.34% 89.23% 86.82% 97.92% 79.65% 88.12% 89.90% 84.72% 95.85% 91.15% 85.14% 91.01% 98.97%

F1-score 100% 96% 99% 89.64% 93.34% 99.03% 85% 92% 95% 92.19% 95.21% 93.16% 94% 99% 99.24%

The bold values are the best results obtained for each YOLO version.

Table 8. Training results using four different learning rates (LRs) by applying SGD in all YOLO
versions except YOLOv4, which is with Adam and a batch size of 64.

Performance
Measure

YOLOv3, SGD YOLOv4, Adam YOLOv5, SGD

Batch Size 64 Batch Size 64 Batch Size 64

LR 0.1 LR 0.01 LR
0.001

LR
0.0005 LR 0.1 LR 0.01 LR

0.001
LR

0.0005 LR 0.1 LR 0.01 LR
0.001

LR
0.0005

mAP 99.50% 99.50% 99.50% 99.50% 96.80% 99.95% 100% 99.12% 99.50% 99.50% 99.50% 99.50%
Precision

(PPV) 100% 100% 100% 100% 95.79% 99.69% 100% 98.97% 100% 100% 99.90% 99.90%

Sensitivity
(Recall) 100% 100% 100% 100% 96.90% 100% 99.32% 99.50% 100% 100% 100% 99.60%

Specificity
(Selectivity) 82.67% 96.55% 88.70% 81.20% 83.77% 100% 100% 85.30% 100% 100% 100% 100%

Balanced
Accuracy 91.33% 98.27% 94.35% 90.60% 93.33% 99.38% 99.66% 95.70% 100% 100% 100% 100%

F1-score 100% 100% 100% 100% 96.34% 99.84% 99.66% 99.23% 100% 100% 100% 100%
Training

Time 32 min 30 min 34 min 34 min 32 min 39 min 38 min 45 min 27 min 26 min 28 min 29 min

Performance
Measure

YOLOv6, SGD YOLOv7, Adam

Batch Size 64 Batch Size 64

LR 0.1 LR 0.01 LR
0.001

LR
0.0005 LR 0.1 LR 0.01 LR

0.001
LR

0.0005

mAP 93.12% 99.50% 99.50% 99.50% 98.10% 100% 99.50% 99.50%
Precision

(PPV) 93.10% 99.50% 99.50% 99.50% 93.40% 100% 99.90% 99.60%

Sensitivity
(Recall) 87.30% 95.80% 93.10% 90.70% 94.60% 100% 100% 100%

Specificity
(Selectivity) 64.89% 100% 100% 98.14% 66.87% 100% 100% 90.75%

Balanced
Accuracy 76.09% 97.90% 96.55% 94.42% 80.73% 100% 100% 95.37%

F1-score 90.10% 97.61% 96.19% 94.89% 94.00% 100% 100% 100%
Training

Time 26 min 23 min 27 min 28 min 46 min 40 min 48 min 48 min

The bold values are the best results obtained for each YOLO version.

To specify, for YOLOv3, the best performance is achieved with the SGD optimizer, a
batch size of 64, and a learning rate of 0.01. For YOLOv4, the optimal combination involves
the use of the Adam optimizer, a batch size of 64, and a learning rate of 0.001, providing
the best outcomes for detecting brain tumor firmness based on the given MRI dataset.
Similarly, for YOLOv5, optimal performance is observed with the SGD optimizer, a batch
size of 64, and a learning rate of 0.01 in detecting brain tumor firmness. Likewise, YOLOv6
performs optimally with SGD as the optimizer, a batch size of 64, and a learning rate of
0.001, yielding the highest sensitivity when diagnosing patients. YOLOv7 achieves optimal
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results with the SGD optimizer, a batch size of 64, and a learning rate of 0.01 in detecting
the firmness of brain tumors for accurate patient diagnosis.

Table 9. Testing results using four different learning rates (LRs) by applying SGD in all YOLO
versions except YOLOv4, which is with Adam and a batch size of 64.

