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Abstract: A B-spline is defined by the degree and quantity of knots, and it is observed to provide a
higher level of flexibility in curve and surface layout. The extended cubic B-spline (ExCBS) functions
with new approximation for second derivative and finite difference technique are incorporated in this
study to solve the time-fractional Allen–Cahn equation (TFACE). Initially, Caputo’s formula is used
to discretize the time-fractional derivative, while a new ExCBS is used for the spatial derivative’s
discretization. Convergence analysis is carried out and the stability of the proposed method is also
analyzed. The scheme’s applicability and feasibility are demonstrated through numerical analysis.
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1. Introduction

The term spline describes the various features used in applications that require
data interpolation and smoothing. The B-spline functions are highly localized. That is,
the non-zero values occur only at the small intervals, and the B-spline coefficient contains
the overall behaviour of the original function. These functions in general provide the
most flexible way to define curves in computer graphics. A B-spline contains sections of
polynomial curves connected at places called nodes. A linear combination of B-splines of a
particular degree can be used to express any spline function of that degree. Over the past
few years, numerical equations have become a powerful and useful mathematical tool for
studying many phenomena in science and engineering. The study of differential equations
is multidisciplinary and is applied in many ways including control, flexibility, circuit
systems, heat transfer, quantum mechanics, fluid mechanics, biomathematics, biomedicine
systems, traffic turbulence, complex systems and pollution control etc [1–4]. The ACE
is a simple model of a nonlinear reaction–diffusion process. It is widely used to model
the behavior of the interface at a given time, e.g., alloy phase separation. There are many
applications for nonlinear evaluation equations in engineering, physics, chemistry and
biology [5–7].

The fractional derivative can better represent several phenomena than the integer
order derivative. The Caputo derivative is the most appropriate fractional operator to use
when modeling real-world problems. For solving fractional ordinary differential equations,
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integral equations and fractional partial differential equations (FPDEs), many techniques
are presented in the literature. The first integral scheme was used by Lu [8] to obtain the
exact solution of the time-fractional differential equation. He and Wu [9] discussed the Exp-
function technique to find the independent solutions of different non-linear wave equations.
The exact solution for space- and time-fractional derivatives foam drainage and non-linear
KdV equations using a better (G′/G) expansion function method was presented by Gepreel
and Omran [10]. The fractional variable method was tested by Liu and Chen [11].

Bulut et al. [12] discussed the modified trial equation technique. A fractional sub-
equation scheme for FPDE was proposed by Zheng and Wen [13]. The simplest equation
method for solving time FPDE was discussed by Taghizadeh et al. [14]. For solving frac-
tional non-linear problems, the Tanh-fractional method was used by Sahoo and Ray [15].
Tariq and Akram [16] developed an improved Tanh approach for solving non-linear equa-
tion that arises in mathematical physics, especially ACE. Types of Allen–Cahn and Cahn–
Hilliard PDE models of the critical category were discussed by Prüss and Wilke [17].
Appadu et al. [18] compared explicit and implicit one-level techniques with multilevel
finite volume methods. For biofilm formation, Tijani and Appadu [19] constructed a math-
ematical model on medical implant with finite difference method. Allen and Cahn [20]
introduced the microscopic diffusion theory of the movement of curved boundary opposes
solid crystal. Some authors also discussed various applications such as the interaction be-
tween two fixed fluids, the vesicle membrane and the nucleation solids [21–23]. Li et al. [24]
presented finite element scheme for FPDEs.

In this paper, a fully implicit finite difference scheme is formulated to obtain the
numerical solution of TFACE based on new ExCBS. For time discretization, Caputo’s
formula is used and a new ExCBS is utilized to discretize the spatial derivative. The TFACE
is given as [5]:

∂γ

∂tγ
q(p, t)− ∂2

∂p2 q(p, t) + (q(p, t))3 − q(p, t) = ν(p, t), p ∈ [a, b], t ∈ [0, T], (1)

with initial condition (IC):
q(p, 0) = φ(p) (2)

and the boundary conditions (BCs):

q(a, t) = Ψ1(t), q(b, t) = Ψ2(t), (3)

where γ ∈ (0, 1) and ν(p, t) is the source term. Ψ and φ are smooth and continuous
functions with first order derivatives.

Domain coarsening in a sub-diffusive ACE in terms of the Seki–Lindenberg sub
diffusion reaction model was studied by Hamed and Nepomnyashchy [25]. Different types
of specific solutions from first integral, (G′/G) expansion and the exp-function methods
were explored by Güner et al. [26]. Zhai et al. [27] solved the fractional non-local Allen–
Cahn model very quickly using explicit operator splitting spectral method. Akagi et al. [28]
proved that weak solutions of ACE, fractional porous medium and fractional-diffusion fast
equation exist and are unique. The Crank–Nicolson approach and second order central
difference scheme for spatial and temporal fragmentation were used by Hou et al. [29]. Li
et al. [30] introduced a TFAC phase field model that illustrates the transportation of a liquid
mixture of two unmixable liquid phases. New exact and explicit solutions for TFAC and
Cahn–Hilliard equations with fractional derivatives were presented by Hosseini et al. [31].
Sakar et al. [32] developed a novel iterative scheme based on reproducing ACE kernel
method with Caputo derivative. Liu et al. [33] investigated the time-fractional models of
Allen–Cahn and Cahn–Hilliard using Fourier spectral and finite difference methods. To
solve the non-linear space-fractional ACE numerically, a fast time-based two-mesh finite
element technique was developed by Yin et al. [34]. To find the computational solutions of
Allen–Cahn and damped Burger equations the homotopy analysis technique was used by
Esen et al. [35].
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Inc et al. [36] reduced the TFAC and time-fractional KG into non-linear ordinary
differential equations of fractional order and solved these ordinary differential equations
by employing an explicit power series algorithm. Shafiq et al. [37–39] proposed numerical
techniques for time-fractional diffusion, Burgers’ and advection diffusion equations with
fractional derivatives using CBS functions. Khalid et al. [40] proposed a third-degree
algorithm optimized for ExCBS functions to solve the time-fractional diffusion wave equa-
tion. To find the computational results of fourth-order fractional boundary value problems
(BVPs), the reproducing kernel Hilbert space scheme was used by Akgül and Karatas
Akgül [41]. A computational method using the conformable fractional derivative was
proposed by Tayebi et al. [42] with CBS functions. Appadu and Kelil [43] proposed com-
putational solutions of time-fractional Korteweg de Vries model utilizing finite difference
techniques with fractional derivative. Atangana and Gómez-Aguilar [44] used the defini-
tion of Riemann-Liouville to find the numerical approximation of fractional operators from
power-law kernel. Akgül [45] utilized the Mittag–Leffler operator to find the solutions of
non-linear and linear FPDEs. Mittal and Jain [46] established a collocation scheme to solve
the convection–diffusion equation utilizing redefined CBS functions.

