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Abstract: This study comprehensively analyzes the impact of the novel HybridBridge method,
developed by the authors, for generating a 3D mesh at contact points within packed beds within the
effective thermal conductivity. It compares HybridBridge with alternative methodologies, highlights
its superiority and outlines potential applications. The HybridBridge employs two independent
geometry parameters to facilitate optimal flow mapping while maintaining physically accurate
effective thermal conductivity and ensuring high mesh quality. A method is proposed to estimate the
HybridBridge radius for a defined packed bed and cap height, enabling a presimulative determination
of a suitable radius. Numerical analysis of a body-centered-cubic unit cell with varied HybridBridges
is conducted alongside previous simulations involving a simple-cubic unit cell. Additionally, a
physically based resistance model is introduced, delineating effective thermal conductivity as a
function of the HybridBridge geometry and porosity. An equation for the HybridBridge radius,
tailored to simulation parameters, is derived. Comparison with the unit cells and a randomly
packed bed reveals an acceptable average deviation between the calculated and utilized radii, thereby
streamlining and refining the implementation of the HybridBridge methodology.

Keywords: computational fluid dynamics; contact points; packed bed; effective thermal conductivity;
mesh generation; heat transfer

1. Introduction

The versatility of packed beds in the energy and process industries knows virtually no
bounds. Their remarkable ratio of surface area to volume renders them indispensable in
myriad applications, serving as separators or as chemical reactors across diverse designs,
as illustrated in [1]. Simultaneously, packed beds play pivotal roles in thermodynamic
processes such as the cooling of cement clinker or in drying processes, for example within
the natural gas storage.

Spanning from powder beds hosting dust-sized particles to pebble beds with pro-
nounced boundary effects, their size distribution encompasses a broad spectrum. From a
process engineering perspective, precision in describing transport phenomena within
packed beds is paramount. Such precision facilitates the more accurate design of ap-
paratuses and the optimization of existing processes. Consequently, packed beds have
been subject to decades of intensive study employing experimental and analytical meth-
ods. With the burgeoning advancement in microelectronics, computer-aided techniques,
particularly numerical simulations, have gained prominence in recent years.

These simulations offer a distinct advantage in visualizing heat and mass transfer
within packed beds and other complex geometries. They have the capacity to incorpo-
rate local variables that significantly influence transport processes. Various modelling
approaches, each with differing levels of complexity, find applicability in this domain.

For instance, the categorization proposed by Tsotsas [2] offers a valuable means of
differentiation. While not inherently tied to numerical methodologies, this classification

Computation 2024, 12, 89. https://doi.org/10.3390/computation12050089 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12050089
https://doi.org/10.3390/computation12050089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0009-0007-4945-5945
https://orcid.org/0009-0002-2308-6612
https://orcid.org/0009-0004-1901-9542
https://orcid.org/0000-0002-5128-5291
https://doi.org/10.3390/computation12050089
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12050089?type=check_update&version=2


Computation 2024, 12, 89 2 of 14

aids in achieving a more nuanced characterization. Tsotsas [2] delineates between homoge-
neous modelling and heterogeneous modelling. In homogeneous modelling, the fluid and
solid phases are amalgamated, enabling the description of the packed bed solely through
a characteristic transport parameter, such as the effective thermal conductivity keff. Con-
versely, heterogeneous modelling involves coupling the fluid phase of the packed bed to
the solid phase through an additional coupling parameter. In the case of heat transfer, this
coupling parameter is known as the heat transfer coefficient.

The heterogeneous methodologies mentioned above can further be categorized based
on the level of geometry resolution. When particles are not explicitly modelled in their
spatial arrangement, it is referred to as a porous media model. This approach can enhances
modelling accuracy in comparison to homogeneous methods.

In contrast, heterogeneous particle-resolved simulations, such as those based on the
finite volume method, aim to depict physical processes within packed beds with maximum
fidelity. Nevertheless, generating the computational mesh for such simulations presents
a significant challenge. This challenge stems from the contact points among particles
themselves and between particles and the enclosing reactor walls. The nature of these
points of contact can vary depending on the shapes and arrangements of the particles.
In the simplest scenario, featuring a packed bed of monodisperse spherical particles with
no consideration for particle elasticity, all contact points manifest as point contacts. Point
contacts are characterised by infinitesimally small contact areas between the spheres.