Performance
Measure

YOLOv3, SGD YOLOv4, Adam YOLOv5, SGD

Batch Size 64 Batch Size 64 Batch Size 64

LR 0.1 LR 0.01 LR
0.001

LR
0.0005 LR 0.1 LR 0.01 LR

0.001
LR

0.0005 LR 0.1 LR 0.01 LR
0.001

LR
0.0005

mAP 93.70% 99.50% 98.70% 98.70% 60.00% 95.87% 99.95% 92.98% 92.70% 99.00% 94.20% 86.60%
Precision

(PPV) 80.80% 98.20% 93.40% 98.00% 61.42% 96.93% 98.07% 96.50% 85.80% 94.40% 85.60% 83.60%

Sensitivity
(Recall) 94.50% 100% 98.50% 98.70% 70.40% 97.38% 100% 84.89% 81.40% 98.00% 94.00% 84.20%

Specificity
(Selectivity) 35.59% 78.68% 37.93% 31.64% 68.32% 94.23% 95.83% 82.50% 63.51% 83.33% 95.12% 86.84%

Balanced
Accuracy 65.04% 89.34% 68.21% 65.17% 69.36% 97.15% 97.92% 90.32% 72.45% 89.90% 94.56% 85.52%

F1-score 87.00% 99.00% 96.00% 98.00% 65.60% 90.22% 99.03% 97.19% 82.00% 95.00% 90.00% 84.00%

Performance
Measure

YOLOv6, SGD YOLOv7, Adam

Batch Size 64 Batch Size 64

LR 0.1 LR 0.01 LR
0.001

LR
0.0005 LR 0.1 LR 0.01 LR

0.001
LR

0.0005

mAP 53.57% 98.59% 88.82 74.89% 93.20% 99.96% 98.90% 97.60%
Precision

(PPV) 53.60% 98.60% 88.80% 74.90% 82.80% 98.50% 95.70% 95.40%

Sensitivity
(Recall) 85.70% 92.40% 92.60% 90.10% 93.40% 100% 96.90% 93.70%

Specificity
(Selectivity) 62.23% 94.00% 90.10% 82.50% 71.66% 97.95% 94.59% 82.22%

Balanced
Accuracy 73.96% 91.15% 91.30% 86.30% 82.53% 98.97% 94.14% 87.96%

F1-score 65.95% 93.16% 90.66% 81.79% 88.00% 99.24% 96.00% 92.00%

The bold values are the best results obtained for each YOLO version.

4.4. Intra-Model Comparison of the Results Obtained Using Five Different YOLO Versions

After training and testing five YOLO versions, we successfully detected tumors and
determined their firmness with high accuracy. The confidence values influencing precision
and accuracy for test images are visually depicted in Figure 14. These values indicate
the confidence level in classifying tumors as either firm or soft within the corresponding
bounding boxes.

Computation 2024, 12, x FOR PEER REVIEW 20 of 25 
 

 

Sensitivity (Re-
call) 

87.30% 95.80% 93.10% 90.70% 94.60% 100% 100% 100%     

Specificity (Se-
lectivity) 

64.89% 100% 100% 98.14% 66.87% 100% 100% 90.75%     

Balanced Accu-
racy 

76.09% 97.90% 96.55% 94.42% 80.73% 100% 100% 95.37%     

F1-score 90.10% 97.61% 96.19% 94.89% 94.00% 100% 100% 100%     
Training Time 26 min 23 min 27 min 28 min 46 min 40 min 48 min 48 min     

The bold values are the best results obtained for each YOLO version. 

Table 9. Testing results using four different learning rates (LRs) by applying SGD in all YOLO ver-
sions except YOLOv4, which is with Adam and a batch size of 64. 