Rashidinia and Sharifi [47] developed a scheme for hyperbolic telegraph equation
based on ExCBS and this approach reduced the size of computational work. Liu et al. [48]
proposed implicit difference and explicit difference techniques to find the computational so-
lution of time-fractional advection dispersion problem. To achieve the numerical solutions
of nonlinear PDE, a PECE-type based algorithm was used by Diethelm and Freed [49]. To
obtain the solution of fractional diffusion equation CBS collocation technique was used by
Sayevand et al. [50]. Akram and Tariq [51] established a numerical approach using quintic
spline algorithm to acquire the results of fractional BVPs. Tasbozan et al. [52] implemented
an approximate method based on CBS function to attain the solution of fractional diffusion
equation. Boyce et al. [53] provided a numerical solution for elementary differential equa-
tion and BVPs. Kadalbajoo and Arora [54] established a B-spline collocation methodology
that solves singular-perturbed equation using artificial viscosity. Convergence of odd
degree equation and error bounds for spline interpolation presented in [55–57].

The presented work is inspired by progressive advances in TFACE numerical analysis.
In this study, we developed and applied a new B-spline based scheme to obtain solution
for TFACE. The proposed strategy uses Caputo’s formula to discretize time-fractional
derivative and to discretize spatial derivative new ExCBS are used. Furthermore, the
convergence and stability of proposed strategy is accomplished. To the best of author’s
knowledge, the presented method is new and has not been reported before in the literature.

This paper is classified as follows: In Section 2, ExCBS functions and a new approxima-
tion of second derivative for ExCBS are presented. Time discretization of Caputo-fractional
derivative and fully implicit finite difference scheme are briefly described in Section 3. In
Section 4, initial state η0 is expressed. In Section 5, the stability analysis is expounded.
Convergence analysis of the proposed technique is presented in Section 6. In Section 7, two
numerical examples are included for proposed method.

2. Extended Cubic B-Spline Functions

ExCBS is the extension of CBS with an additional free parameter ϱ. The free parameter
is introduced in basis functions to allow changes to the generated curves.

The basis function of ExCBS with four degrees is defined as follows [40]:
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Cj(p, ϱ) =
1

24h4



4h(1 − ϱ)(p − pj)
3 + 3ϱ(p − pj)

4, p ∈ [pj, pj+1),
(4 − ϱ)h4 + 12h3(p − pj+1) + 6h2(2 + ϱ)(p − pj+1)

2

−12h(p − pj+1)
3 − 3ϱ(p − pj+1)

4, p ∈ [pj+1, pj+2),
(4 − ϱ)h4 + 12h3(pj+3 − p) + 6h2(2 + ϱ)(pj+3 − p)2

−12h(pj+3 − p)3 − 3ϱ(pj+3 − p)4, p ∈ [pj+2, pj+3),
4h(1 − ϱ)(pj+4 − p)3 + 3ϱ(pj+4 − p)4, p ∈ [pj+3, pj+4),
0, otherwise,

(4)

where p is the variable and ϱ ∈ R. For −8 ≤ ϱ ≤ 1, the ExCBS functions possess the
various properties of B-spline, such as the convex hull property, symmetry and geometric
invariance. If we substitute ϱ = 0, the basis function of extended spline will reduce to CBS
function. Now, consider the ExCBS approximation for q(p, t) to be Q(p, t) as

Q(p, t) =
n+1

∑
k=−1

ηm
k (t)Ck(p, ϱ), (5)

where ηm
k (t) are the control points which are computed at each time level and Ck(p, ϱ) are

the ExCBS functions. Due to the local support property of basis function, that is Ck(p, ϱ) are
non-zero in [pj, pj+4), it contains only three non-zero basis functions, namely Ck−1(p, ϱ),
Ck(p, ϱ) and Ck+1(p, ϱ) for the evaluation at each pj.

The coefficients of ExCBS functions and their derivatives at knots pj are:

C(pj, ϱ) =


8+ϱ
12 , if k − j = 0,

4−ϱ
24 , if k − j = ±1,

0, otherwise,

(6)

C′(pj, ϱ) =


0, if k − j = 0,
± 1

2h , if k − j = ±1,
0, otherwise,

(7)

C′′(pj, ϱ) =


− 2+ϱ

h2 , if k − j = 0,
2+ϱ

h2 , if k − j = ±1,
0, otherwise.

(8)

Formulation of New Approximation for Q′′(p, t)

To find new ExCBS functions Q′′(p, t) for second derivative q′′(pj) [58]:

C0 =
1

24h2

(
2(14 − ϱ)η−1 + 3(3ϱ − 22)η0 + 8(7 − 2ϱ)η1 + 14(ϱ − 2)η2 + 6(2 − ϱ)η3 + (ϱ − 2)η4

)
. (9)

Cj =
1

24h2

(
(2 − ϱ)ηj−2 + 4(4 + ϱ)ηj−1 − 6(6 + ϱ)ηj + 4(4 + ϱ)ηj+1 + (2 − ϱ)ηj+2

)
. (10)

Cn =
1

24h2

(
(ϱ − 2)ηn−4 + 6(2 − ϱ)ηn−3 + 14(ϱ − 2)ηn−2 + 8(7 − 2ϱ)ηn−1 + 3(3ϱ

−22)ηn + 2(14 − ϱ)ηn+1
)
. (11)
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3. Description of Scheme
3.1. Temporal Discretization

