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Abstract: In the field of heat and mass transfer applications, non-Newtonian fluids are potentially
considered to play a very important role. This study examines the magnetohydrodynamic (MHD)
bioconvective Eyring–Powell fluid flow on a permeable cone and plate, considering the viscous
dissipation (0.3 ≤ Ec ≤ 0.7), the uniform heat source/sink (−0.1 ≤ Q0 ≤ 0.1), and the activation
energy (−1 ≤ E1 ≤ 1). The primary focus of this study is to examine how MHD and porosity impact
heat and mass transfer in a fluid with microorganisms. A similarity transformation (ST) changes the
nonlinear partial differential equations (PDEs) into ordinary differential equations (ODEs). The Keller
Box (KB) finite difference method solves these equations. Our findings demonstrate that adding
MHD (0.5 ≤ M ≤ 0.9) and porosity (0.3 ≤ Γ ≤ 0.7) effects improves microbial diffusion, boosting
the rates of mass and heat transfer. Our comparison of our findings to prior studies shows that they
are reliable.

Keywords: activation energy; MHD; porosity; uniform heat source; viscous dissipation

MSC: 35Q30; 76D10; 76D55; 76W05; 65N08; 80A20

1. Introduction

Vertical cones and plate-shaped tools are frequently utilized in a variety of industries,
including the processing of chemicals, food production, metal fabrication, casting facilities,
and fabrics. Industrial operations often necessitate the prompt cooling of these tools
after use. Vertical cone/plate mixers are essential in the production of high quality, safe
items that are used globally, such as food, medications, and personal hygiene products.
Every vertical cone/plate mixer model is meticulously crafted to fulfill distinct industrial
objectives. Utilizing vertical cone or plate mixers leads to a discernible enhancement in
grinding efficiency, causing the surface of the mixer to warm up on the cone and plate. The
heating phenomenon arises due to the rapid and thorough mixing of the mixture, which
facilitates the transfer of heat across the surface of the cone and plate. In this context, we
focus on a specific category of non-Newtonian fluid known as Eyring–Powell fluid. In the
current study, we investigate how microorganisms affect the processes of heat and mass
transfer and provide methods for reducing these impacts by using magnetohydrodynamics
(MHD) and porosity.