Performance 
Measure 

YOLOv3, SGD YOLOv4, Adam YOLOv5, SGD 
Batch Size 64 Batch Size 64 Batch Size 64 

LR 0.1 LR 0.01 LR 0.001 LR 
0.0005 

LR 0.1 LR 0.01 LR 0.001 LR 
0.0005 

LR 0.1 LR 0.01 LR 0.001 LR 
0.0005 

mAP 93.70% 99.50% 98.70% 98.70% 60.00% 95.87% 99.95% 92.98% 92.70% 99.00% 94.20% 86.60% 
Precision (PPV) 80.80% 98.20% 93.40% 98.00% 61.42% 96.93% 98.07% 96.50% 85.80% 94.40% 85.60% 83.60% 
Sensitivity (Re-

call) 
94.50% 100% 98.50% 98.70% 70.40% 97.38% 100% 84.89% 81.40% 98.00% 94.00% 84.20% 

Specificity (Se-
lectivity) 

35.59% 78.68% 37.93% 31.64% 68.32% 94.23% 95.83% 82.50% 63.51% 83.33% 95.12% 86.84% 

Balanced Accu-
racy 

65.04% 89.34% 68.21% 65.17% 69.36% 97.15% 97.92% 90.32% 72.45% 89.90% 94.56% 85.52% 

F1-score 87.00% 99.00% 96.00% 98.00% 65.60% 90.22% 99.03% 97.19% 82.00% 95.00% 90.00% 84.00% 

Performance 
Measure 

YOLOv6, SGD YOLOv7, Adam     
Batch Size 64 Batch Size 64     

LR 0.1 LR 0.01 LR 0.001 
LR 

0.0005 
LR 0.1 LR 0.01 LR 0.001 

LR 
0.0005 

    

mAP 53.57% 98.59% 88.82 74.89% 93.20% 99.96% 98.90% 97.60%     
Precision (PPV) 53.60% 98.60% 88.80% 74.90% 82.80% 98.50% 95.70% 95.40%     
Sensitivity (Re-

call) 
85.70% 92.40% 92.60% 90.10% 93.40% 100% 96.90% 93.70%     

Specificity (Se-
lectivity) 

62.23% 94.00% 90.10% 82.50% 71.66% 97.95% 94.59% 82.22%     

Balanced Accu-
racy 

73.96% 91.15% 91.30% 86.30% 82.53% 98.97% 94.14% 87.96%     

F1-score 65.95% 93.16% 90.66% 81.79% 88.00% 99.24% 96.00% 92.00%     
The bold values are the best results obtained for each YOLO version. 

4.4. Intra-Model Comparison of the Results Obtained Using Five Different YOLO Versions 
After training and testing five YOLO versions, we successfully detected tumors and 

determined their firmness with high accuracy. The confidence values influencing preci-
sion and accuracy for test images are visually depicted in Figure 14. These values indicate 
the confidence level in classifying tumors as either firm or soft within the corresponding 
bounding boxes. 

 
Figure 14. Sample result obtained using YOLOv7 from the testing dataset displaying firm and soft
meningioma tumor detection and classification with different confidence values.

We then compare the performance results of all five YOLO versions (YOLOv3 to
YOLOv7) after model training and testing, as presented in Table 10. For each model, we
gathered performance results based on the optimal combination of optimizer, batch size,



Computation 2024, 12, 44 21 of 25

and learning rate detailed in the preceding sections. YOLOv3, YOLOv4, and YOLOv7
consistently achieved maximum sensitivity values of 100%. In the event of a tiebreaker
based on the shortest training time among these three models, YOLOv3 emerges as the
winner with a training time of only 30 min. However, considering other performance met-
rics to break the tie, YOLOv7 excels in all five remaining metrics, with the lowest specificity
measure at 97.95% and the highest (after 100% sensitivity) mAP at 99.96%. Consequently,
YOLOv7 could be deemed the model with the best overall performance results, despite a
40 min training time, ranking third behind YOLOv3 and YOLOv4. Furthermore, the results
indicate successful avoidance of overfitting issues through the use of pretrained YOLO
models. Originally trained on the MS COCO dataset, comprising 328,000 images [46], the
model was fine-tuned using the dataset collected in this research. In other words, such a
transfer learning approach helped in avoiding the overfitting and overtraining problems
that typically result from the association of small datasets with deep learning networks.
YOLOv3, YOLOv4, and YOLOv7 are iterations of the YOLO object detection algorithm
family, each with its own improvements and optimizations. YOLOv3 balances speed and
accuracy with the use of feature pyramid networks but may struggle with small objects.
YOLOv4 enhances accuracy and efficiency through CSPDarknet53 and data augmentation
but demands more computational resources. YOLOv7 aims to further improve accuracy
and efficiency through novel architectural changes. We considered factors like model
complexity, accuracy, speed, and resource requirements when selecting the appropriate
version. This aligns with detecting brain tumors by offering efficient and accurate object
detection capabilities in MRI images. Their speed and accuracy facilitate timely diagnosis
and treatment planning. where it enables rapid analysis of brain scans and aids clinicians
in the precise localization and characterization of tumors for improved patient care.