Consider the time interval [0, T] by taking the knots 0 = t0 < t1 < . . . < tZ = T,
where tm = m△ t and m = 0, 1, . . . , Z, subdivided into Z equal subintervals of size △t = T

Z .
We discretize the time derivative of the Allen–Cahn Equation (1) at t = tm+1 as:

∂γ

∂tγ
q(p, tm+1) =

1
Γ(1 − γ)

∫ tm+1

0

∂

∂τ
q(p, τ)

1
(tm+1 − τ)γ

dτ, 0 < ϱ < 1,

=
1

Γ(1 − γ)

m

∑
s=0

∫ ts+1

ts

∂

∂τ
q(p, τ)

1
(tm+1 − τ)γ

dτ. (12)

Using forward difference formulation, Equation (12) becomes

∂γ

∂tγ
q(p, tm+1) =

1
Γ(1 − γ)

m

∑
s=0

q(p, ts+1)− q(p, ts)

△t

∫ ts+1

ts

1
(tm+1 − τ)γ

dτ + ϱm+1
△t

=
1

Γ(1 − γ)

m

∑
s=0

q(p, ts+1)− q(p, ts)

△t

∫ tm−s+1

tm−s

1
(ρ)γ

dρ + ϱm+1
△t

=
1

Γ(1 − γ)

m

∑
s=0

q(p, tm−s+1)− q(p, tm−s)

△t

∫ ts+1

ts

1
(ρ)γ

dρ + ϱm+1
△t

=
1

Γ(2 − γ)

m

∑
s=0

q(p, tm−s+1)− q(p, tm−s)

(△t)γ
[(ℓ+ 1)1−γ − (ℓ)1−γ] + ϱm+1

△t

∂γ

∂tγ
q(p, tm+1) =

1
Γ(2 − γ)

m

∑
s=0

ξs
q(p, tm−s+1)− q(p, tm−s)

(△t)γ
+ ϱm+1

△t , (13)

where ρ = tm+1 − τ, ξs = (ℓ+ 1)1−γ − (ℓ)1−γ and the truncation error ϱm+1
△t is bounded as:

| ϱm+1
△t |≤ δ(△t)2−γ, (14)

where δ is the finite constant.

Lemma 1. The coefficients ξs satisfy the following characteristics

• ξs > 0 and ξ0 = 1, s = 1, 2, . . . , m,
• ξ0 > ξ1 > ξ2 > . . . > ξs, ξs → 0 as s → ∞,

•
m
∑

s=0
(ξs − ξs+1) + ξm+1 = (1 − ξ1) +

m−1
∑

s=1
(ξs − ξs+1) + ξm = 1.

3.2. Fully Implicit Scheme

Here, a fully implicit scheme is applied to discretize the time derivative. This scheme
is linear that has an accuracy of second order in time.

Let qm
j = q(pj, tm), (q(p, t))3 = F(q(p, t)) and substitute ν(p, tm+1) − F(q(p, t)) =

gm+1. ηm
j = ηj(tm) for j = 0, 1, 2, . . . , n and m = 0, 1, . . . , Z.

For j = 1, 2, . . . , n − 1, substitute Equations (6) and (10) in Equation (1), we have

1
Γ(2 − γ)(△t)γ

m

∑
s=0

ξs

[
(4 − ϱ)

24
ηm−s+1

j−1 +
(8 + ϱ)

12
ηm−s+1

j +
(4 − ϱ)

24
ηm−s+1

j+1 − (4 − ϱ)

24
ηm−s

j−1

− (8 + ϱ)

12
ηm−s

j − (4 − ϱ)

24
ηm−s

j+1

]
− 1

24h2

[
(2 − ϱ)ηm+1

j−2 + 4(4 + ϱ)ηm+1
j−1 − 6(6 + ϱ)ηm+1

j

+ 4(4 + ϱ)ηm+1
j+1 + (2 − ϱ)ηm+1

j+2

]
−
[
(4 − ϱ)

24
ηm+1

j−1 +
(8 + ϱ)

12
ηm+1

j +
(4 − ϱ)

24
ηm+1

j+1

]
= gm+1. (15)
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Simplification of the above equation yields

[rv1 − l8 − v1]η
m+1
j−1 + [rv2 + l9 − v2]η

m+1
j + [rv1 − l8 − v1]η

m+1
j+1 − l7ηm+1

j−2 − l7ηm+1
j+2

= r[v1ηm
j−1 + v2ηm

j + v1ηm
j+1]− r

m

∑
s=1

ξs[v1(η
m−s+1
j−1 − ηm−s

j−1 ) + v2(η
m−s+1
j − ηm−s

j )

+v1(η
m−s+1
j+1 − ηm−s

j+1 )] + gm+1.

(16)

For j = 0, substitute Equations (6) and (9) in Equation (1), we obtain

[rv1 − l1 − v1]η
m+1
−1 + [rv2 − l2 − v2]η

m+1
0 + [rv1 − l3 − v1]η

m+1
1 − l4ηm+1

2 − l5ηm+1
3

−l6ηm+1
4 = r[v1ηm

−1 + v2ηm
0 + v1ηm

1 ]− r
m

∑
s=1

ξs[v1(η
m−s+1
−1 − ηm−s

−1 ) + v2(η
m−s+1
0 − ηm−s

0 )

+v1(η
m−s+1
1 − ηm−s

1 )] + gm+1.