Non-Newtonian models for heat transfer and other applications have been widely
analyzed [1–5]. The impact of MHD is crucial for heat transfer and has numerous engi-
neering applications. Numerous studies have looked at the heat transfer of MHD fluids,
especially with respect to Newtonian and non-Newtonian fluid flow over variations in
geometries [6–10]. In the field of fluid dynamics and heat transfer, several noteworthy
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studies have been conducted. Muhammet Yurusoy [11] investigated the pressure dis-
tribution of a slider bearing lubricated with Eyring–Powell fluid. Barth and Carey [12]
focused on benchmark problems involving natural convection using non-Newtonian fluids.
Bapuji Pullepu et al. [13] examined the heat transfer characteristics of unsteady laminar
natural convection flow over an isothermal vertical cone. In addition to their previous
work, the researchers extended their investigation to analyze the phenomenon of un-
steady laminar free convection from a vertical cone subjected to a uniform surface heat
flux. Their objective was to gain a clearer understanding of the complex dynamics in-
volved in heat transfer within this specific configuration [14]. Manisha Patel and Timol [15]
conducted a numerical study on the laminar incompressible flow of a non-Newtonian
fluid past a vertical wedge, with a specific emphasis on satisfying asymptotic boundary
conditions. Additionally, they investigated the stress–strain relationship for viscoelastic
non-Newtonian fluids through numerical analysis [16]. Raju et al. [17] addressed magneto-
hydrodynamic (MHD) nanofluid flow over a moving vertical plate. Macharla Jayachandra
Babu et al. [18] explored the effects of thermophoresis and Brownian motion on the bound-
ary layer flow of an MHD Eyring–Powell nanofluid over a permeable cone, considering
buoyancy forces and suction/injection effects. Koriko et al. [19] analyzed the intricate
interplay of thermal stratification, nonlinear thermal radiation, and quartic autocatalytic
chemical reaction effects on the flow of a three-dimensional Eyring–Powell alumina–water
nanofluid. Khan et al. [20] investigated the steady three-dimensional MHD flow of an
Eyring–Powell nanofluid, considering convective and nanoparticles mass flux conditions
as well as thermal radiation effects. Imad Khan et al. [21] investigated the boundary layer
flow of an Eyring–Powell nanofluid over a plate and cone, considering chemically reactive
species. Rehman et al. [22] and Simon et al. [23] employed the Lie symmetry integrative
process to analyze the boundary layer flow of non-Newtonian fluid towards a flat porous
surface, incorporating heat and concentration transfer along with free stream momentum.
Waqas et al. [24] employed the Cattaneo–Christov model to non-Newtonian fluid. Navid
Balazadeh et al. [25] explored heat and mass transfer in an unsteady two-dimensional
squeezing flow of a non-Newtonian MHD radiative Eyring–Powell fluid, accounting for
heat generation/absorption, thermal radiation, and Joule heating. Layek et al. [26] in-
vestigated the effects of various factors on unsteady non-Newtonian fluid flow over a
widening sheet, while Sami Ullah Khan et al. [27] examined the influence of heat exposure,
MHD, and poroelasticity on the movement of a non-Newtonian water-based nanofluid in
different regions. Gaffar et al. [28] studied the flow and heat transfer of an Eyring–Powell
micropolar fluid boundary layer over an upright non-isothermal cone. Khan et al. [29]
analyzed the flow of a bioconvective nanofluid with temperature-dependent viscosity and
surface pressure using a perpendicular plate. Oke [30] investigated the flow of an electri-
cally conductive modified Eyring–Powell fluid utilizing a spinning surface and thermal
radiation. Dania Qaiser [31] and her colleagues investigated the two-dimensional mixed
convection stagnation point flow of nanofluid across a shrinking sheet. Xia et al. [32]
focused on the effects of activation energy on bioconvective MHD non-Newtonian fluid
flow on stretchable cylinders, providing insights into non-Newtonian fluid dynamics in
biological contexts. Fatunmbi et al. [33] examined non-Newtonian fluid flow models for
permeable Riga surfaces, incorporating thermal radiation and MHD effects. Habib et al. [34]
explored the bioconvective fluid flow of three different non-Newtonian fluids on stretchable
surfaces, considering the activation energy and dual diffusion. Baranovskii [35] studied
the optimal boundary control of the Boussinesq approximation for polymeric fluids. The
state functions for this problem are temperature and flow velocity, whereas the control
function is the heat flux through a specified portion of the flow domain boundary. Fa-
rooq et al. [36] investigated nanofluid flows with different stress conditions using blood and
magnesium nanoparticles on stretchable surfaces. El-Dabe and Mostapha [37] analyzed
peristaltic blood flow with MHD and dual diffusion using the homotopy perturbation
analytical method. Basha et al. [38] studied non-Newtonian fluid flow on circular cylinders,
considering the effects of MHD. Khan et al. [39] examined the non-Newtonian fluid flow
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bioconvective model, incorporating MHD and Cattaneo–Christov heat flux conditions.
Raghunath et al. [40] investigated natural convective fluid flow on vertical surfaces, taking
into account thermal radiation effects. Bhattacharyya et al. [41] analyzed peristaltic blood
flow with the Joule heating effect and MHD. Pasha et al. [42] numerically solved hybrid
nanofluid flows on slippery surfaces using the finite element method. Shevchuk [43] inves-
tigated an analytical solution for the convective heat transfer in conical gaps with either a
rotating cone or disc. Baranovskii [44] examined exact solutions for non-isothermal flows of
second-grade fluid between parallel plates. These studies contribute to the understanding
of fluid dynamics, heat transfer, and nanofluid behavior, enhancing our knowledge of these
phenomena. Nisha and Poulomi [45] investigated Hall currents and the ion slip effect
on Sisko nanofluid flow featuring chemical reaction over a porous medium applying a
statistical approach.

Eyring–Powell fluid bioconvection flow on a vertical cone/plate surface has not yet
been explored for mass and heat transfer dynamics. We consider several crucial elements
that impact behavior, such as MHD, porous media, viscous dissipation, uniform heat
source/sink, and activation energy effects.

To make our research easy to understand, we have split the remaining part of the paper
into sections. In Section 2, we explain the governing equations, including their boundary
conditions, and present them in non-dimensional forms. In Section 3, we solve the non-
dimensional equations using the Keller Box finite difference numeric scheme. In Section 4,
we visually depict our model and provide tables containing critical physical parameters.
Finally, Section 5 offers a comprehensive and detailed conclusion for this model.