Table 10. Summary of the performance results of the five YOLO models used in the detection of brain
tumor firmness.

Performance
Measure

YOLOv3 YOLOv4 YOLOv5 YOLOv6 YOLOv7

Training
Results

Testing
Results

Training
Results

Testing
Results

Training
Results

Testing
Results

Training
Results

Testing
Results

Training
Results

Testing
Results

mAP 99.50% 99.50% 100% 99.95% 99.50% 99.00% 99.50% 88.82 100% 99.96%
Precision

(PPV) 100% 98.20% 100% 98.07% 100% 94.40% 99.50% 88.80% 100% 98.50%

Sensitivity
(Recall) 100% 100% 99.32% 100% 100% 98.00% 93.10% 92.60% 100% 100%

Specificity
(Selectivity) 96.55% 78.68% 100% 95.83% 100% 83.33% 100% 90.10% 100% 97.95%

Balanced
Accuracy 98.27% 89.34% 99.66% 97.92% 100% 89.90% 96.55% 91.30% 100% 98.97%

F1-score 100% 99.00% 99.66% 99.03% 100% 95.00% 96.19% 90.66% 100% 99.24%

Training Time 30 min 38 min 26 min 27 min 40 min

The bold values are the best results obtained for each YOLO version.

4.5. Comparison with State-of-the-Art Models

We compared our results with a study [4] utilizing SVM and k-nearest neighbor (KNN)
models for the same task, employing the top three YOLO versions for this evaluation.
Table 11 clearly illustrates that YOLOv3, YOLOv4, and YOLOv7 consistently outperform
the mentioned state-of-the-art models across all four evaluation metrics. Notably, YOLOv7
demonstrates the highest performance values in sensitivity, balanced accuracy, F1-score,
and specificity. We also note that KNN outperforms SVM in all four indicated measures.
Additionally, we conducted a comparison with a study [40] utilizing CNN for brain tumor
detection, revealing results of 93.3% accuracy, 98.43% under-the-curve AUC, 91.19% recall,
and a loss of 0.25. Furthermore, a comparison to another study [47] employing CNN
methods showed sensitivity and specificity results of 86% and 91%, respectively.



Computation 2024, 12, 44 22 of 25

Table 11. Inter-model comparison of performance results between YOLOv3, YOLOv4, YOLOv7, and
other state-of-the-art models used in the detection and classification of brain tumor firmness. Testing
results are reported here for the three YOLO models, and balanced accuracy is denoted by B-Acc.

Method Sensitivity B-Acc F1-Score Specificity

SVM [4] 96.70% 81.76% 93.30% 66.82%
KNN [4] 97.99% 87.11% 95.33% 76.23%
CNN [40] _ 93.30% _ _
CNN [47] 86% _ _ 91%
YOLOv3 100% 89.34% 99.00% 78.68%
YOLOv4 100% 97.92% 99.03% 95.83%
YOLOv7 100% 98.97% 99.24% 97.95%

The bold values are the best results obtained.