In practical applications, meshing point contacts often lead to the creation of highly
skewed cells, potentially triggering convergence issues. Alternatively, one may resort to
utilizing very small cells to address this challenge. However, this approach inevitably
inflates the number of cells within the model, consequently prolonging computation times.

In transient simulations, this extensive local refinement, coupled with adherence to
the Courant–Friedrichs–Lewy condition—which mandates smaller predefined time steps
for stability—further compounds the computation burden. This combination of factors can
significantly escalate computation times.

To circumvent these challenges, a prevalent approach involves altering the spheres
to eliminate point contact. When outlining the scientific consensus numerous approaches
for consideration can be found. One group of methods, known for their simplicity in
implementation, are the global methods, which modify the entire sphere. A widely em-
ployed technique, especially in earlier studies (e.g., [3–5]), involves reducing the sphere size,
commonly referred to as the gaps method. In contrast, the overlaps method, introduced by
Guardo et al. [6], involves enlarging the spheres to create overlaps. However, both these
global methods have drawbacks, notably their potential to induce significant alterations in
key parameters of packed beds, such as the porosity ε.

To address this limitation, local methods were developed, focusing on modifying
spheres solely in the vicinity of the contact point. Two such methods are the bridges method
introduced by Ookawara et al. [7] and the caps method proposed by Eppinger et al. [8].
In the bridges method, the spheres are connected to each other with bridges by enlarging
the contact point. Conversely, the caps method, involves removing a portion of each sphere
at the contact point, akin to cutting off a cap. These techniques are applicable not only to
spherical particles but also to non-spherical ones. For instance, Eppinger and Wehinger [9]
and Kutscherauer et al. [10] have extended the original caps method to accommodate
diverse particle geometries.

With appropriate specifications, both of the local methods presented here are well-
suited for the particle-resolved simulations of (spherical) packed beds. However, they share
a common drawback in that they may not always accurately represent the effective thermal
conductivity of the bed, or may do so only with significant additional effort.

In the caps method, the creation of an artificial fluid gap between contacting spheres
may result in an underestimation of the thermal conductivity. Conversely, the bridges
method tends to overestimate heat conduction. While this overestimation can be mit-
igated by introducing a third pseudophase as a bridge material, as demonstrated by
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Dixon et al. [11] or Wehinger et al. [12], such an approach requires substantial additional
implementation effort and is notably detached from physical reality.

To address these issues, alternative strategies have been proposed. For instance, one
can utilize very small bridges in the bridges method, as explored in [13], or significantly
reduce the gap size in the caps method, as demonstrated in [10]. However, it is important
to note that these adjustments do not offer a systematic and universally applicable solution
to the contact point problem.

Henceforth, Szambien et al. [14], introduced the so-called HybridBridge method in
their previous work. This method ingeniously amalgamates the advantages of both the
caps and bridges techniques, allowing the effective thermal conductivity of the packed
bed to remain intact and providing a reliable contact point modification. Thus, whenever
the effective thermal conductivity is dominated by the thermal conduction between the
spheres, the HybridBridge method offers an advantage over conventional local methods.

The aim of this work is to explain the theory of the HybridBridge in more detail and to
investigate the effect of the HybridBridge on the effective thermal conductivity when used
for particle-particle contact points. In addition, an initial approximate a priori approach for
the design of the HybridBridge’s geometry is proposed.

2. Materials and Methods
2.1. Theoretical Context

In principle, the effective thermal conductivity Kx of flowed-through packed beds
can be divided into two parts: one that depends on the Péclet number (in the case of heat
transfer, the following applies: Pe = Re Pr) and a non-flow-through share dominated by the
effective thermal conductivity of the non flown-through packed bed keff = f

(
kp, kf, . . .

)
.

For Kx, with x representing either axial or radial direction, the following applies [15,16]:

Kx

kf
=

keff
kf

+
Pe0

Cx
. (1)

In this equation
Pe0 = w0 ρf cp,f dp/kf (2)

is the Péclet number of the empty tube and Cx is a specific constant.
When the influence of keff predominates, the contact points between particles can exert

a significant impact on heat transfer. This scenario arises, for instance, when Pe0 values are
small, as indicated by Equation (1). Furthermore Aichlmayr and Kulacki [17], as well as
Hsu et al. [18], stated that the influence of contact points may become important when the
thermal conductivity of the particles kp is substantially greater than that of the fluid kf.

