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Abstract: This paper examines the performance of two popular GPU programming platforms, Numba
and CuPy, for Monte Carlo radiation transport calculations. We conducted tests involving random
number generation and one-dimensional Monte Carlo radiation transport in plane-parallel geometry
on three GPU cards: NVIDIA Tesla A100, Tesla V100, and GeForce RTX3080. We compared Numba
and CuPy to each other and our CUDA C implementation. The results show that CUDA C, as
expected, has the fastest performance and highest energy efficiency, while Numba offers comparable
performance when data movement is minimal. While CuPy offers ease of implementation, it performs
slower for compute-heavy tasks.
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1. Introduction

GPU accelerators have emerged as a powerful tool in many areas of science and
engineering. They are used for accelerating not only traditional high-performance comput-
ing (HPC) applications (e.g., [1,2]) but also for the training and application of AI models
(e.g., [3,4]). Many supercomputers in the top 500 list (https://www.top500.org (accessed
on 15 November 2023)) obtain most of their computing power from these accelerators (e.g.,
see [5] for a recent review). Examples include the Aurora, Frontier, and Leonardo super-
computers that use Intel Max, AMD Instinct MI250X, and Nvidia A100 GPUs, respectively.

There are several programming platforms developed for harnessing the power of
GPUs, ranging from low- to high-level paradigms. The low-level solutions offer the
capability to optimize code for a given family of accelerators at the expense of portability.
Popular examples are Nvidia CUDA [6] and the AMD ROCm HIP [7]. The high-level
platforms offer ease of implementation and portability at the expense of limited options
for optimization for specific hardware. Examples include OpenMP [8], OpenACC [9],
OpenCL [10], SYCL [11], Alpaka [12], Numba [13,14], CuPy [15–17], Legate Numpy [18],
Kokkos [19], RAJA [20], and OneAPI [21].

Many studies have explored how well GPUs perform in various applications [22–25]. These
investigations compare the performance and highlight the strength and weaknesses of popular
programming platforms such as CUDA C [26–28], CUDA Fortran [29–31], OpenCL [32–34],
OpenACC [35,36], OpenMP [37,38] and Python-based compilers and libraries like Numba,
CuPy, and Python CUDA [39–44]. Despite these efforts, a quest for a paradigm that
offers simplicity of implementation and portability in combination with high performance
remains one of the main goals of scientific computing (e.g., [45–48]).

Computation 2024, 12, 61. https://doi.org/10.3390/computation12030061 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12030061
https://doi.org/10.3390/computation12030061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-3540-4446
https://orcid.org/0009-0008-2164-934X
https://orcid.org/0000-0002-4601-7065
https://orcid.org/0000-0001-5481-7727
https://www.top500.org
https://doi.org/10.3390/computation12030061
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12030061?type=check_update&version=1


Computation 2024, 12, 61 2 of 13

Radiation transport is used in many areas of science and engineering, ranging from
astronomy to nuclear physics (e.g., [49]). In the most general case, it represents a seven-
dimensional problem (three dimensions for space, two dimensions for direction, one for
energy, and one for time) [50]. This makes it particularly expensive to solve. One popular
method for solving the equation is the Monte Carlo method (MC). This method directly
simulates the behavior of radiation using random numbers. A group of radiation particles
is modeled as an MC particle. MC radiative transfer (MCRT) methods are relatively easy to
implement, especially when complicated physics and geometries are involved. The main
drawback of the method is its immense computational cost [49].

It is possible to accelerate MCRT calculations using GPUs [51–56]. Since the MCRT
utilizes a large number of MC particles that are evolved independently from each other (at
least, with a timestep), the many-core architecture can evolve particles in parallel, leading
to a significant speed-up compared to serial calculations [57–59]. There have been many
studies and applications of GPU-accelerated MCRT [60–63]. The generation of random
numbers on GPUs was investigated by, e.g., [64–66]. Bossler and Valdez [67] compared
Kokkos and CUDA implementations of the main MCRT kernels. Hamilton et al. [68]
compared history- and event-based MCRT algorithms. The domain decomposition paral-
lelization techniques were explored by, e.g., [69,70]. Bleile et al. [71] explored the so-called
“thin-threads” approach to history-based MCRT that achieves lighter memory usage, lead-
ing to faster performance. Humphrey et al. [72] implemented a reverse MC ray tracing
approach and scaled it to 16,384 GPUs on the Titan supercomputer. Silvestri and Pecnik [73]
ported the reciprocal MC algorithm to model radiative heat transfer in turbulent flows
using the CUDA programming language, finding a significant speed-up compared to the
CPU implementation. Heymann and Siebenmorgen [74] applied the GPU-based MC dust
radiative method to active galactic nuclei. Ramon et al. [75] modeled radiation transport in
ocean–atmosphere systems with the GPU-accelerated MC code. Their core code is written
in CUDA, while the user interface is written in Python CUDA. Lee et al. [76] developed the
GPU-accelerated code gCMCRT using CUDA Fortran to perform 3D modeling of exoplanet
atmospheres. Several groups explored noise reduction in MCRT using machine learning
techniques [77–80].