5. Conclusions and Future Work

In this study, we presented the results of detecting and classifying meningioma brain
tumor firmness using five YOLO models: YOLOv3–v7. The experiments utilized a real
MRI dataset from King Khaled University Hospital. Our findings revealed that YOLOv3,
YOLOv4, and YOLOv7 consistently achieved a sensitivity of 100% for the task. In com-
parison to state-of-the-art models, YOLOv7 demonstrated superior performance, leading
not only in sensitivity but also in specificity (97.95%), balanced accuracy (98.97%), and
F1-score (99.24%). The attained results hold significant importance as they play a crucial
role in identifying the location and type of meningioma through YOLO without human
intervention, as this research aims to enhance meningioma firmness recognition, supporting
physicians in diagnosis and treatment decisions. Consequently, this research stands as a
noteworthy contribution from the computer to the medical field.

Implementing the proposed YOLO-based architecture in real-world clinical settings
can significantly address practical challenges in tumor detection, especially in my homeland,
the Kingdom of Saudi Arabia. Currently, the best hospitals for detecting tumors are
primarily located in the capital and major cities, where professional radiologists and
advanced examination tools are concentrated. However, this setup poses a significant
challenge for patients residing in villages and small cities, as they often face the necessity
of traveling to these larger cities for tumor examinations and diagnoses. Consequently,
this results in increased pressure on hospitals in major cities and significant delays in
appointment scheduling. The adoption of the proposed YOLO-based architecture offers
a potential solution to these challenges. By implementing this architecture, hospitals in
smaller cities and villages can access advanced diagnostic capabilities locally. This means
that patients no longer need to be transferred or travel to larger cities for examinations.
This not only improves access to timely medical care for patients in remote areas but
also alleviates the burden on major city hospitals, and YOLO could provide high-quality
diagnostic services. Therefore, employing the YOLO-based architecture holds immense
promise for enhancing tumor detection and diagnosis, addressing practical challenges, and
improving healthcare access for all.

The conclusion aligns closely with the presented results and effectively summarizes the
study’s objectives and findings regarding using YOLO models for detecting and classifying
meningioma brain tumor firmness. The experiments consistently demonstrated high
sensitivity across YOLOv3, YOLOv4, and YOLOv7, with YOLOv7 exhibiting superior
sensitivity, specificity, balanced accuracy, and F1-score performance compared to state-of-
the-art models. The study’s significance lies in its contribution to meningioma firmness
recognition without human intervention, thereby supporting physicians in diagnosis and
treatment decisions.

In the future, we plan to extend our research in several key directions to further
enhance the completeness of the study. One avenue involves the meticulous design of
ensemble models, incorporating multiple YOLO variants to investigate their combined
impact on meningioma firmness detection. This approach aims to harness the strengths of
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diverse YOLO configurations, potentially leading to heightened accuracy and robustness.
Additionally, we intend to delve into the exploration of YOLO in conjunction with other
advanced imaging techniques such as positron emission tomography (PET) or computed
tomography (CT). This fusion of YOLO with complementary imaging modalities is an-
ticipated to yield more comprehensive and detailed insights into tumor characteristics,
contributing to an overall improvement in accuracy.

Furthermore, our future endeavors will encompass extensive experiments with larger
datasets, encompassing a broader spectrum of tumor types beyond meningioma. The inclu-
sion of diverse tumor types will enable a more comprehensive evaluation of the proposed
YOLO-based approach, shedding light on its generalizability and efficacy across various
medical scenarios. By pursuing these future directions, we aim to fortify the foundations
laid by this study and contribute valuable insights to the field of medical imaging. The
integration of YOLO into existing medical imaging systems stands as a promising avenue,
holding the potential to revolutionize tumor diagnosis and treatment by delivering en-
hanced efficiency and accuracy. Potential benefits of this approach include leveraging
real-time object detection to streamline tumor identification and classification, thereby
expediting decision making for healthcare professionals. However, this transformative
initiative is not without its challenges. These challenges encompass the adaptation of YOLO
to diverse imaging modalities, ensuring seamless interoperability within existing systems,
addressing interpretability concerns, and finding the delicate balance between processing
speed and diagnostic precision. Overcoming these challenges is crucial for realizing the
full benefits of YOLO integration in medical imaging, offering valuable advancements in
tumor diagnosis and treatment.
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21. Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass
SVM. Medicina 2022, 58, 1090. [CrossRef]

22. Shanmugapriya, D.E.; Rajasekar, O. Machine Learning Based Approach for Brain Tumor Detection. Int. J. Sci. Res. 2023, 9, 8.
Available online: https://ijsret.com/wp-content/uploads/2023/01/IJSRET_V9_issue1_113.pdf (accessed on 24 February 2023).