When conducting numerical investigations on a packed bed with a notable keff ensur-
ing an accurate modeling of keff becomes imperative. The innovative new HybridBridge
method has been introduced for this purpose. The rationale underlying the introduction of
the HybridBridge is best illustrated by the following example:

In this scenario we compare the standard bridges method and the conventional caps
method between two monosized particles with the radius rp. Both modifications utilize
identical radii (rb = rc). We use the predefined height of the cap hc to calculate its radius:

rc =
√

r2
p − (rp − hc)2). (3)

The radius rc is selected to be sufficiently small to ensure that the flow in the context
under consideration remains unaffected. The following assumption is made: the velocity
within the fluid gap of the cap is set to exactly zero, as illustrated in [9]. Consequently, in this
specific scenario, both methods give identical results for flow computations. However,
when it comes to heat conduction between the particles, they exhibit notably divergent
behaviour. While the bridges method tends to induce excessively high heat flows, the caps
method tends to result in disproportionately low heat conduction.
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As previously noted in the introduction, this issue can be avoided by the introduction
of a pseudo phase as a bridge or by a reduction in the size of the bridge or cap. However,
it is important to note that, due to the physical circumstances, the caps method can never
provide a perfect representation of heat conduction. This limitation stems from the nature
of surface contact.

As an alternative, it is possible to create a parallel arrangement of thermal resistances
consisting of the high thermal conductivity kp solid phase and the low thermal conductivity
kf stagnant fluid phase. This arrangement can effectively replicate the thermal resistance
exhibited by the third pseudophase or that observed in real packed beds.

By adopting the simplest symmetrical geometry and appropriate phase assignment,
the continuity of both phases can be seamlessly maintained without interruption. This
concept aligns precisely with the HybridBridge methodology we have introduced: a solid
centred cylinder encompassed by a concentric hollow fluid cylinder. Figure 1 illustrates a
comparison between conventional methods and the new HybridBridge approach.

Figure 1. Comparison of conventional contact point modification methods with the novel Hybrid-
Bridge method. The white areas represent the fluid phase, the different shades of grey represent the
solid phases. The red circles represent the circumferences of the original spheres.

In our prior research [14], we have demonstrated the meshing advantages offered by
the HybridBridge. Based on our assessments, the mesh quality closely aligns with that of
conventional caps. Additionally, significantly larger cells can be employed, and a reduced
number of cells suffices when compared to conventional bridges with an equivalent radius.
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For fitting geometrical parameters, a replication of the effective thermal conductivity
according to the Zehner–Bauer–Schlünder Model was achievable. Demonstration of real-
world applicability of the Hybrid Bridge method has been successful.

The HybridBridge thus unites the advantages of both conventional methods: the
meshing behavior of the caps method and the representation of thermal conductivity of the
bridge method.

2.2. Geometrical Description

Unlike the conventional methods presented, HybridBridge contains two independent
geometry parameters the height of the cap hc and the radius of the bridge rb, as shown
in Figure 2. This dual-parameter setup enables control over two overarching properties
of the packed bed. The initial objective is to ensure precise flow simulation by selecting
an appropriate cap height hc. Subsequently, achieving the desired effective thermal con-
ductivity becomes feasible by selecting a suitable bridge radius rb. Values for estimating
the order of magnitude for hc of the HybridBridge can be found in the literature [9,10] but
must be adjusted to the individual packed bed and flow regime. An option to calculate the
corresponding radius rb will be introduced later in the paper (see Equation (16)).

Alternatively, adjustment of the effective thermal conductivity keff in combination
with the porosity ε is also feasible. Herein lies a unique aspect of the HybridBridge method.
Unlike conventional approaches, the HybridBridge method theoretically enables the preser-
vation of the true porosity while modifying the contact points. Moreover, the alteration in
porosity associated with the HybridBridge is consistently less pronounced compared to
that of conventional caps of the equivalent height.

Figure 2. Schematic representation of the geometrical parameters of a HybridBridge between two
monosized spheres. In order to provide a clearer overview, the HybridBridge is shown larger than it
should be used in practice.

Furthermore, the HybridBridge can be regarded as a versatile local method for con-
tact point modification. It inherently encompasses both the conventional bridges method
(for rb = rc) as well as the conventional caps method (for rb = 0) as special cases of the
HybridBridge method. The simultaneous availability of both conventional methods rep-
resents a significant advantage when implementing the HybridBridge in a workflow for
meshing a numerical model. At the same time, this versatility ensures, that the usage of
the HybridBridge method is as least as advantageous as conventional methods for any
packed beds.