In this work, in the context of MC radiation transport, we assess the performance of
two popular platforms that allow GPU computing from the Python programming language:
Numba [14] and CuPy [16,17]. Both Numba and CuPy are examples of high-level popular
platforms (e.g., [39,81]). Their main advantage is their simplicity. Numba is a just-in-
time compiler for Python and enables faster performance by translating Python functions
into optimized machine code, which is often competitive with manually optimized C
code [14]. CuPy provides a simple NumPy-like interface with GPU acceleration [16,17]. Its
compatibility with existing Python libraries and support for a wide range of mathematical
operations have made it a popular choice for scientific computing tasks (e.g., [82,83]).

There are a number of works that study these platforms in various contexts. Di
Domenico et al. [41] observed Numba achieving performance levels comparable to CUDA-
based C++ using NAS parallel benchmark kernels. Oden [39] compared Numba with
CUDA C, revealing the slower performance of Numba by 50–85% for compute-intensive
benchmarks. Peng Xu et al. [84] compared Numba and CuPy in terms of data transfer
speed and analyzed the influence of data type on the performance. They found that
Numba outperforms CuPy for heavy data transfers, and single precision exhibits a 20%
faster performance than double precision. Marowka [43] assessed the performance of
Numba in matrix multiplication application. Dogaru R. and Dogaru I. [85] evaluated
Numba in reaction–diffusion cellular non-linear networks. Azizi [86] utilized Numba
and CuPy, among other Python-based platforms, to optimize expectation-maximization
algorithms, yielding promising results. These related works set the foundations for our
focused exploration of Numba and CuPy in the context of MCRT.

Our main aim was to study the potential of Numba and CuPy platforms for MCRT
calculations. We performed a series of idealized test problems involving random number
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generation and the one-dimensional MCRT problem in a purely absorbing medium. We
performed a detailed analysis of the execution times for three different cards and single- and
double-precision calculations. As a benchmark, we compared the results to computations
implemented in CUDA C. To the best of our knowledge, there is no existing evaluation
of the potential of Numba and CuPy specifically for MCRT problems. The novelty of our
work lies in contributing valuable insights into the performance and suitability of these
platforms for MCRT simulations.

This paper is organized as follows. In Section 2, we describe our methodology. In
Section 3, we present our results. We discuss our findings in Section 4. Finally, in Section 5,
we summarize the results and provide conclusions.

2. Methodology

We evaluated the performance of CuPy and Numba for the MC radiation transport
problem. We considered two different idealized test problems. In the first problem, we
generated pseudo-random numbers (PRNs). We stored the generated PRNs in the global
memory, mimicking a scenario that involved heavy memory usage. In the second test
problem, we considered a one-dimensional MC transport problem in a purely absorbing
medium in a plane parallel geometry. This represented a compute-intensive test as it
performed many arithmetic operations (e.g., logarithm, division, multiplication, etc.). The
generated PRNs are immediately consumed within the kernel without storing them in the
global memory. We compared our results to our implementation in CUDA C. Note that
the 1D MCRT test problem was implemented with 15, 26, and 37 lines of code in CuPy,
Numba, and CUDA C, respectively, reflecting the ease of implementation in CuPy and
Numba relative to CUDA C [41].