(17)

For j = n, substitute Equations (6) and (11) in Equation (1), we have

[rv1 − l3 − v1]η
m+1
n−1 + [rv2 − l2 − v2]η

m+1
n + [rv1 − l1 − v1]η

m+1
n+1 − l6ηm+1

n−4 − l5ηm+1
n−3

−l4ηm+1
n−2 = r[v1ηm

n−1 + v2ηm
n + v1ηm

n+1]− r
m

∑
s=1

ξs[v1(η
m−s+1
n−1 − ηm−s

n−1 ) + v2(η
m−s+1
n − ηm−s

n )

+v1(η
m−s+1
n+1 − ηm−s

n+1 )] + gm+1,

(18)

where v1 = (4−ϱ)
24 , v2 = (8+ϱ)

12 , v3 = 1
2h , l1 = 2(14−ϱ)

24h2 , l2 = 3(3ϱ−22)
24h2 , l3 = 8(7−2ϱ)

24h2 , l4 = 14(ϱ−2)
24h2 ,

l5 = 6(2−ϱ)
24h2 , l6 = ϱ−2

24h2 , l7 = 2−ϱ

24h2 , l8 = 4(4+ϱ)
24h2 and l9 = 6(6+ϱ)

24h2 .
The above system contains n + 1 linear equations in n + 3 unknowns. To obtain a

unique solution, two more equations are obtained from the BCs. Hence, a matrix system of
dimension (n + 3)× (n + 3) is acquired:

Aηm+1 = B(ξmη0 +
m−1

∑
s=0

(ξs − ξs+1)η
m−s) + G, (19)

where

A =



v1 v2 v1
y1 y2 y3 y4 y5

y1 y2 y3 y4 y5
. . . . . . . . .

y1 y2 y3 y4 y5
y1 y2 y3 y4 y5
v1 v2 v1


, B =



0 0 0
v1 v2 v1

v1 v2 v1
. . . . . . . . .

v1 v2 v1
v1 v2 v1
0 0 0


,

ηm =



ηm
−1

ηm
0

ηm
1
...

ηm
n−1

ηm
n

ηm
n+1


and G =



Ψm+1
1

gm+1
0

gm+1
1
...

gm+1
n−1

gm+1
n

Ψm+1
2


,

where y1 = rv1 − l8 − v1, y2 = rv2 + l9 − v2, y3 = rv1 − l8 − v1 and y4 = y5 = −l7.
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4. Initial State η0

In this section, a suitable initial vector η0 = [η0
−1, η0

0 , . . . , η0
n+1]

T from IC is constructed
to start iteration. The IC together with its derivatives are given as follows:

(qp)
0
j =

d
dp

(φ(pj)), j = 0, n

and

q0
j = q(pj, 0) =

n+1

∑
j=1

η0
j (0)C(pj), j = 0, 1, . . . , n.

The above system is a linear algebraic system of order (n + 3)× (n + 3), its matrix
representation is given as:

D́η0 = H, (20)

where

D́ =



v3 0 −v3
v1 v2 v1

v1 v2 v1
. . . . . . . . .

v1 v2 v1
v1 v2 v1
v3 0 −v3


and H =



φ′
0

φ0
φ1
...

φn−1
φn
φ′

n


.

5. Stability Analysis

In this section, we study the scheme’s stability. To check the stability of proposed
technique we use Fourier series method. Suppose Q(p, t) is the approximation of
Equation (15). We define

ζm
j = qm

j − Qm
j , j = 1, . . . , n − 1, m = 0, 1, . . . , Z (21)

and vector
ζm = [ζm

1 , ζm
2 , . . . , ζm

n−1]
T . (22)

Equation (21) satisfies Equation (15), the round-off error equation is given as:

[rv1 − l8 − v1]ζ
m+1
j−1 + [rv2 + l9 − v2]ζ

m+1
j + [rv1 − l8 − v1]ζ

m+1
j+1 − l7ζm+1

j−2 − l7ζm+1
j+2

= r[v1ζm
j−1 + v2ζm

j + v1ζm
j+1]− r

m

∑
s=1

ξs[v1(ζ
m−s+1
j−1 − ζm−s

j−1 ) + v2(ζ
m−s+1
j − ζm−s

j )

+v1(ζ
m−s+1
j+1 − ζm−s

j+1 )].

(23)

The IC and BCs become{
ζ0

j = φ(pj), j = 1, 2, . . . , n,

ζm
0 = Ψ1(tm), ζm

n = Ψ2(tm), m = 0, 1, . . . , Z.
(24)

We define grid function as:

ζm =

{
ζm

j , pj − h
2 < p ≤ pj +

h
2 , j = 1, 2, . . . , n − 1,

0, a ≤ p ≤ a + h
2 or b − h

2 ≤ p ≤ b.
(25)
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The Fourier series representation of ζm is given as:

ζm(p) =
∞

∑
n=−∞

σm(n)e(
2πinp
b−a ), m = 1, 2, . . . , Z, (26)

where

σm(n) =
1

b − a

∫ b

a
ζm(p)e(

−2πinp
b−a )dp. (27)

Definition of natural norm yields

∥ζ∥2 =

(
n−1

∑
j=1

h | ζm
j |2

) 1
2

=

[∫ a+ h
2

a
| ζm |2 dp +

Z−1

∑
j=1

∫ pj+
h
2

pj− h
2

| ζm |2 dp +
∫ b

b− h
2

| ζm |2 dp

] 1
2

=

[∫ b

a
| ζm |2 dp

] 1
2

.

Using the Parseval’s identity, we have

∫ b

a
| ζm |2 dp =

∞

∑
−∞

| σm(r) |2 .

Thus, we obtain

∥ζm∥2
2 =

∞

∑
−∞

| σm(r) |2 . (28)

Consider, the solution in Fourier series form as:

ζm
k = σmeiθkh, (29)

where i = (−1)
1
2 and θ = 2πm

b−a . Substituting Equation (29) in (23), we achieve

[rv1 − l8 − v1]σm+1eiθ(k−1)h + [rv2 + l9 − v2]σm+1eiθkh + [rv1 − l8 − v1]σm+1eiθ(k+1)h

−l7σm+1(eiθ(k−2)h + eiθ(k+2)h) = rσm[v1eiθ(k−1)h + v2eiθkh + v1eiθ(k+1)h]− r
m

∑
s=1

ξs[v1(σm−s+1eiθ(k−1)h

−σm−seiθ(k−1)h) + v2(σm−s+1eiθkh − σm−seiθkh) + v1(σm−s+1eiθ(k+1)h − σm−seiθ(k+1)h)].

(30)

Simplification of the above equation yields

σm+1 =
1
u1

σm − 1
u1

m

∑
s=1

ξs(ζm−s+1 − ζm−s), (31)

where

u1 = 1 +
−12 + 2sin2(θ h

2 )(4(4 + ϱ)− (4 − ϱ)h2) + 2sin2(θh)(2 − ϱ)

12h2r(1 + ϱ−4
6 )sin2(θ h

2 )
, (32)

it is clear that u1 ≥ 1 for ϱ > −2.