2.3. Analysis of a Body-Centred Cubic Unit Cell

Szambien et al. [14] investigated how various parameters of HybridBridge geometry
impact the effective thermal conductivity within a unit cell structured in a simple-cubic
(sc) grid arrangement. Initial insights into how the HybridBridge geometry adapts to the
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actual thermal conductivity keff of the scrutinized packed bed emerged from analyzing the
results of this particular unit cell.

The simple-cubic lattice arrangement epitomizes the most basic unit cell. Moreover,
heat conduction was assumed to occur in one direction only, running parallel to one of
the main grid axis, traversing from midpoint to midpoint of the two spheres. Hence,
within this unit cell, a solitary contact point enables the flow of heat. It is important to
highlight that the assumption of one-dimensional heat conduction pertains exclusively to
the modelling of effective thermal conductivity and the associated homogeneous perception
of the packed bed. Within the numerical simulation model of unit cells, heat propagation
is inherently three-dimensional. Consequently, it is deduced that heat flows occurring at
interfaces perpendicular to the macroscopically imposed temperature gradient, as dictated
by boundary conditions, are excluded.

The simple-cubic (sc) grid structure is characterized by a small number of contact
points that affect heat conduction. Consequently, this unit cell tends to underestimate heat
conduction compared to a realistically random packed bed. To address this discrepancy,
in this work, we have carried out a numerical investigation of a unit cell featuring a
body-centred-cubic (bcc) grid structure. In line with the aforementioned assumptions,
this arrangement has a coordination number of 8 [19]. All eight contact points had to be
modified with HybridBridge to ensure realistic heat conduction. No contact points were
disregarded as irrelevant in this process.

To ensure a fair comparison with the simple-cubic grid, we adopted identical parame-
ters for the simulation process. These simulation parameters are summarized in Table 1,
while a qualitative representation can be observed in Figure 3. To generate the necessary .stl
file we once more utilized our Python [20,21] tool in conjunction with Salome [22]. The nu-
merical simulation was executed employing chtMultiRegionFoam within OpenFOAM
(refer to [23,24]). The underlying mesh was generated using snappyHexMesh.

Table 1. Parameters of the unit cell with relevant initial and boundary values.

Specification Particle Fluid

Radius in mm 10 —
Material 1.4301 dry air

k in W/(m K) 15 0.026
Velocity in m/s — 0
Pressure in Pa — 101,300

Temperature in K internal field 273.15 273.15
surface cold side 273.15 273.15
surface hot side 283.15 283.15

Figure 3. Body-centered-cubic unit cell with a qualitative temperature profile, red color indicates
hotter temperatures and blue color indicates cooler temperatures.



Computation 2024, 12, 89 7 of 14

2.4. Dimensioning of the HybridBridge

For achieving a high-quality multiphase particle-resolved numerical simulation of
heat transport within packed beds, accurate modelling of heat conduction, as previously
elucidated, is paramount. When applying the HybridBridge method for treating contact
points, it becomes imperative to meticulously select the radius of the bridge rb in relation to
the height of the caps hc. The effective thermal conductivity keff can be used to design the
appropriate radius. To achieve this, the heterogeneous CFD model has to be homogenized.
The homogenization of the model is based on Fourier’s Law of thermal conduction:

q̇ = −k grad(T). (4)

This equation must give the same results as the heterogeneous CFD model.
To determine the appropriate bridge radius rb, one must have knowledge of the

target value for the effective thermal conductivity keff. This can be gleaned from a suitable
model for the effective thermal conductivity, such as the model of Zehner, Bauer and
Schlünder [25] or from experimental results.

This specification must be complemented with an understanding of how the geometry
parameters of the HybridBridge influence the system. For this purpose, we conducted an
extensive array of particle-resolved numerical simulations for unit cells (uc) both within
the scope of this study and in our previous work [14].

Here, we computed the resulting values of the effective thermal conductivity of the
unit cell, denoted as keff,uc for various HybridBridges. From Equation (4), keff,uc of the unit
cell for a steady state is given by

keff,uc =
δuc
(
Q̇Air,in + Q̇p,in

)
Auc (Thot − Tcold)

=
δuc
(
Q̇Air,out + Q̇p,out

)
Auc (Thot − Tcold)

. (5)

with the cross-sectional area Auc = (1.01 · 2 rp)2 of the unit cell and their height δuc = 2 rp.
The heat flows Q̇ are taken from the converged numerical simulations. Leveraging these
unit cell results, we aim to derive an equation for the approximate estimation of the
bridge radius.