We made the computations as similar as possible across the three platforms to ensure
a fair comparison. We used the same seed and the same PRNG type Xorshift. More specif-
ically, we used the XORWOW generator from the cuRAND library for the CuPy and CUDA C
tests. Since Numba does not support the cuRAND library, we used its Xoroshiro128p PRNG,
which belongs to the same Xorshift family. This ensured that all computing platforms
were using similar algorithms, facilitating a fair performance comparison. Additionally,
we tested the performance of these two generator algorithms and we found no significant
difference between them. Therefore, the choice of PRNGs from the Xorshift family aligned
to ensure fairness and comparability in the evaluation of PRN generation performance
between CuPy, Numba, and CUDA C. Additionally, we ensured that our experiments
utilized consistent values for constants and coefficients across all test problems. This guar-
anteed that any observed differences in performance could be attributed to the platforms
themselves rather than variations in PRN generation. For Numba and CUDA C, we took
the further step of applying a consistent configuration of grid size, specifying the number of
blocks and threads, to efficiently map computations onto the GPU. However, it is important
to note that CuPy used its default configuration, reflecting the inherent differences in how
each platform manages its parallel computing resources.

Since Numba and CuPy used a just-in-time compilation process, functions were
compiled at runtime when they were invoked. Consequently, the first invocation of a
function included the compilation step, which can be considerably slower. To avoid this
potential bottleneck, we excluded the timing of the first iteration. Additionally, we excluded
the PRNG state setup time of CUDA C and CuPy from the GPU kernel performance time,
since Numba’s PRNG state setup took place on the host side. Also, unless specified
explicitly, the Numba and CuPy platforms assigned double-precision types by default for
all floating-point variables and constants. In this regard, we explicitly specified a type for
single-precision calculations [39,81].

To assess the performance, we employed the profiling tools nvprof and Nsight
Systems. We utilized versions 12.2.0, 0.58.1, 11.8.0, and 3.10.6 of CuPy, Numba, CUDA C,
and Python, respectively. We performed 100 measurements for each method and recorded
the average value to obtain reliable results. To measure power consumption, we used the
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tool nvidia-smi. We ran each of our tests for 20 min and recorded the power consump-
tion and GPU utilization parameters every 5 s. Then, we took the average value from
these measurements.

We considered three distinct GPU cards: the A100 (in a DGX-A100 server), V100 (in
a DGX-2 server), and RTX3080 card. We selected the A100 GPU because it is a relatively
recent-generation Nvidia card for AI and HPC and our group had access to it. The V100
GPU is a predecessor to A100. Lastly, the RTX3080 GPU is an example of a high-end card
in consumer space (see Table 1 for key specifications). These cards represent examples of
devices that are currently in active use by the scientific community (At the time of preparing
this work, we had no access to the latest-generation Nvidia H100 card. Similarly, we have
no access to AMD or Intel cards. However, our comparison between A100, V100, and
RTX3080 that we present below suggests that the qualitative differences between the three
software platforms that we found should remain valid irrespective of the cards used).

Table 1. Technical specifications of GPU cards used in this work.

GPU Card CUDA Cores Base Clock FP32 (Float) FP64 (Double) Bandwidth
[MHz] [TFLOPS] [TFLOPS] [GB/s]

A100 6912 765 19.49 9.746 1555
V100 5120 1230 14.13 7.066 897
RTX3080 8704 1440 29.77 0.465 760

Unless otherwise noted, all results presented in Section 3 were obtained using the A100
GPU card. However, for the purpose of comparison, we included the results for the V100
and RTX3080 GPUs in Section 3.3. All computations were performed in single precision,
except in Section 3.1, where we compared single- and double-precision calculations.

3. Results

Figure 1 (left panel) shows a performance comparison of CuPy, Numba, and CUDA
C for the PRN generation problem. The x-axis shows the number of generated PRNs.
The solid lines represent the total execution time from the beginning until the end of the
computation, including computations on the host and GPU side. The dashed lines show
the GPU kernel execution time, which only measures the time on the GPU. In terms of the
total execution time, all platforms performed at the same level for N ≤ 106. For larger N,
Numba demonstrated slower performance than CuPy and CUDA C, e.g., by 1.87x and
3.22x at N = 2 × 109, respectively. CuPy performed similarly compared to CUDA C up to
N = 108. However, for a larger N, CUDA C outperformed CuPy by 1.72x at N = 2 × 109.
When comparing the performance of GPU kernels, CUDA C was faster than Numba and
CuPy by 1.21x and 1.67x even at N = 104. The performance gap widened with increasing
N and reached about 22x and 7.8x compared to Numba and CuPy for N = 2 × 109. These
findings are in line with those of previous studies (e.g., [39,41]).