23. YOLO: Real-Time Object Detection. Available online: https://pjreddie.com/darknet/yolo/ (accessed on 24 February 2023).
24. Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors 2022, 22, 464. [CrossRef]
25. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. Available online: http://arxiv.

org/abs/1804.02767 (accessed on 11 February 2023).
26. Shanti, M.Z.; Cho, C.-S.; Byon, Y.-J.; Yeun, C.Y.; Kim, T.-Y.; Kim, S.-K.; Altunaiji, A. A Novel Implementation of an AI-Based Smart

Construction Safety Inspection Protocol in the UAE. IEEE Access 2021, 9, 166603–166616. [CrossRef]
27. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073.

[CrossRef]
28. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934. [CrossRef]
29. MathWorks. Available online: https://www.mathworks.com/help/vision/ug/getting-started-with-yolo-v4.html (accessed on

11 January 2022).
30. Alhussainan, N.F.; Ben Youssef, B.; Ben Ismail, M.M. A Deep Learning Approach for Brain Tumor Firmness Detection Using

YOLOv4. In Proceedings of the 2022 45th International Conference on Telecommunications and Signal Processing (TSP), Prague,
Czech Republic, 13–15 July 2022; pp. 342–348. [CrossRef]

31. Mekhalfi, M.L.; Nicolò, C.; Bazi, Y.; Rahhal, M.M.A.; Alsharif, N.A.; Maghayreh, E.A. Contrasting YOLOv5, Transformer, and
EfficientDet Detectors for Crop Circle Detection in Desert. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

32. Li, Z.; Tian, X.; Liu, X.; Liu, Y.; Shi, X. A Two-Stage Industrial Defect Detection Framework Based on Improved-YOLOv5 and
Optimized-Inception-ResnetV2 Models. Appl. Sci. 2022, 12, 834. [CrossRef]

33. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. Available online: http://arxiv.org/abs/2209.02976
(accessed on 11 February 2023).

https://doi.org/10.1016/j.bspc.2013.09.001
https://doi.org/10.1109/ICCCS.2014.7068202
https://doi.org/10.1109/SPIN.2015.7095308
https://doi.org/10.1109/ICETECH.2015.7275030
https://doi.org/10.1145/2832987.2833063
https://doi.org/10.1016/j.asoc.2016.01.022
https://doi.org/10.1109/FUZZ-IEEE.2017.8015514
https://doi.org/10.1109/ICSSIT.2018.8748288
https://doi.org/10.1109/ICOIN.2018.8343231
https://doi.org/10.1109/ACCESS.2019.2922691
https://ieeexplore.ieee.org/abstract/document/8664160
https://ieeexplore.ieee.org/abstract/document/8664160
https://doi.org/10.1109/ACCESS.2019.2904145
https://doi.org/10.1016/j.cmpb.2020.105797
https://doi.org/10.3390/medicina58081090
https://ijsret.com/wp-content/uploads/2023/01/IJSRET_V9_issue1_113.pdf
https://pjreddie.com/darknet/yolo/
https://doi.org/10.3390/s22020464
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ACCESS.2021.3135662
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.48550/arXiv.2004.10934
https://www.mathworks.com/help/vision/ug/getting-started-with-yolo-v4.html
https://doi.org/10.1109/TSP55681.2022.9851237
https://doi.org/10.1109/LGRS.2021.3085139
https://doi.org/10.3390/app12020834
http://arxiv.org/abs/2209.02976


Computation 2024, 12, 44 25 of 25

34. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696. Available online: http://arxiv.org/abs/2207.02696 (accessed on 11 February 2023).

35. Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R.; Alsboui, T. Domain Feature Mapping with YOLOv7 for Automated Edge-Based
Pallet Racking Inspections. Sensors 2022, 22, 6927. [CrossRef] [PubMed]

36. Google Colaboratory. Available online: https://colab.research.google.com/github/d2l-ai/d2l-tvm-colab/blob/master/chapter_
gpu_schedules/arch.ipynb (accessed on 26 April 2023).

37. Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical
applications of artificial intelligence. Sci. Rep. 2022, 12, 5979. [CrossRef] [PubMed]

38. Bin Zuraimi, M.A.; Kamaru Zaman, F.H. Vehicle Detection and Tracking using YOLO and DeepSORT. In Proceedings of the 2021
IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 3–4 April 2021;
pp. 23–29. [CrossRef]

39. Peng—Performance and Accuracy Analysis in Object Detect.pdf. Available online: https://scholarworks.calstate.edu/
downloads/sx61dr83s (accessed on 28 April 2023).

40. Mahmud, M.I.; Mamun, M.; Abdelgawad, A. A Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning
Networks. Algorithms 2023, 16, 176. [CrossRef]

41. Agrawal, T. Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient;
Apress: Berkeley, CA, USA, 2021. [CrossRef]

42. Gupta, A.; Ramanath, R.; Shi, J.; Keerthi, S.S. Adam vs. SGD: Closing the generalization gap on image classification. In
Proceedings of the OPT2021: 13th Annual Workshop on Optimization for Machine Learning, Virtual, 13 December 2021.

43. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. Available online: http:
//arxiv.org/abs/1412.6980 (accessed on 11 February 2023).

44. Nikolenko, S.I. Deep Learning and Optimization. In Synthetic Data for Deep Learning; Nikolenko, S.I., Ed.; Springer International
Publishing: Cham, Switzerland, 2021; pp. 19–58. [CrossRef]

45. Zhang, Y.; Zhu, B.; Ma, Q.; Wang, H. Effects of Gradient Optimizer on Model Pruning. IOP Conf. Ser. Mater. Sci. Eng. 2020,
711, 012095. [CrossRef]

46. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. Available
online: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.
html (accessed on 11 February 2023).

47. Sajid, S.; Hussain, S.; Sarwar, A. Brain Tumor Detection and Segmentation in MR Images Using Deep Learning. Arab. J. Sci. Eng.
2019, 44, 9249–9261. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://arxiv.org/abs/2207.02696
https://doi.org/10.3390/s22186927
https://www.ncbi.nlm.nih.gov/pubmed/36146273
https://colab.research.google.com/github/d2l-ai/d2l-tvm-colab/blob/master/chapter_gpu_schedules/arch.ipynb
https://colab.research.google.com/github/d2l-ai/d2l-tvm-colab/blob/master/chapter_gpu_schedules/arch.ipynb
https://doi.org/10.1038/s41598-022-09954-8
https://www.ncbi.nlm.nih.gov/pubmed/35395867
https://doi.org/10.1109/ISCAIE51753.2021.9431784
https://scholarworks.calstate.edu/downloads/sx61dr83s
https://scholarworks.calstate.edu/downloads/sx61dr83s
https://doi.org/10.3390/a16040176
https://doi.org/10.1007/978-1-4842-6579-6
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-75178-4_2
https://doi.org/10.1088/1757-899X/711/1/012095
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://doi.org/10.1007/s13369-019-03967-8

	Introduction 
	Literature Review 
	Proposed Approach 
	YOLO Framework 
	YOLOv3 
	YOLOv4 
	YOLOv5 
	YOLOv6 
	YOLOv7 
	Discussion 

	Experiments 
	Dataset Description and Preprocessing 
	Experimental Setup and Evaluation Metrics 
	Performance Results 
	Impact of Varying the Optimizer 
	Impact of Varying the Batch Size 
	Impact of Varying the Learning Rate 

	Intra-Model Comparison of the Results Obtained Using Five Different YOLO Versions 
	Comparison with State-of-the-Art Models 

	Conclusions and Future Work 
	References