Proposition 1. Assume that σm, m = 1, 2, . . . , T × Z, satisfy Equation (31), we have

| σm |≤| σ0 | . (33)
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Proof. To verify inequality (33), we use mathematical induction. Put m = 0 in (31),
we obtain

| σ1 | = 1
u1

| σ0 |≤| σ0 |, 1
u1

≥ 1.

Assume that | σm |≤| σ0 | is true for m = 1, 2, . . . , T × Z − 1. From Equation (31),
we obtain

| σm+1 | ≤ 1
u1

| σn | − 1
u1

m

∑
s=1

(σm−s+1 − σm−s)

≤ 1
u1

| σ0 | − 1
u1

m

∑
s=1

(σ0 − σ0)

≤| σ0 | .

Hence, inequality (33) is true.

Theorem 1. The scheme (15) is unconditionally stable.

Proof. Using above proposition and Equation (28), we acquire

∥ζm∥2 ≤ ∥ζ0∥2, m = 0, 1, . . . , Z,

hence, Equation (15) with IC and BCs is unconditionally stable.

6. Convergence

In this section, convergence of the proposed method is examined that is based on
Kadalbajoo and Arora’s technique [54].

Theorem 2. Suppose that q(p, t) ∈ C4[a, b], ν ∈ C2[a, b] and Θ = [a = p0, p1, . . . , pn = b]
is the equidistant partition of [a, b] having length h. Consider Q̃(p, t) is a unique spline that
interpolates the solution of the propounded problem at knots p0, p1, . . . , pn ∈ Θ, then there exists a
constant cj that does not dependent on h, so ∀ t ≥ 0, we have

∥Dj(q(p, t)− Q(p, t))∥∞ ≤ cjh4−j, j = 0, 1, 2. (34)

Lemma 2 (see [58]). The ExCBS set {C−1, C0, . . . , Cn+1} defined in (4) satisfies the following
inequality

n+1

∑
j=−1

| Cj(p, ϱ) |≤ 7
4

, 0 ≤ p ≤ 1. (35)

Theorem 3. Consider the approximation for the exact solution q(p, t) is Q(p, t) of the time-
dependent FPDEs. Further, if ν ∈ C2[0, 1], then the inequality

∥q(p, t)− Q(p, t)∥∞ ≤ Φh2, (36)

exists for every t ≥ 0, h is sufficiently small and Φ is a positive constant not depending on h.

Proof. Consider the calculated spline approximation is Q̃(p, t) to the approximate solution

Q(p, t), where Q̃(p, t) =
n+1
∑

j=−1
ďjCk(p). From triangular inequality, we obtain

∥q(p, t)− Q(p, t)∥∞ ≤ ∥q(p, t)− Q̃(p, t)∥∞ + ∥Q̃(p, t)− Q(p, t)∥∞. (37)
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From inequality (34), we have

∥Dj(q(p, t)− Q̃(p, t))∥∞ ≤ cjh4−j, j = 0, 1, 2. (38)

Using Equation (37), we achieve

∥q(p, t)− Q(p, t)∥∞ ≤ c0h4 + ∥Q̃(p, t)− Q(p, t)∥∞. (39)

The collocation conditions are:

Lq(pj, t) = LQ(pj, t) = g(pj, t), j = 0, 1, . . . , n.

Let
LQ̃(p, t) = ḡ(pj, t), j = 0, 1, . . . , n.

Therefore, the difference equation L(Q̃(pj, t)− Q(pj, t)) of the given problem for any
time level m is described as

[rv1 − l8 − v1]ς
m+1
j−1 + [rv2 + l9 − v2]ς

m+1
j + [rv1 − l8 − v1]ς

m+1
j+1 − l7ςm+1

j−2 − l7ςm+1
j+2

= r[v1ςm
j−1 + v2ςm

j + v1ςm
j+1]− r

m

∑
s=1

ξs[v1(ς
m−s+1
j−1 − ςm−s

j−1 ) + v2(ς
m−s+1
j − ςm−s

j )

+v1(ς
m−s+1
j+1 − ςm−s

j+1 )] + gm+1,

(40)

for j = 0, n, we have

[rv1 − l1 − v1]ς
m+1
−1 + [rv2 − l2 − v2]ς

m+1
0 + [rv1 − l3 − v1]ς

m+1
1 − l4ςm+1

2 − l5ςm+1
3

−l6ςm+1
4 = r[v1ςm

−1 + v2ςm
0 + v1ςm

1 ]− r
m

∑
s=1

ξs[v1(ς
m−s+1
−1 − ςm−s

−1 ) + v2(ς
m−s+1
0 − ςm−s

0 )

+v1(ς
m−s+1
1 − ςm−s

1 )] + gm+1

(41)

and

[rv1 − l3 − v1]ς
m+1
n−1 + [rv2 − l2 − v2]ς

m+1
n + [rv1 − l1 − v1]ς

m+1
n+1 − l6ςm+1

n−4 − l5ςm+1
n−3

−l4ςm+1
n−2 = r[v1ςm

n−1 + v2ςm
n + v1ςm

n+1]− r
m

∑
s=1

ξs[v1(ς
m−s+1
n−1 − ςm−s

n−1 ) + v2(ς
m−s+1
n − ςm−s

n )

+v1(ς
m−s+1
n+1 − ςm−s

n+1 )] + gm+1.

(42)

The BCs for Equations (41) and (42) are

v1ςm+1
−1 + v2ςm+1

0 + v1ςm+1
1 = 0,

v1ςm+1
n−1 + v2ςm+1

n + v1ςm+1
n+1 = 0,

where
ςm

j = ηm
j − ďm

j , j = −1, 0, 1, . . . , n + 1.

Using (38), we obtain

κm
j = h2[gm

j − ḡm
j ] ≤ ch4, j = 0, 1, . . . , n.

Define

κm = max{| κm
j |; 0 ≤ j ≤ n}, ěm

j =| ςm
j | and ěm = max{| ěm

j |; 0 ≤ j ≤ n}.