2. Mathematical Model

The objective of our research is to analyze the flow characteristics of a two-dimensional,
steady, and incompressible non-Newtonian fluid over the surface of a vertical cone/plate.
We investigate the effects of MHD, viscous dissipation, uniform heat source/sink, and
activation energy on the flow. The y-axis is perpendicular to the surface of the cone/plate,
whereas the x-axis lies along the surface of the cone/plate. The variables u and v represent
the components of velocity on the x-axis and y-axis, respectively. The cone is defined by its
radius, denoted as r, and its half-angle, represented as ω. The surfaces of the cone and plate
are assumed to have constant temperature Tw, concentrations Cw, and microorganisms
Nw. The porous medium is modeled based on the Darcy model. It is assumed that the
porous medium and fluid are in local thermal equilibrium. The ambient temperature,
concentration, and microorganism far from the cone and plate surface, T∞, C∞, and N∞,
are assumed to be uniform and Tw > T∞, Cw > C∞, and Nw > N∞. The extra stress tensor
for the Eyring–Powell fluid is given by [40,42]

τij = µ
∂ui
∂xj

+
1
β

arcsinh

(
1
d

∂ui
∂xj

)
where µ represents the dynamic viscosity and β and d are the characteristics of the Eyring–
Powell fluid. Assuming,

arcsinh

(
1
d

∂ui
∂xj

)
=

1
d

∂ui
∂xj

− 1
6

(
1
d

∂ui
∂xj

)3

, |1
d

∂ui
∂xj

| ≪ 1

We analyze the continuity, velocity, energy, concentration, and density equations of mi-
croorganisms, derived using the Boussinesq approximation, as depicted in Figure 1. These
equations provide a comprehensive framework for understanding the complex interaction
of factors governing the system.
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Figure 1. Physical model.

Equation of Continuity

∂(rau)
∂x

+
∂(rav)

∂y
= 0 (1)

Equation of Momentum

(ρ)

(
u

∂u
∂x

+ v
∂u
∂y

)
=

(
µ +

1
βd

− 1
2βd3

(
∂u
∂y

)2
)(

∂2u
∂y2

)
− µ

k1
.u

+ (γ(ρβN)∆ρ(N − N∞))gcosω − σ1(B)2u

+ ((ρβT)(T − T∞) + (ρβC)(C − C∞))gcosω

(2)

Equation of Energy

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

µ

(ρcp)

(
∂u
∂y

)2
+

QT
(ρcp)

(T − T∞) (3)

Equation of Concentration

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 − K2

r (C − C∞)(T/T∞)nExp
[
−Ea

κT

]
(4)

Equation of Microorganism Density

u
∂N
∂x

+ v
∂N
∂y

= Dn
∂2N
∂y2 − bWc

(Cw − C∞)

∂

∂y

(
N

∂C
∂y

)
(5)

The boundary conditions are

At y = 0; T = Tw, C = Cw, N = Nw, u = 0, v = 0.

As y → ∞; T → T∞, C → C∞, N → N∞, u → 0.
(6)

When a = 0, it denotes a vertical plate, and when a ̸= 0, it denotes a vertical cone.
The corresponding similarity transformations (ST) can be used to convert the governing
nonlinear PDE’s (1)–(6) into a set of nonlinear ODE’s.
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u = ν
x (Gr)1/4 · f ′(ξ), r = xsinω, Gr = gβT(Tw−T∞)x3

ν2 , χ(ξ) = N−N∞
Nw−N∞

, ξ = y
x (Gr)1/4,

θ(ξ) = T−T∞
Tw−T∞

, φ(ξ) = C−C∞
Cw−C∞

, Ψ = νr(Gr)1/4 · f (ξ), v = [ξ · f ′(ξ)− 7 f (ξ)] ν
4x (Gr)1/2.

(7)

The non-dimensional forms of the velocity, thermal, concentration, and microbial density
equations are shown below using similarity transformation (ST).

(
1 + K − KN1( f ′′)2

)
f ′′′ − Γ

(
1 + K − KN1

3
( f ′′)2

)
f ′ −

((
1
2

)
f ′2 −

(
7
4

)
f f ′′
)

+(θ + Nr φ + Rb χ)cosω − M f ′ = 0
(8)

θ′′ + Pr

(
7
4

)
f θ′ + Pr

(
1 + K − KN1

3
( f ′′)2

)
Ec( f ′′)2 + PrQ0θ = 0 (9)

φ′′ + Sc

(
7
4

)
f φ′ − ScK0 φ(δ1θ + 1)nExp

[
−E1

1 + δ1θ

]
= 0 (10)

χ′′(Lb)−
(
χ′φ′ + (χ + σ)φ′′)PeLb +

(
7
4

)
f χ′ = 0 (11)