3. Results
3.1. Assessment of the Body-Centred-Cubic Unit Cell

Figure 4 illustrates the effective thermal conductivity values, keff, derived utilizing
Equation (5), alongside numerical simulation of the body-centered-cubic unit cell, incor-
porating various HybridBridge geometries. For comparison, the data corresponding to
the simple-cubic unit cell, as presented in our earlier study [14], is provided in Figure 5.
Both figures collectively demonstrate the HybridBridge’s capacity to encompass a wide
spectrum of effective thermal conductivities within numerical simulations.

Upon comparing the ratios of the effective thermal conductivities for the simple-cubic
and body-centered-cubic unit cells, as illustrated in Figure 6, surprisingly it can be observed
that the following approximation holds true:

keff,bcc

keff,sc
≈ 2

Given that this observation holds across all examined HybridBridge geometries, it can
be concluded that the HybridBridge exerts the most significant influence on the effective
thermal conductivity keff in the conducted simulations. The factor of 2 can be explained by
the number of HybridBridges per unit cell:

Starting with the simple-cubic unit cell, it is evident that the mean heat flux represented
as q̇m remains identical for two identical unit cells. This straightforward observation
underscores that altering the surface area by linking several unit cells in parallel does not
affect the mean heat flux.
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Figure 4. Effective thermal conductivity keff of the HybridBridge with various ratios of hc/rp for a
body-centred-cubic arrangement of monodisperse spheres.
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Figure 5. Effective thermal conductivity keff of the HybridBridge with various ratios of hc/rp for a
simple-cubic arrangement of monodisperse spheres. Results taken from Szambien et al. [14].

A similar analysis applies to the sequential alignment along the main direction of heat
flow of two unit cells. Due to symmetry considerations, the gradient remains identical for
both unit cells, resulting in an identical total gradient along the two unit cells. Consequently,
the heat flow or mean heat flux remains identical when these two unit cells are aligned
under the appropriate boundary conditions. These considerations further justify the use of
a unit cell.

Moreover, in addition Figure 6, examination of the temperature profile within the unit
cell (refer to Figure 3) reveals that the HybridBridge, or its corresponding contact point,
significantly influences the total heat flow. This dominance stems from the substantial
disparity between the thermal conductivities of the phases and the notably high thermal
resistance at the contact point compared to the particle interior.
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Figure 6. Ratios of the effective thermal conductivities keff for body-centred-cubic (bcc) grid structure
to simple-cubic (sc) grid structure.

Considering all three factors, it becomes evident that q̇m is unaffected by changes in
A or δ, but rather influenced by the number of HybridBridges per unit cell. It is crucial to
differentiate whether the HybridBridges are arranged in parallel or in series with respect to
the main direction of heat conduction. For clarification: A parallel connection describes
the number of HybridBridges denoted as nHB,A, on a plane parallel to A, whereas a serial
connection counts the number of such parallel planes, denoted as nHB, δ, aligned along δ.

A straightforward resistance analysis of the HybridBridge reveals that q̇m is directly
proportional to nHB,A and inversely proportional to nHB, δ. Likewise, considering Equa-
tion (4), keff is proportional to nHB,A and inversely proportional to nHB, δ. Applying this
analysis to the body-centred-cubic unit cell yields the following result:

keff,bcc ≈
nHB,A

nHB, δ
keff,sc ≈

4
2

keff,sc ≈ 2 keff,sc. (6)

The subsequent relationship between keff,sc and keff can be generalized to encompass
the utilization of HybridBridge in any packed bed. For illustration we can state the
descriptive equation

keff ≈ keff,sc
nHB,A

A/Asc

δ/δsc

nHB,δ
(7)

3.2. Predesign of the HybridBridge Geometry

As demonstrated earlier, the influence of the geometry of the HybridBridge on the
effective thermal conductivity keff can be traced back to the results of the simple-cubic unit
cell. Hence, we will formulate an approximate representation for keff,sc drawing upon the
insights garnered from the simple-cubic unit cell results.