Put m = 0, in Equation (40), we obtain
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[rv1 − l8 − v1]ς
1
j−1 + [rv2 + l9 − v2]ς

1
j + [rv1 − l8 − v1]ς

1
j+1 − l7ς1

j−2 − l7ς1
j+2 = r[v1ς0

j−1 + v2ς0
j + v1ς0

j+1] + g1,

using IC, ě0 = 0:

[rv2 + l9 − v2]ς
1
j = −[rv1 − l8 − v1][ς

1
j−1 + ς1

j+1] + l7[ς1
j−2 + ς1

j+2] +
1
h2 κ1

j ,

taking absolute values of ςm
j and κm

j , we achieve

ě1
j ≤

6ch4

h2r(2 + ϱ) + 4ϱ − h2(2 + ϱ) + 16
.

Put m = 0, in Equations (41) and (42), we acquire

[rv1 − l1 − v1]ς
1
−1 + [rv2 + l2 − v2]ς

1
0 + [rv1 − l3 − v1]ς

1
+1 − l4ς1

2 − l5ς1
3 − l6ς1

4 = r[v1ς0
−1 + v2ς0

0 + v1ς0
1] + g1

and

[rv1 − l3 − v1]ς
1
n−1 + [rv2 + l2 − v2]ς

1
n + [rv1 − l1 − v1]ς

1
n+1 − l6ς1

n−4 − l5ς1
n−3 − l4ς1

n−2 = r[v1ς0
−1 + v2ς0

0 + v1ς0
1] + g1,

using IC, ě0 = 0:

[rv2 + l2 − v2]ς
1
0 = −[rv1 − l1 − v1]ς

1
−1 − [rv1 − l3 − v1]ς

1
+1 + l4ς1

2 + l5ς1
3 + l6ς1

4 +
1
h2 κ1

0

and

[rv2 + l2 − v2]ς
1
n = −[rv1 − l3 − v1]ς

1
n−1 − [rv1 − l1 − v1]ς

1
n+1 + l6ς1

n−4 + l5ς1
n−3 + l4ς1

n−2 +
1
h2 κ1

n,

taking absolute values of ς1
0 and κ1

0, we have

ě1
0 ≤ 6ch4

h2r(2 + ϱ)− 9ϱ − h2(2 + ϱ) + 42
,

also for j = n

ě1
n ≤ 6ch4

h2r(2 + ϱ)− 9ϱ − h2(2 + ϱ) + 42
.

Using BCs, we conclude that

ě1
−1 ≤ c1h2, ě1

n+1 ≤ c1h2. (43)

Hence,
ě1 ≤ c1h2, (44)

where c1 is independent of h.
Using induction procedure on m, suppose that ěy

j ≤ cyh2 for y = 1, 2, . . . , m.
Let c = max{cy : 0 ≤ y ≤ m}. Then, the Equation (40) becomes

[rv1 − l8 − v1]ς
m+1
j−1 + [rv2 + l9 − v2]ς

m+1
j + [rv1 − l8 − v1]ς

m+1
j+1 − l7ςm+1

j−2 − l7ςm+1
j+2

= rξ0[v1ςm
j−1 + v2ςm

j + v1ςm
j+1]− r[ξ1(v1(ς

m
j−1 − ςm−1

j−1 ) + v2(ς
m
j − ςm−1

j ) + v1(ς
m
j+1 − ςm−1

j+1 ))

+ξ2(v1(ς
m−1
j−1 − ςm−2

j−1 ) + v2(ς
m−1
j − ςm−2

j ) + v1(ς
m−1
j+1 − ςm−2

j+1 )) + . . . + ξm(v1(ς
1
j−1 − ς0

j−1)

+v2(ς
1
j − ς0

j ) + v1(ς
1
j+1 − ς0

j+1))] + gm+1,
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taking absolute values of ςm
j and κm

j , we obtain

ěm+1
j ≤ 6ch2

h2r(2 + ϱ) + 4ϱ − h2(2 + ϱ) + 16

(
r

m

∑
s=0

(ξs − ξs+1)ch2 + ch2
)

,

also from BCs:
ěm+1

j ≤ ch2.

Thus, ∀m, we have
ěm+1

j ≤ ch2. (45)

From above equation and Lemma 2, we have

Q̃(p, t)− Q(p, t) =
n+1

∑
j=−1

(ďj(t)− ηj(t))Cj(p, ϱ).

Taking the norm, we obtain

∥q(p, t)− Q̃(p, t)∥∞ ≤ 1.75ch2.

Using above inequality and Equation (45), we achieve

∥q(p, t)− Q̃(p, t)∥∞ + ∥Q̃(p, t)− Q(p, t)∥∞ ≤ c0h4 + 1.75ch2 = Φh2,

where Φ = c0h2 + 1.75c.
Equation (14) and previous theorem show that the proposed method converges, i.e.,

∥q(p, t)− Q(p, t))∥∞ ≤ Φh2 + δ(△t)2−γ,

where Φ and δ are constants.

7. Numerical Results

Two numerical examples are demonstrated for TFACE to examine the efficiency of
proposed scheme. To test the scheme, the error norms L2, L∞ and relative error are used.
These are defined as:

L2 =

√√√√h
n

∑
j=0

|Q(pj, t)− q(pj, t)|2, L∞ = max
0≤j≤n

|Q(pj, t)− q(pj, t)|

and

Relative error =
∣∣∣∣Q(pj, t)− q(pj, t)

q(pj, t)

∣∣∣∣.
All the calculations are performed with the help of Mathematica 9.0 software.

Problem 1. Let the TFACE

∂γq(p, t)
∂tγ

− ∂2q(p, t)
∂p2 + (q(p, t))3 − q(p, t) = ν(p, t), a ≤ p ≤ b, 0 ≤ t ≤ T,

where ν(p, t) = (γ + 1)(p − 1)ptΓ(1 + γ) + (p2 − p)3t3+3γ − (p2 − p + 2)t1+γ.