The non-dimensional boundary conditions are

f = 0,
d f
dξ

= 0, θ = 1, φ = 1, χ = 1 at ξ = 0

d f
dξ

= 0, θ = 0, φ = 0, χ = 0 at ξ → ∞
(12)

where,

Rb = βN(Nw−N∞)∆ργ
βT(Tw−T∞)

, K =
(

1
µdβ

)
, N1 = ν2(Gr)

3
2

2d2x4 , Nr =
βC(Cw−C∞)
βT(Tw−T∞)

, Sc =
ν

DB
,

Pr = ν
α , Lb = ν

Dn
, Γ = (Gr)−1/2x2

k1
, Ec =

ν2Gr
(cp) f x2(Tw−T∞)

, M = σ1.B2(Gr)−1/2x2

µ ,

Pe =
bWc
Dn

, σ = N∞
Nw−N∞

, Q0 = x2Gr−1/2

(cp)µ
QT , K0 = K2

r Gr−1/2x2

ν , δ1 = Tw−T∞
T∞

, E1 = −Ea
κT∞

.
The local Nusselt value (Nu), local skin friction value (C f ), local Sherwood value (Sh), and

local microbial density value (Nn) are all provided below in their non-dimensional versions.

(Gr)1/4C f = −KN1

3
( f ′′(0))3) + (G1 + K) f ′′(0), (Gr)−1/4Nu = −θ′(0),

(Gr)−1/4Nn = −χ′(0), (Gr)−1/4Sh = −φ′(0).

3. Computational Solution

The Keller Box technique is a highly effective finite difference method employed to
solve parabolic problems, particularly those that contain systems of nonlinear coupled
ordinary differential equations (ODEs). By following the procedures, the higher-order
nonlinear problem can be resolved.

• In the beginning, the nonlinear coupled ordinary differential equation system (8)–(12)
is converted into a system of coupled first-order ODEs.

• Next, these equations are discretized utilizing an appropriate finite difference scheme.
• Newton’s method is utilized throughout the discretization procedure to achieve equa-

tion linearization.
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• The block tri-diagonal matrices are then constructed utilizing the system of linear
equations.

• Finally, the tri-diagonal matrices are solved using the Gauss elimination method [28,38].

The choice of initial guesses gives the problem a better convergence and minimum
error. Here, the following initial guesses are taken:

d f0

dξ
= 1 − e−ξ , θ0 = e−ξ , φ0 = e−ξ , χ0 = e−ξ .

The step size hj = 0.005 appears to provide acceptable accuracy in this method, and we
adhered to the 10−6 error tolerance in all cases to obtain a better result. The values presented
in Table 1 for each parameter adjustment exhibit a high degree of concordance, indicating
that the validation of the methodology has been effectively executed. The outcomes validate
our Keller Box approach based on finite differences. Figure 2 shows the flowchart for the
Keller Box method for better understanding.

Table 1. Validation with previous results and keeping Rb = Pe = N1 = M = 0, Γ = E1 = K0 = Lb =

Q0 = Ec = 0.

Lin [2] Current Work

Pr C f − dθ
dξ (0) C f − dθ

dξ (0)

0.72 0.898300 1.523690 0.937134 1.570613
1 0.784465 1.391746 0.832299 1.439581
2 0.652528 1.162097 0.700363 1.209932
4 0.463073 0.980958 0.510909 1.028794
6 0.396883 0.891957 0.444721 0.939794
8 0.355639 0.834979 0.403477 0.882817
10 0.326555 0.793885 0.374394 0.841724

100 0.133715 0.483722 0.181555 0.531562

Figure 2. Flowchart for Keller Box method.

4. Result and Findings

This model graphically depicts a bioconvective fluid flow’s heat and mass transfer.
All of the parameter values in this model were chosen in the ways shown below. Sc = 2,
Nr = 0.5, Lb = 0.5, Pe = 0.3, σ = 0.4, Rb = 0.5, Kr = 0.4, E1 = 1, K = 0.4,
N1 = 2, Γ = 1, M = 1, Ec = 0.3, Q0 = −0.1, Pr = 6.8. All the values remain the
same unless explicitly stated. In all of the figures, the first part of the graph represents the
vertical cone (where ω ̸= 0), and the second part of the graph represents the vertical plate
(where ω = 0).
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4.1. Velocity Profile