To address this objective, we have crafted a straightforward thermal resistance model
that is as close as possible to the physical situation. This adaptable model can be fine-tuned
to align with CFD findings by adjusting empirical parameters. The model is based on the
following equation:

keff,sc =
δsc

Rsc Asc
. (8)
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In this equation δsc and Asc represent the dimensions of the simple-cubic unit cell, visually
depicted in Figure 7. The equations governing the calculation of the total resistance Rsc are
the following:

1
Rsc

=
1

RHB + R0,ser
+

1
R0,par

(9)

1
RHB

=
1

Rb
+

1
Rc

(10)

Rb =
2 hc

kb Ab
(11)

Rc =
2 hc

kc Ac
(12)

Ab = π r2
b (13)

Ac = (π r2
c)− Ab (14)

The graphical representation of the resistance network is provided in Figure 7. The re-
sistance R0,ser encompasses all the resistance connected in series with the HybridBridge,
including those of the two hemispheres. The resistance R0,par amalgamates all resistances
that are parallel to the HybridBridge, such as those pertaining to heat conduction through
the fluid outside the generated cap region.

Figure 7. Schematic representation of the main dimensions of the simple-cubic unit cell with the
proposed resistance network model. Analogous to Figure 2, the HybridBridge is shown larger than it
should be used in practice.

R0,par and R0,ser are empirical values crucial for refining the accuracy of this simplified
modelling approach. These values are determined through fitting the outcomes of the
numerical model. For this purpose, hc and rb from the simulations performed (see Figure 5)
were used in Equations (8)–(14) while adding missed fixed values from Table 1. The
resulting relationship calculates values of keff for a given HybridBridge Geometry as a
function of R0,par and R0,ser. By calculating the deviation between values of keff, obtained
using the procedure described, and the corresponding numerically computed values for
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keff, the optimal values of R0,par and R0,ser were determined using the least squares method.
The least squares method yields the following values:

R0,par = 550.00
K
W

R0,ser = 46.64
K
W

.

Based on the findings presented in from Section 3.1 it is plausible to interpolate
between the two unit cells using the contact points. However, determining the precise
locations of these contact points is not always feasible, or conducting an analysis of their po-
sitions in relation to the main heat conduction direction can be excessively time-consuming.
Hence, porosity emerges as a viable criterion for interpolation, as it correlates with the
number of contact points, evident from the coordination number. This relationship is
expressed as follows:

keff = keff,sc

(
εsc − ε

εsc − εbcc
+ 1

)
(15)

The incorporation of the porosity of the simple-cubic unit cell εsc = 0.476 [19] and the
porosity of the body-centered-cubic unit cell εbcc = 0.320 [19] yields the following for
0.320 ≤ ε ≤ 0.476.

keff = keff,sc

(
0.476 − ε

0.156
+ 1

)
.

Now, we aim to derive a functional relationship using Equations (8)–(15) to approxi-
mate the radius of the HybridBridge for a given packed bed (ε and keff given) and a selected
cap radius.

To maintain the function’s complexity within manageable bounds, all predefined val-
ues for the examined unit cells from Table 1 have already been set and roughly consolidated,
except those required for a dimensionless context. The transformations are partially based
on [26]. The equation is presented below:

rb = rp

(
0.00174 hc/rp · β

ε + 0.00356 keff/kf − 0.632

) 1
2

(16)

with
β =

[
hc/rp (ε + 0.00356 keff/kf − 0.632)− 6.10 ε − 0.194 keff/kf + 3.85

]
.

To validate this equation, simulation results for both unit cells were used. The cal-
culated bridge radius was compared with the radius used in the underlying CFD model.
For rb/rp ≥ 0.01, the average deviation is about 7%. Notably, the deviation increases signif-
icantly for rb/rp = 0.005. Across all simulation runs, including rb/rp = 0.005, the average
deviation between the calculated and utilized radii is slightly below 20%.

For a real packed bed with rb/rp = 0.02, investigated in [14], the equation yielded
rb/rp = 0.01653 for the relative bridge radius. This results in a deviation of 17.3%. To as-
certain porosity, we employed our MATLAB [27] tool, capable of numerically computing
porosity for geometrically defined beds, both in general and with local resolution in the
axial and radial directions. The porosity of the examined packed bed was determined to be
ε = 0.402.

Accounting for all eventualities with a single equation is impractical due to the multi-
tude of variables influencing the effective thermal conductivity keff. Models such as that
proposed by Zehner, Bauer and Schlünder (e.g., [25]), illustrate the complexity inherent in
this problem. Moreover, the wide variety of geometries and material combinations found
in packed beds further complicate the issue.

