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Abstract: A new approach to solving the Time-Dependent Self-Consistent-Field equations
is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B).
Dual channel, quasi-independent non-linear optimization of these quotients is found to
yield convergence rates approaching those of the best case (single channel) Tamm-Dancoff
approximation. This formulation is variational with respect to matrix truncation, admitting
linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk
excitons in the polyphenylene vinylene oligomer and the (4,3) carbon nanotube segment.
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1. Introduction

The Time-Dependent Self-Consistent-Field equations together with models that include some portion
of the Hartree-Fock (HF) exchange admit control over the range of self-interaction in the optical
response [1–4], and are related to new models of electron correlation based on the Random Phase
Approximation (RPA) [5–8]. Solving the TD-SCF equations is challenging due to an unconventional
J-symmetric structure of the naive molecular orbital (MO) representation,(
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where A and B are Hermitian blocks corresponding to 4th order tensors spanning transitions between
occupied and virtual sub-spaces, ω is the real excitation energy and ~v =

( ~X
~Y

)
is the corresponding
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transition density. By construction, the MO representation allows strict separation between the
dyadic particle-hole (ph) and hole-particle (hp) solutions, ~X and ~Y , for which specialized algorithms
exist. Nevertheless, convergence of the naive J-symmetric problem is typically much slower than
the corresponding Hermitian Tamm-Dancoff approximation (TDA), A ~X = ω ~X , which is of reduced
dimensionality in the MO representation.

Several TD-SCF eigensolvers are based on the oscillator picture
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)
,with K = A+

B and T = A−B the Hermitian potential and kinetic matrices, and the dual {~p, ~q } =
{
~X − ~Y , ~X + ~Y

}
corresponding to position and momentum. This picture avoids the imbalance

∥∥∥ ~X∥∥∥ � ∥∥∥~Y ∥∥∥ whilst
admitting conventional solutions based on the Hermitian matrix G = K · T, as shown by Tamara
and Udagawa [9] and extended by Narita and Shibuya with second order optimization of the quotient
ω2 [~p, ~q] = ~q ·G · ~p/ |~p · ~q| [10]. More recently, Tsiper [11] considered the quotients

ω [~p, ~q] =
~p ·K · ~p
2 |~p· ~q|

+
q ·T · ~q
2 |~p· ~q|

(2)

and developed a corresponding dual channel Lanczos solver. Subspace solvers in this dual representation
have recently been surveyed by Tretiak, Isborne, Niklasson and Challacombe (TINC) [12], with
comparative results for semi-empirical models.

Another challenge is dimensionality and scaling. Writing Equation (1) in the general form L·~v = ω~v,
admitting arbitrary representation, the superoperator matrix L is a∼N2×N2 tetradic, with N the number
of basis functions, assumed proportional to system size. In practice the action of L onto ~v is carried
out implicitly as L[v] = [F , v] + [G[v], P ] , using an existing framework for construction of the
effective Hamiltonian (Fockian) F , where P is the one-particle reduced density matrix, G is a screening
operator involving Coulomb, exchange and/or exchange-correlation terms and the correspondence
between superoperator and functional notation is given by a tensorial mapping between diadic and
matrix, ~vN2×1⇔ vN×N .

Recent efforts have focused on addressing the problem of dimensionality by employing linear scaling
methods that reduce the cost of L[·] within Density Functional Theory (DFT) to O(N). However, this
remains an open problem for the Hartree-Fock (HF) exchange, an ingredient in models that account for
charge transfer in the dynamic and static response, including the Random Phase Approximation (RPA)
at the pure HF level of theory. Likewise, scaling of the TD-SCF eigenproblem remains formidable due
to associated costs of linear algebra, even when using powerful Krylov subspace methods. Underscoring
this challenge, one of the most successful approaches to linear scaling TD-DFT avoids the matrix
eigenproblem entirely through explicit time-evolution [13,14].