The data presented in Figure 3 illustrate a clear relationship between the Eyring–Powell
fluid parameter (K) and the velocity profile. Specifically, as the value of K increases, there
is a noticeable decrease in the velocity profile. As a result of the effect of the frictional
drag force, this drop is more pronounced on a horizontal surface in a cone. The cone
has a stronger impact on the fluid flow velocity than the upright plate. Figure 4 clearly
demonstrates that an increase in the magnetohydrodynamic (MHD) parameter leads to
a significant reduction in the velocity profile for both the cone and plate surfaces. As
a result of Lorentz’s force, related to the fluid flow paths, being perpendicular to the
fluid flow path, it contributes to this reduction. Therefore, the plate and cone have an
increase in the thickness of the velocity boundary layer. Figure 5 illustrates that a higher
porosity parameter (Γ) leads to a thicker momentum boundary layer. The porosity of
the cone or plate surface modifies the drag force exerted on it. Surfaces with higher
porosity allow fluid to pass through, thereby reducing the drag compared to surfaces
that divert the fluid around them. Furthermore, Figures 6 and 7 illustrate that an in-
crease in the buoyancy parameter (Nr) and the Rayleigh number (Rb) lead to a noticeable
amplification of the velocity profiles for both the plate and cone surfaces. The buoy-
ancy ratio factor represents a fluid flow’s buoyancy-to-viscous-force ratio. The fluid’s
efficiency to transfer momentum is improved by increasing this parameter, which raises
the velocity profile.

Figure 3. Consequence of K on momentum.

Figure 4. Consequence of M over momentum.
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Figure 5. Consequence of Γ over momentum.

Figure 6. Consequence of Nr on velocity.

Figure 7. Consequence of Rb over momentum.

It is noticeable from Table 2 that raising the Eyring–Powell fluid parameter (K), the
MHD (M) factor, and the permeability parameter (Γ), the skin friction (C f ) number over
the cone and plate surfaces increases. The local skin friction (C f ) is further increased by
raising the Rayleigh parameter (Rb) and the buoyancy parameter (Nr).
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Table 2. The local Nusselt number (−θ′(0)) and skin friction (C f ).

C f − dθ
dξ (0)

K M Γ Ec Q0 Nr Rb Pr ω = 0 ω ̸= 0 ω = 0 ω ̸= 0

0.3 1 1 0.3 -0.1 0.5 0.5 6.8 0.8276611 0.6264303 0.7739583 0.7403775
0.5 0.8470072 0.6437625 0.7457247 0.7115269
0.7 0.8696108 0.6609366 0.7206157 0.6863384

0.5 0.8470072 0.6437628 0.7457247 0.7115263
0.7 0.8696108 0.6609369 0.7206157 0.6863379
0.9 0.8925743 0.6771554 0.6982958 0.6641069

0.3 0.8968186 0.6879259 0.7850504 0.7688138
0.5 0.8749441 0.6681376 0.7827928 0.7607958
0.7 0.8548882 0.6502805 0.7796985 0.7526417

0.3 0.8256691 0.6241277 0.7720337 0.7373497
0.6 0.833363 0.6280245 0.5775666 0.6255623
0.9 0.8413745 0.6320319 0.3736041 0.5103081

−0.1 0.7913353 0.5908076 1.0579258 1.0455024
0 0.810632 0.6096124 0.7892907 0.7541461

0.1 0.8346166 0.6345497 0.4739704 0.3980173
0.5 0.8127954 0.6117887 0.7601186 0.7219011
1 0.9791096 0.7483265 0.7676565 0.7561591

1.5 1.1181125 0.8755358 0.7502905 0.7703388
0.5 0.8127954 0.6117887 0.7601186 0.7219011
1 0.9772917 0.7473042 0.7676901 0.7558917

1.5 1.114516 0.8730627 0.7512737 0.7700876
6.8 0.8127954 0.6117887 0.7601186 0.7219011
7.8 0.8052942 0.6057737 0.7906545 0.7544055
8.8 0.7987378 0.6004823 0.8176548 0.7837094