We can obtain IC and BCs from the exact solution (p2 − p)t1+γ. The maximum
absolute error is demonstrated in Tables 1 and 2 for different values of p by taking γ = 7

10 ,
9

10 , n = 100, p ∈ [0, 1], ∆t = 1
1000 and t = 1. In Table 3, L2 and L∞ norms are expounded

for γ = 2
10 , 5

10 , 8
10 for different values of t. Figure 1 represents the physical behavior of

exact and approximate results against various values of time for γ = 4
10 , n = 60, ∆t = 1

1000
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and p ∈ [−1, 2]. The 3D graphical representation for exact and numerical solutions when
n = 80, t = 2

10 , γ = 6
10 and ∆t = 1

1000 is shown in Figure 2. True and numerical solutions
for distinct values of γ are exhibited in Figure 3. A comparison of three-dimensional graphs
for n = 100, t = 2

10 , γ = 4
10 and ∆t = 1

100 is presented in Figure 4.

Table 1. Absolute error at t = 1 whereas γ = 7
10 , ∆t = 1

1000 and n = 100 for Problem 1 using proposed
scheme.

p/t → 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

1
10 7.7669 × 10−7 6.8604 × 10−7 6.2886 × 10−7 6.0350 × 10−7 6.1561 × 10−7 6.7886 × 10−7 8.1346 × 10−7 1.0454 × 10−6 1.4058 × 10−6

2
10 1.4691 × 10−6 1.2984 × 10−6 1.1911 × 10−6 1.1453 × 10−6 1.1731 × 10−6 1.3017 × 10−6 1.5715 × 10−6 2.0338 × 10−6 2.7504 × 10−6

3
10 2.0109 × 10−6 1.7783 × 10−6 1.6327 × 10−6 1.5735 × 10−6 1.6189 × 10−6 1.8089 × 10−6 2.2017 × 10−6 2.8714 × 10−6 3.9063 × 10−6

4
10 2.3548 × 10−6 2.0833 × 10−6 1.9139 × 10−6 1.8477 × 10−6 1.9075 × 10−6 2.1424 × 10−6 2.6234 × 10−6 3.4402 × 10−6 4.7002 × 10−6

5
10 2.4726 × 10−6 2.1878 × 10−6 2.0105 × 10−6 1.9421 × 10−6 2.0074 × 10−6 2.2589 × 10−6 2.7720 × 10−6 3.6424 × 10−6 4.9841 × 10−6

6
10 2.3548 × 10−6 2.0833 × 10−6 1.9139 × 10−6 1.8477 × 10−6 1.9075 × 10−6 2.1424 × 10−6 2.6234 × 10−6 3.4402 × 10−6 4.7002 × 10−6

7
10 2.0109 × 10−6 1.7783 × 10−6 1.6327 × 10−6 1.5735 × 10−6 1.6189 × 10−6 1.8089 × 10−6 2.2017 × 10−6 2.8714 × 10−6 3.9063 × 10−6

8
10 1.4691 × 10−6 1.2984 × 10−6 1.1911 × 10−6 1.1453 × 10−6 1.1731 × 10−6 1.3017 × 10−6 1.5715 × 10−6 2.0338 × 10−6 2.7504 × 10−6

9
10 7.7669 × 10−7 6.8604 × 10−7 6.2886 × 10−7 6.0350 × 10−7 6.1561 × 10−7 6.7886 × 10−7 8.1346 × 10−7 1.0454 × 10−6 1.4057 × 10−6

Table 2. Absolute error at t = 1 whereas γ = 9
10 , ∆t = 1

1000 and n = 100 for Problem 1 using proposed
technique.

p/t → 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

1
10 3.0507 × 10−6 3.5748 × 10−6 3.6734 × 10−6 3.6690 × 10−6 3.6545 × 10−6 3.6715 × 10−6 3.7543 × 10−6 3.9420 × 10−6 4.2838 × 10−6

2
10 5.7631 × 10−6 6.7627 × 10−6 6.9522 × 10−6 6.9461 × 10−6 6.9223 × 10−6 6.9623 × 10−6 7.1331 × 10−6 7.5125 × 10−6 8.1981 × 10−6

3
10 7.8782 × 10−6 9.2577 × 10−6 9.5210 × 10−6 9.5159 × 10−6 9.4894 × 10−6 9.5559 × 10−6 9.8119 × 10−6 1.0369 × 10−5 1.1368 × 10−5

4
10 9.2171 × 10−6 1.0841 × 10−5 1.1153 × 10−5 1.1150 × 10−5 1.1124 × 10−5 1.1213 × 10−5 1.1532 × 10−5 1.2218 × 10−5 1.3442 × 10−5

5
10 9.6748 × 10−6 1.1384 × 10−5 1.1713 × 10−5 1.1710 × 10−5 1.1685 × 10−5 1.1782 × 10−5 1.2125 × 10−5 1.2859 × 10−5 1.4164 × 10−5

6
10 9.2171 × 10−6 1.0841 × 10−5 1.1153 × 10−5 1.1150 × 10−5 1.1124 × 10−5 1.1213 × 10−5 1.1532 × 10−5 1.2218 × 10−5 1.3442 × 10−5

7
10 7.8782 × 10−6 9.2577 × 10−6 9.5210 × 10−6 9.5159 × 10−6 9.4894 × 10−6 9.5559 × 10−6 9.8191 × 10−6 1.0369 × 10−5 1.1368 × 10−5

8
10 5.7631 × 10−6 6.7627 × 10−6 6.9522 × 10−6 6.9461 × 10−6 6.9223 × 10−6 6.9623 × 10−6 7.1331 × 10−6 7.5125 × 10−6 8.1981 × 10−6

9
10 3.0507 × 10−6 3.5748 × 10−6 3.6734 × 10−6 3.6690 × 10−6 3.6545 × 10−6 3.6715 × 10−6 3.7543 × 10−6 3.9420 × 10−6 4.2838 × 10−6

t=0.1

t=0.5

t=1

t=1.5

t=2

-1.0 -0.5 0.5 1.0 1.5 2.0

1

2

3

4

5

Figure 1. Comparison of exact and numerical solutions for Problem 1, when n = 60, ∆t = 1
1000 ,

γ = 4
10 and p ∈ [−1, 2].
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Table 3. Error norms at n = 64 and ∆t = 1
1000 for Problem 1.