Figure 1 (right panel) shows a performance comparison of CuPy, Numba, and CUDA
C for the 1D MCRT problem. In terms of the total execution time (solid lines), for loads
N < 108, CuPy outperformed Numba and CUDA C. At N = 106, the difference in perfor-
mance reached ∼4.72x and ∼3.06x, respectively. As the workload increased (N > 108),
CUDA C became faster. For N = 2 × 109, CUDA C was faster by 5.78x and 5.24x as
compared to Numba and CuPy. When comparing GPU kernels (dashed lines), CuPy was
slower than both Numba and CUDA C. Specifically, it was already 8.5 times slower than
CUDA C for N = 104, and the difference reached 14.2x for N = 2 × 109. However, Numba
demonstrated competitive performance with CUDA C. The slowdown was only 1.53x at
N = 2 × 109. We found that this was mainly caused by two factors: (1) the difference in
PRN algorithms used in these two platforms (cf. Section 2); (2) the log function is executed
in double precision (cf. Section 3.3). If we used the same PRNG, the difference between
Numba and CUDA C became negligible for this test.
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Figure 1. Execution time as a function of the number of PRNs/particles for CuPy, Numba, and CUDA
C using the A100 GPU card. The left panel represents the PRN generation test problem, while the
right panel is for the 1D MCRT test. The solid lines show the total execution time and the dashed
lines correspond to the GPU kernel times.

The similar performances of Numba and CUDA C for the 1D MCRT problem and their
drastic differences in the PRN generation problem point to the reason behind this behavior.
In the former problem, where Numba performed relatively slowly, the PRN values are
stored in the GPU global memory. In the 1D MCRT problem, PRNs are generated and
then used locally. Thus, Numba’s performance was fast (slow) when small (large) data
movement was involved [39].

The faster execution time for lower loads (up to N ≤ 108) exhibited by CuPy in the
1D MCRT test can be attributed to the utilization of memory spaces by reserving memory
blocks [15]. This reduces the overheads associated with memory allocation and CPU/GPU
synchronization due to the “caching” of allocated memory blocks. Since the 1D MCRT
problem involves numerous memory allocations, CuPy achieved better overall performance
compared to Numba and CUDA C for N ≤ 108. However, in GPU kernel time, CuPy’s
performance was slower due to the temporary storing of the calculated values in the global
memory after each calculation.

3.1. Impact of Precision

In this section, we study the impact of precision by performing computations in single
and double precision. For a similar investigation in the context of the finite-difference
approach to Burgers’ equation, see [81]. Extensive tests of Numba and CUDA C for matrix–
matrix multiplication, parallel reduction, and 3D stencil application in single and double
precisions can be found in [39].

Figure 2 (left panel) shows the GPU kernel execution time for the PRN generation
problem using CuPy, Numba, and CUDA C for single and double precisions, as a function
of N. As expected, the CUDA C single-precision calculations were faster than the double-
precision calculations. The performance difference reached 1.17x at N = 106. As N
increased, the gap widened, reaching 1.77x at N = 2 × 109. These results are in line
with those of previous studies on the impact of precision for CUDA C [87,88]. The same
performance pattern was observed in CuPy. This was expected behavior since its PRN
generation is based on CUDA’s cuRAND library [15,89].

For Numba, the single precision was slower for N ≤ 6 × 107 and faster for larger N by
about ∼12.5%. The reason for this behavior is a combination of two competing factors. On
the one hand, Numba generates PRNs in double precision by default (this can be established
by analyzing the Nsight Systems profiling tool and examining the PTX assembly code).
Conversion to single precision is then performed, introducing an additional overhead. On
the other hand, it is faster to write single-precision values to the global memory than double-
precision variables. For this reason, single-precision calculations become competitive with
(and faster than) double-precision calculations for large N.

Figure 2 (right panel) shows the execution time of the GPU kernel for the single- and
double-precision 1D MCRT test problem as a function of N. For CuPy, we observed a
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similar performance in both precisions up to N = 106. For larger N, the performance
difference only reached 1.43x at N = 109. This small difference is explained by excessive
data movement to/from the global memory for temporary storage after each calculation.