4.2. Temperature Profile

Figure 8 highlights the significance of the Eyring–Powell fluid parameter (K) in the
model, demonstrating that increasing this parameter enhances heat transfer. Additionally,
the cone surface exhibits a smaller thermal boundary layer (TBL) thickness compared to
the vertical plate, leading to a higher heat transfer rate. Figure 9 shows explicitly how
increasing the MHD (M) factor enhances heat transfer. The interactions between the
magnetic field and the moving charged particles in the electrically conducting fluid are
responsible for this improvement. The resulting Lorentz force affects the fluid’s velocity
and direction, ultimately enhancing heat transfer. In Figure 10, the primary impact of the
porosity (Γ) on heat transfer is the increased surface area available for heat exchange. The
solid matrix of the porous medium provides a larger surface area for the fluid to come
into contact with, promoting higher heat transfer rates. This characteristic is particularly
advantageous in applications requiring efficient heat transfer, such as heat exchangers or
catalytic reactors. Figure 11 shows that as the Eckert number (Ec) increases, the viscous
dissipation within the fluid becomes more pronounced. This dissipation converts some
of the fluid’s kinetic energy into thermal energy, resulting in increased heating within the
boundary layer. Consequently, more heat is dissipated near the cone and plate surfaces,
leading to a decrease in the thickness of the thermal boundary layer (TBL). In Figure 12,
the presence of a uniform heat source or sink affects the temperature distribution near
the boundary surface. A higher heat source/sink parameter (Q0) indicates a stronger
heat generation or absorption within the non-Newtonian fluid, and causes a stronger
temperature gradient near the boundary and a thicker thermal boundary layer (TBL). The
Prandtl number (Pr) and its depiction of the relationship between thermal and momentum
diffusivity in the fluid flow are shown in Figure 13. The TBL thickness contributes to its
large value as the Pr grows.
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Figure 8. Consequence of K over temperature.

Figure 9. Consequence of M over thermal profile.

Figure 10. Consequence of Γ on thermal profile.
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Figure 11. Consequence of Ec over thermal profile.

Figure 12. Consequence of Q0 over thermal profile.

Figure 13. Consequence of Pr over thermal profile.
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Superior heat transfer performance of the cone surface compared to the plate surface
can be attributed to the differences in fluid flow behavior. When a fluid flows over a flat
plate, it tends to slow down and accumulate near the surface, resulting in a thicker thermal
boundary layer and a lower rate of heat transfer. On the other hand, when a fluid flows
over a curved surface, like a cone, it is forced to speed up and conform to the surface’s
curvature. This leads to a thinner thermal boundary layer and a higher rate of heat transfer.

Referring to Table 2, as we increase the Eyring–Powell fluid parameter (K), Eckert
number (Ec), heat source/sink parameter (Q0), MHD (M) parameter, or the porosity (Γ)
parameter, −θ′(0) decreases for both the surfaces. Also, a higher Prandtl (Pr) number leads
to a higher −θ′(0).

4.3. Concentration Profile

In Figure 14, increase in the Eyring–Powell fluid parameter (K) results in an increased
rate of concentration diffusion. This effect can be attributed to the increase in the stress
tensor, which enhances fluid mixing and dispersion. As a result, the concentration profiles
are affected. Moving on to Figure 15, the application of magnetohydrodynamics (MHD)
and an increase in the MHD parameter (M) are shown to influence the thickness of the
concentration boundary layer (CBL). Applying MHD has the potential to improve fluid
mixing, thereby enhancing the mass transfer process. Figure 16 explains the impact of
porosity and increasing the porosity parameter (Γ) on the thickness of the concentration
boundary layer (CBL). The porosity parameter (Γ) can enhance fluid mixing, leading to an
improved mass transfer process. In Figure 17, increasing the chemical reaction parameter
(K0) in the fluid flow results in more significant chemical reactions. Consequently, the
concentration boundary layer (CBL) thickness increases to accommodate the changing
concentration distribution near the boundary surface. The activation energy is the minimum
energy required for a chemical reaction to occur. Figure 18 shows that as the activation
energy parameter (E1) increases, the barrier for the reaction becomes more significant.
As a result, fewer reactive species possess enough energy to overcome this barrier and
participate in the reaction. As a result of these changes, the observed effect is a decrease
in the reaction rate and the formation of a thinner CBL. Figure 19 illustrates that the CBL
thickness obtains its higher level as the Schmidt number (Sc) rises.

Figure 14. Consequence of K over concentration profile.
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Figure 15. Consequence of M over concentration.

Figure 16. Consequence of Γ over concentration.

Figure 17. Consequence of K0 over concentration.
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Figure 18. Consequence of E1 over concentration.