The objective of Equation (16) is not to describe the effective thermal conductivity
keff with a single equation, but to offer a method for implementing the new HybridBridge
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method in a more focused manner. Consequently, the formal validation of this equation
is restricted to the packed bed parameters outlined in this work. The generalizability of
Equation (16) cannot be reliably estimated due to the inherent variability in such systems.
However, it is essential to note that this limitation is specific for Equation (16) alone.
Regarding the resistance model in general, there is no evidence to suggest that it cannot be
used to predesign the HybridBridge with other packed bed parameters.

Users are encouraged to test Equation (16) for their specific applications. Should the
attained accuracy fail to meet the specified requirements, it is advisable to derive a more
suitable empirical equation from our proposed resistance model, following the structure
of Equation (16). This iterative process allows for refinement tailored to the intricacies of
individual applications, ensuring optimal performance.

4. Discussion

The new HybridBridge method, introduced in [14], has undergone a thorough analysis.
This method aims to address the contact point problem, ensuring that the effective thermal
conductivity remains consistent with physical specifications while minimizing the impact
of particle modifications on flow dynamics.

The theoretical framework demonstrates the potential advantages of the HybridBridge
method over other local techniques, particularly evident for small Péclet numbers and
significant ratios of particle thermal conductivity to fluid thermal conductivity

(
kp/kf

)
.

Furthermore, we have established the plausibility that the HybridBridge method typically
induces a lesser alteration in porosity compared to conventional caps methods. In our
previous work [14] we have illustrated that larger cells and thus a smaller number of cells
using the HybridBridge method is sufficient to achieve comparable mesh quality to the
conventional bridges method. This underscores the HybridBridge’s reliability in addressing
the contact point problem across a broader range of scenarios than traditional methods
could offer.

The comprehensive geometrical description highlights that the HybridBridge method
inherently encompasses both the conventional bridges and caps methods as special cases.
This simplifies its integration into workflow, as several local methods become available
through the adoption of the HybridBridge approach.

Through an analysis of the body-centered-cubic unit cell, we have rectified a limitation
in our prior work, where the porosity, and consequently the coordination number, was
lower than observed in many real cases of randomly packed beds. We have specified how
the HybridBridge can be adapted to physical reality using a homogenization approach and
experimental values or models for the effective thermal conductivity keff.

Given that the HybridBridge method involves two independent geometric parameters
and aims for a more accurate representation of the effective thermal conductivity, keff,
the implementation effort required is greater compared to conventional methods. The pri-
mary challenge lies in the difficulty of designing the appropriate bridge radius for the given
effective thermal conductivity and cap height prior to simulation.

Through a comprehensive assessment of our recent simulations involving both the
body-centered-cubic and simple-cubic unit cells, we have outlined an initial methodol-
ogy for the a priori design of the HybridBridge, intended for numerical simulations. This
involved the development of a semi-empirical resistance model tailored to the effective ther-
mal conductivity of the simple-cubic unit cell. Subsequently, we extended the applicability
of this model to other packed beds by leveraging insights from the body-centered-cubic unit
cell, employing interpolation techniques across varying porosities and their corresponding
coordination numbers.

Building upon this model approach, we derived an equation to approximate the
bridge radius. To validate the accuracy of this equation, we compared the calculated radius
against the radius employed in unit cells and a previously examined randomly packed bed.
The mean deviation was found to be less than 20%, which is deemed satisfactory for the
model’s intended purpose.
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It is crucial to note that while this equation provides a valuable tool for estimating the
bridge radius, it cannot be directly applied to other packed beds without adjustments and
validation to the specific parameters of each individual bed under investigation. However,
the underlying resistance network model approach remains unaffected and is applicable to
other packed beds.

A potential avenue for future research is suggested: building upon the investigation
into the impact of diverse lattice arrangements, coordination numbers, and porosities, it
would be beneficial to extend the study to encompass various material combinations. In
addition, the HybridBridge method should be extended to other forms of contact. This
expanded scope will facilitate a deeper understanding of the possibilities and hurdles asso-
ciated with the innovative HybridBridge method of contact point modification, enabling a
more nuanced and targeted application of the HybridBridge approach.
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The following abbreviations are used in this manuscript:

b bridge
bcc body-centered-cubic
c cap
CFL Courant–Friedrichs–Lewy
eff effective
f fluid
g gap
HB HybridBridge
p particle
par parallel
uc unit-cell
s solid
sc simple-cubic
ser serial
x radial or axial coordinate
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