Figure 2. Execution times of GPU kernels as a function of the number of PRNs/particles for CuPy,
Numba, and CUDA C using the A100 GPU card. The left panel represents the PRN generation
test problem, while the right panel is for the 1D MCRT test problem. The solid lines correspond to
single-precision calculations and the dashed lines show double-precision results.

In the case of Numba, the double precision was slower than the single precision for
all values of N. Numba converts the double-precision PRN to a single-precision PRN,
but unlike CuPy, it does this operation without temporarily storing the data in the global
memory after each calculation, which is more efficient. For example, for N = 104, the
difference between the two precisions was 1.08x, while for N = 2 × 109, the difference rose
to 2.74x.

3.2. Energy Consumption

Table 2 shows the average energy spent to generate a single PRN (or to track a single
particle in the 1D MCRT problem), the power consumption, and GPU utilization. These
results were obtained for N = 109 for the A100 card. We can see that Numba was more
energy efficient than CuPy. However, CUDA C was more efficient than both Numba and
CuPy. For the PRN generation test, CUDA C spent less energy per PRN than Numba and
CuPy by a factor of 2.1 and 2.4, respectively. In the case of 1D MCRT, CUDA C spent less
energy by approximately 3.7x than Numba and 5.1x than CuPy. CUDA C is energy efficient
compared to Numba and CuPy due to its optimization for the GPU architecture and the
efficient utilization of parallel computing capabilities. The optimized utilization of GPU
resources minimizes idle times, allowing CUDA C to accomplish more computations per
unit of energy. Unlike CUDA C, Numba and CuPy, being just-in-time frameworks for
Python, introduce additional overheads and limitations that impact energy efficiency.

Table 2. Average energy per particle, power usage, and GPU utilization. The values were obtained
by generating 109 PRNs for the PRN generation test and by tracking 109 particles for the 1D MCRT
test using the A100 GPU card. See Section 2 for details of the measurement method.

PRN Generation 1D MCRT

Energy per PRN Power Util Energy per Particle Power Util
[nanojoule] [Watt] [%] [nanojoule] [Watt] [%]

CuPy 2.82 206 100 22.1 221 100
Numba 2.46 81 100 15.9 68 10
CUDA C 1.17 76 100 4.34 125 46

In terms of power consumption, CUDA C used 7% less power than Numba and 171%
less power than CuPy in the PRN generation test. However, for the 1D MCRT problem (see
Table 2), Numba used less power by 84% and 225% than CUDA C and CuPy, respectively.
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This is attributed to the fact that Numba utilizes the GPU to a lesser extent than CUDA C.
For Numba, the PRNG state setup takes place on the host CPU, which is then transferred
to the GPU. The wait times associated with this transfer limit the GPU utilization. The high
power consumption of CuPy can be explained by excessive data movement [90] due to
automatic memory management [15]. The power consumption variations among CuPy,
Numba, and CUDA C have implications for practical applications. CUDA C’s emphasis
on GPU parallelization and optimization generally leads to higher computational perfor-
mance and energy efficiency, making it well-suited for applications with time-sensitive
results and power constraints [91,92]. Numba and CuPy, while providing relatively easy
implementation of GPU applications, introduce overheads that impact performance, and
their scalability and energy efficiency are comparatively lower.

3.3. Comparison of GPU Cards

In this section, we compare the performance of three GPU cards using the 1D MCRT
test problem. For a similar comparison in the context of PRN generation in CUDA C, see,
e.g., [93].

Figure 3 (left panel) shows the execution time for Numba. The PTX assembly code of
Numba reveals that, despite explicit specification of all variables and constants as single-
precision type, the log function is executed in double precision. This introduces overheads
for the RTX3080 GPU card, which can perform double-precision operations 64 times slower
than in single precision. For the A100 and V100, the ratio is 1:2 (see Table 1). Consequently,
Numba was far slower on RTX3080 than on A100 and V100. The performance gap reached
∼6.7x for N = 2 × 109 particles.

Figure 3. Execution time of GPU kernel as a function of the number of particles for Numba and CuPy
using three GPU cards for the 1D MCRT test problem. The left panel shows the results for Numba,
while the right panel is for CuPy.