t
γ = 2

10 γ = 5
10 γ = 8

10

L2 L∞ L2 L∞ L2 L∞

2
10 5.3732 × 10−8 7.7949 × 10−8 2.5749 × 10−7 3.6346 × 10−7 3.6244 × 10−6 2.1065 × 10−6

4
10 2.8559 × 10−7 4.1604 × 10−7 3.1042 × 10−7 4.4471 × 10−7 3.3835 × 10−6 4.7715 × 10−6

6
10 8.1687 × 10−7 1.1901 × 10−6 7.2269 × 10−7 1.0486 × 10−6 3.4561 × 10−6 4.8922 × 10−6

8
10 1.7279 × 10−6 2.5170 × 10−6 1.7500 × 10−6 2.5487 × 10−6 4.2860 × 10−6 6.1185 × 10−6

1.0 3.0838 × 10−6 4.4917 × 10−6 3.7141 × 10−6 5.4136 × 10−6 6.5905 × 10−6 9.4974 × 10−6

(a) (b)

Figure 2. Three-dimensional graphs for n = 80, γ = 6
10 , t = 2

10 and ∆t = 1
1000 of Problem 1. (a) Exact

solution. (b) Numerical solution.

γ = 0.1

γ = 0.3

Υ = 0.5

γ = 0.7

Υ = 0.9

0.2 0.4 0.6 0.8 1.0

-0.08

-0.06

-0.04

-0.02

Figure 3. True and approximate solutions for Problem 1, when n = 20, t = 4
10 and p ∈ [0, 1] for

different values of γ.

(a) (b)

Figure 4. 3D graphs for Problem 1, when n = 100, γ = 4
10 , t = 2

10 and p ∈ [−4, 5]. (a) Exact solution.
(b) Numerical solution.
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Problem 2. Consider the TFACE

∂γq(p, t)
∂tγ

− ∂2q(p, t)
∂p2 + (q(p, t))3 − q(p, t) = ν(p, t), a ≤ p ≤ b, 0 ≤ t ≤ T.

The source term ν(p, t) is given as ν(p, t) = p(p2 − 1)3 pt2−γE1,3−γ(t) + 6(7p4 − 10p2 +

3)pt2E1,3(t) + 1
2 q(p, t)[q(p, t)− 1][2q(p, t)− 1], where Eε,υ(ω) is the Mittag–Leffler function

and is defined as:

Eε,υ(ω) =
∞

∑
k=0

ωk

Γ(εk + γ)
.

We can derive IC and BCs from the exact solution p(1− p2)t2E1,3(t). Table 4 represents
contrast of the absolute error of proposed scheme with RCBS [59] for γ = 5

10 , n = 10, t = 1
10

and p ∈ [0, 1]. L2 norm is demonstrated in Table 5 for distinct values of γ and t for n = 16
and p ∈ [−1, 1]. The exact and computational solutions are presented graphically in
Figure 5 for n = 100, ∆t = 1

1000 , γ = 6
10 and p ∈ [−1, 1]. Three-dimensional plot of exact

and numerical solutions is shown in Figure 6.

t=0.5

t=1

t=1.5

t=2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 5. True and numerical solutions for Problem 2 whereas n = 100, γ = 6
10 and p ∈ [−1, 1].

(a) (b)

Figure 6. 3D representation of Problem 2, when n = 16, γ = 8
10 , ∆t = 1

1000 , t = 1 and p ∈ [0, 1].
(a) Exact solution. (b) Numerical solution.
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Table 4. Absolute error at t = 1
10 with γ = 5

10 , n = 10, ∆t = 1
1000 and p ∈ [0, 1] for Problem 2.

p
Approximate Solution Error

Exact Solution RCBS [59] Proposed Method RCBS [59] Proposed Method Relative Error

1
10 0.0005017 0.0005368 0.0005305 3.511 × 10−5 2.884 × 10−5 0.0574846

2
10 0.0009149 0.0009807 0.0009686 6.575 × 10−5 5.364 × 10−5 0.0586294

3
10 0.0011690 0.0012574 0.0012401 8.838 × 10−5 7.119 × 10−5 0.0608982

4
10 0.0012259 0.0013269 0.0013054 1.010 × 10−4 7.949 × 10−5 0.0648422

5
10 0.0010907 0.0011941 0.0011691 1.034 × 10−4 7.838 × 10−5 0.0718621

6
10 0.0008133 0.0009103 0.0008824 9.700 × 10−5 6.916 × 10−5 0.0850363

7
10 0.0004801 0.0005638 0.0005344 8.364 × 10−5 5.429 × 10−5 0.1130806

8
10 0.0001930 0.0002574 0.0002295 6.448 × 10−5 3.657 × 10−5 0.1894818

9
10 0.0000319 0.0000702 0.0000501 3.827 × 10−5 1.819 × 10−5 0.5702194

Table 5. L2 norm for Problem 2 whereas n = 16, ∆t = 1
100 and p ∈ [−1, 1].

L2 Error Norm

t γ = 2
10 γ = 4

10 γ = 6
10 γ = 8

10

2
10 4.2131 × 10−4 3.8615 × 10−4 3.4429 × 10−4 3.0779 × 10−4

4
10 1.8453 × 10−3 1.7443 × 10−3 1.6251 × 10−3 1.5002 × 10−3

6
10 4.5702 × 10−3 4.3721 × 10−3 4.1522 × 10−3 3.9264 × 10−3

8
10 9.2039 × 10−3 8.8084 × 10−3 8.4023 × 10−3 8.0129 × 10−3

1.0 1.7218 × 10−2 1.6323 × 10−2 1.5449 × 10−2 1.4654 × 10−2

8. Conclusions

In this paper, the TFACE was solved by employing new ExCBS functions and a fully
implicit finite difference scheme. The proposed technique was inspected, which proved
the scheme is unconditionally stable. The order of convergence that we have calculated is
Φh2 + δ(△t)2−γ. This scheme was tested with two different problems and results proved
the accuracy of this technique. In the future, the ExCBS approach may be used for solving
variable order-fractional, space-fractional and higher dimensional FPDEs. Furthermore, it
is incredibly helpful for numerically solving various FPDEs with other fractional operators.
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