Upon looking at Figures 14–19, we can observe that the cone and plate surfaces have
different shapes. The cone’s shape changes along its surface, while the plate’s surface stays
the same. This difference in shape affects how the fluid moves over them and leads to
variations in how the substance is distributed. Specifically, the fluid near the cone’s surface
has a higher concentration than near the plate’s surface. This happens because the particles
close to the cone’s surface have a shorter distance to cover the same area compared to
particles near the plate’s surface. As a result, there are faster flows and more noticeable
differences in concentration near the cone’s surface. Additionally, the curved shape of the
cone delays the separation of the flow from the surface compared to the flat plate. This
delay contributes to the higher concentration gradient near the cone’s surface.

Figure 19. Consequence of Sc over concentration.

The convincing evidence in Table 3 shows that −φ′(0) decreases for both the surfaces
as the Eyring–Powell (non-Newtonian) fluid (K) parameter, the magnetohydrodynamics
parameter (M), the activation energy parameter (E1), and the porosity parameter (Γ) in-
crease. On the other hand, with a rise in the Schmidt number (Sc) and the chemical reaction
parameter (K0), the −φ′(0) value increases.
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Table 3. The local density of microorganisms (−χ′(0)) and local Sherwood number (−φ′(0)).

− dφ
dξ (0) − dχ

dξ (0)

K M Γ K0 E1 Sc Lb Pe ω = 0 ω ̸= 0 ω = 0 ω ̸= 0

0.3 1 1 0.3 1 1 0.5 0.7 0.6067597 0.5806644 0.6308123 0.5936918
0.5 0.5990076 0.5748254 0.6196365 0.5848375
0.7 0.5924407 0.5699847 0.6100861 0.5773683

0.5 0.5990076 0.5748254 0.6196365 0.5848376
0.7 0.5924407 0.5699848 0.6100861 0.5773683
0.9 0.5868241 0.5659283 0.6018375 0.5709893

0.3 0.6295077 0.5997143 0.6612226 0.6200352
0.5 0.6220819 0.5933534 0.6513683 0.6113485
0.7 0.6154555 0.5877915 0.6425197 0.6036701

0.3 0.6067597 0.5806644 0.6308123 0.5936919
0.5 0.725906 0.7091557 0.7572944 0.7271007
0.7 0.8360051 0.8261611 0.8846352 0.8600359

−1 1.0086156 0.9978203 1.0697198 1.0428716
0 0.7667685 0.7507371 0.7902278 0.7599957
1 0.6067597 0.5806644 0.6308123 0.5936919

0.5 0.5332354 0.5212129 0.5921514 0.5620565
1 0.6067597 0.5806644 0.6308123 0.5936919

1.5 0.6676092 0.6315215 0.6684937 0.6246851
0.3 0.4992610 0.494676 0.5771215 0.5497044
0.5 0.5332354 0.5212129 0.5921514 0.5620565
0.7 0.5644747 0.5461578 0.6075921 0.5746854

0.5 0.6106761 0.5836606 0.536743 0.5002762
0.7 0.6067597 0.5806644 0.6308123 0.5936919
0.9 0.6030955 0.5778879 0.7215598 0.6838918

4.4. Microorganism Profile

Figures 20 and 21 demonstrate the effects of applying magnetohydrodynamics (M)
and porosity (Γ) on fluid flow containing microorganisms. These effects enhance the
diffusion rate of microorganisms and reduce the minimum boundary layer thickness for
their diffusion. The interaction of the magnetic field and the flowing fluid results in the
magnetohydrodynamics (M) effect. This interaction leads to the induction of electrical
currents, which, in turn, promotes mixing and diffusion of microorganisms. The presence of
a porous medium creates a convoluted path for fluid flow, promoting mixing and transport
of microorganisms within the fluid. In Figures 22 and 23, it is shown that increasing the
chemical reaction parameter (K0) leads to a decrease in the microorganisms’ boundary
layer thickness due to more significant chemical reactions. On the other hand, increasing
the activation energy parameter (E1) results in a thinner boundary layer as it hinders the
reaction rate within the microorganisms. Moving on to Figure 24, it is explained that in
fluid flow with swimming microorganisms, rises in the Péclet number (Pe) enhance fluid
mixing due to the motion of the microorganisms. This enhanced mixing promotes nutrient
uptake, overall growth of the microorganisms, and changes in their spatial distribution
within the fluid. The bioconvection’s stability and pattern creation are clearly impacted by
an increase in the Lewis number (Lb), as seen in Figure 25. The buoyant forces that propel
bioconvection are impacted by this change in the equilibrium of diffusion mechanisms,
which reduces the stability of the biological convection patterns.
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Figure 20. Consequence of M over microorganism.

Figure 21. Consequence of Γ over microorganism.

Figure 22. Consequence of K0 over microorganism.
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Figure 23. Consequence of E1 over microorganism.