Figure 3 (right panel) shows the results for CuPy. For N < 3 × 106, CuPy on RTX3080
and V100 performed faster than on A100. However, at N ≥ 3 × 106, A100 was faster
than V100 and RTX3080, reaching speed-ups of 1.49x and 1.72x for N = 108, respectively.
The slower performance of CuPy on RTX3080 for N ≥ 3 × 106 is caused by the memory
bandwidth, which is less than on A100 and V100 by 105% and 18%, respectively. The better
performance of the A100 compared to the V100 at N ≥ 3 × 106 can also be attributed to the
higher memory bandwidth of A100, i.e., by 73% (see Table 1). In the context of CuPy, this
factor significantly contributes to the overall performance.

Table 3 shows the power consumption of three GPU cards for the PRN generation
and 1D MCRT test problems. The A100 GPU card used less power than V100, which, in
turn, used less power than RTX3080. For example, in CUDA C, A100 consumed less power
than V100 and RTX3080 by an average of 26.8% and 64.7%, respectively. In the context
of Numba, A100 was more efficient by an average of 52% than V100 and 105.2% than
RTX3080. For CuPy, A100 used less power by an average of 3% and 38.3% than V100 and
RTX3080, respectively.
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Table 3. Power consumption while generating 109 PRNs in the PRN generation problem and tracking
109 particles in the 1D MCRT problem for the A100, V100, and RTX3080 GPU cards.

PRN Generation [Watt] 1D MCRT [Watt]

A100 V100 RTX3080 A100 V100 RTX3080

CuPy 206 211 293 221 229 297
Numba 81 145 174 68 85 133
CUDA C 76 85 129 141 200 225

4. Discussion

Our research work evaluates the performance of GPU programming platforms, specif-
ically CuPy and Numba, within the context of MCRT. By addressing two distinct test
problems and comparing outcomes with the CUDA C implementation, we highlight trade-
offs between performance and ease of implementation across these platforms. We explored
variations in performance for a comprehensive set of test problems, ranging from memory
intensive to compute intensive tasks. We also looked at the impact of the precision by
considering calculations in single and double precision (see Section 3.1 for more details).
Further evaluations involved comparing the performance of various NVIDIA GPU cards.
Conducting these comparisons helped us to gain a better understanding of how efficiently
each platform performs across different hardware configurations (see Section 3.3). The
limitations that we identify suggest avenues for future research. In addition, our findings
can serve as a guide for choosing various computational methods for more complicated
simulations covering multiple spatial dimensions and complex geometries. Our study
contributes valuable insights concerning the strengths and limitations of the GPU pro-
gramming platforms CuPy and Numba, helping researchers make decisions for optimal
performance in MCRT simulations.

5. Conclusions

We investigated the performance of two prominent GPU programming platforms,
CuPy and Numba, in the context of the Monte Carlo (MC) radiation transport problem.
We considered two idealized test problems. In the first problem, we performed random
number generation with subsequent storage of the numbers in the global memory. This
problem represented the scenario with heavy memory usage. In the second problem, we
considered a one-dimensional MC radiation transport test in a purely absorbing medium.
We compared the results to our implementation in CUDA C. We considered three different
cards: NVIDIA Telsa A100, Tesla V100, and GeForce RTX3080.

The results show that, overall, CUDA C had the fastest performance and highest
energy efficiency. However, Numba demonstrated competitive performance to CUDA
C when the data movement was small. In contrast, when data movement was heavy
(e.g., storing PRNs in the global memory), Numba was significantly slower than CUDA C.
CuPy showed better performance than Numba in the PRN generation test problem due
to its efficient memory allocation. However, for compute-heavy tasks (in the case of the
1D MCRT test problem), it lagged behind these platforms substantially. Also, it showed
less energy efficiency. The slower performance of CuPy was somewhat compensated by
the relative ease of implementation within this platform. These outcomes highlighted
the trade-offs between performance and ease of implementation across the programming
platforms considered in this work.

The main limitation of our work was that we used an idealized 1D MC radiation
transport test in a purely absorbing and static medium. Realistic calculations often take
place in multiple spatial dimensions. In general, matter can be non-static. In addition to
absorption, matter can emit and scatter radiation. Such scenarios will be considered in
future work. Moreover, other platforms that enable GPU computing within the Python
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language will also be considered. Multiple GPU configurations and GPUs from other
vendors will also be explored.
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