Figure 24. Consequence of Pe over microorganism.

Figure 25. Consequence of Lb over microorganism.
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In Table 3, the local microorganism density number (−χ′(0)) exhibits distinct behavior
based on the variations in the different parameters. Firstly, when the Eyring–Powell fluid
parameter (K), the activation energy parameter (E1), the magnetohydrodynamics (M)
parameter, and the porosity parameter (Γ) are increased for both the surfaces, the local
microorganism density number (−χ′(0)) decreases. This suggests that these parameters
hinder the growth or proliferation of microorganisms, resulting in a lower density within
the boundary layer. On the other hand, an increase in the local microbe density number
(−χ′(0)) is caused by a decrease in the nonlinear chemical reaction parameter (K0), Péclet
number (Pe), and Lewis number (Lb). These parameters, which are associated with chemical
reactions and bioconvection processes, enhance the growth or transport of microorganisms,
resulting in a higher density within the boundary layer.

5. Conclusions

The current study employed a non-Newtonian (Eyring–Powell) fluid simulation to
analyse the heat and mass transfer characteristics of a bioconvective fluid. Understanding
the flow over a permeable cone and plate was the primary objective. In order to gain a
comprehensive understanding of the mechanisms underlying mass and heat transfer, we
conducted an investigation into the impact of several parameters: magnetohydrodynamics
(MHD), porosity, viscous dissipation, uniform heat source/sink, chemical reaction, and
activation energy. The nonlinear partial differential equations (PDEs) are converted to
ordinary differential equations (ODEs) via a similarity transformation (ST). Utilizing the
Keller Box (KB) finite difference method, these equations are solved. By applying this
methodology, we obtained outcomes that validated our findings established in previous
studies.

1. While increasing the MHD (M) and porosity (Γ) parameter:

• Heat transfer increased by 14.24% and 19.36%;
• Mass transfer increased by 13.20% and 16.4%;
• Microorganism diffusion increased by 14.67% and 15.37%.

2. While increasing the Eyring–Powell fluid (K) parameter:

• Heat transfer increased by 8.47%;
• Mass transfer increased by 8.45%.

3. While increasing the Eckert number (Ec) and heat source/sink (Q0) parameter:

• Heat transfer increased by 6.32% and 15.34%.

4. While decreasing the chemical reaction (K0) parameter:

• Mass transfer increased by 16.6%;
• Microorganism diffusion increased by 3.3%.

5. While increasing the activation energy (E1) parameter:

• Mass transfer increased by 18.2%;
• Microorganism diffusion increased by 4.1%.

In the future, researchers may undertake further comprehensive examinations of the
mass and heat transfer dynamics of Eyring–Powell (non-Newtonian) fluids that contain
microorganisms in situations where conditions are unsteady.
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Abbreviations
The following abbreviations are used in this manuscript:
b The chemotaxis constant of bioconvection
B2

0 Magnetic parameter
C Concentration
Cp Specific heat
d Physical Eyring–Powell fluid parameter
DB Mass diffusivity
Dn Diffusivity of microorganisms
E1 Dimensionless activation energy coefficient
Ea Activation energy coefficient
Ec Eckert number
K Dimensionless Eyring–Powell parameter
K0 Dimensionless chemical reaction parameter
k1 Porosity parameter
Kr Dimensional chemical reaction parameter
Lb Bioconvection Lewis number
M Dimensionless magnetic parameter
n Fitted rate constant
N Density of microorganisms
N1 Non-Newtonian fluid parameter
Nr Buoyancy ratio parameter
Pr Prandtl number
Pe Bioconvection Péclet number
Q0 Dimensionless uniform heat source/sink parameter
QT Dimensional heat uniform source/sink parameter
Rb Bioconvection Rayleigh number
Sc Schmidt number
T Temperature
u, v Velocity component
Wc The maximum cell swimming speed
Greek Symbols
α Thermal diffusivity
β The parameter of the Eyring–Powell fluid characteristics
βT , βC, βN Thermal, concentration, and microorganism volumetric expansion
δ1 The temperature relative parameter
γ The typical amount of microbes
Γ Dimensionless porosity constant
κ Boltzmann constant
θ Dimensionless thermal function
µ Dynamic viscosity
ν Kinematic viscosity
ξ Dimensionless boundary layer coordinate
ψ Stream function
ρ Density
σ Constant of bioconvection
φ Dimensionless function of concentration
χ Dimensionless function of microorganisms density
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