Linear scaling matrix methods exploit quantum locality, manifest in approximate exponential decay
of matrix elements expressed in a well posed, local basis; with the dropping of small elements
below a threshold, τmtx, this decay leads to sparse matrices and O(N) complexity at the forfeit of
full precision [15–17]. Likewise, linear scaling methods for computing the HF exchange employ
an advanced form of direct SCF, exploiting this decay in the rigorous screening of small exchange
interactions bellow the two-electron integral threshold τ2e [18]. The consequence of these linear
scaling approximations is an inexact linear algebra that challenges Krylov solvers due to nested error
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accumulation, a subject of recent formal interest [19,20]. Consistent with this view, TINC found that
matrix perturbation (a truncation proxy) disrupts convergence of Krylov solvers with slow convergence,
i.e., Lanczos and Arnoldi for the RPA, but has less impact on solvers with rapid convergence,
i.e., generically for the TDA or Davidson for the RPA. Relative to semi-empirical Hamiltonians, the
impact of incompleteness on subspace iteration may be amplified with first principles models and large
basis sets (ill-conditioning).

An alternative is Rayleigh Quotient Iteration (RQI), which poses the eigenproblem as non-linear
optimization and is variational with respect to matrix perturbation. Narita and Shibuya [10] considered
optimization of the quotient ω2 [~p, ~q] with second order methods, but these are beyond the capabilities
of current linear scaling technologies and also, convergence may be slower by a power of 1/2. For
semi-empirical Hamiltonians, TINC found that optimization of the Thouless functional ω[~v] = ~v · L ·
~v/ |~v·~v| , corresponding to the solution of Equation (1), was significantly slower for the RPA relative to
the TDA, and also compared to subspace solvers. For first principles models and non-trivial basis sets,
this naive RQI can become pathologically slow as shown in Figure 1. On the other hand, the Tsiper
formulation exposes the underlying pseudo-Hermitian structure of the TD-SCF equations. Here, this
structure is exploited with QUasi-Independent Rayleigh Quotient Iteration (QUIRQI), involving dual
channel optimization of the Tsiper quotients coupled only weakly through line search. Although this
work was first placed in the arXiv some time ago [21], it is offered here after review and revision, with
changes primarily in the concluding remarks.

2. Theoretical Development

Our development begins with a brief review of the representation independent formulation developed
by TINC, which avoids the O(N3) cost of rotating into an explicit p-h, h-p symmetry. Instead, this
symmetry is maintained implicitly via annihilation, x ← fa(x) = P ·x·Q +Q·x·P , with P the first
order reduced density matrix and Q = I−P its compliment. Likewise, the indefinite metric associated
with the J-symmetry of Equation (1) is carried through the generalized norm 〈x,y〉 = tr{xT · [y,P ]}.
Introducing the operator equivalents, L[p] ⇔ K.~p and L[q] ⇔ T.~q , the Tsiper functional becomes
ω [p, q] = 〈p,L[p]〉

2|〈p,q〉| + 〈q,L[q]〉
2|〈p,q〉| . Transformations between the transition density and the dual space

involves simple manipulations and minimal cost, allowing Fock builds with the transition density and
optimization in the dual space. The splitting operation is given by p = f+(v) = P ·v ·Q+ [Q · v · P ]T

and q = f−(v) = P ·v ·Q− [Q · v · P ]T . Likewise, L[p] = f− (L[v]) and L[q] = f+ (L[v]). The back
transformation (merge) from dual to density is v = F (p, q) =

(
p+ q + [p− q]T

)
/2. This framework

provides the freedom to work in any orthogonal representation, and to switch between transition density
and oscillator duals with minimal cost.

QUIRQI is given in Algorithm 1. It begins with a guess for the transition density, which is then
split into its dual (lines 2–3). The choice of initial guess is discussed later. Lines 4–24 consist of the
non-linear conjugate gradient optimization of the nearly independent channels: In each step, the flow
of information proceeds from optimization of the duals to builds involving the density and back to the
duals in a merge-annihilate-truncate-build-split-truncate (MATBST) sequence. For the variables v, p and
q this sequence is comprised by lines 22–23 and 5–7, and lines 15–19 for the corresponding conjugate
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gradients hv, hp and hq. Truncation is carried out with the filter operation as described in Reference [17]
and also below, with cost and error determined by the matrix threshold τmtx.

Algorithm 1 QUIRQI
1: procedure QUIRQI(ω,v)
2: guess v
3: p = f+ (v), q = f− (v)

4: while erel > ε and gmax > γ and ω < ωold do
5: L[v] = [F , v] + [G[v], P ]

6: L[p] = f− (L[v]), L[q] = f+ (L[v])

7: filter (L[p],L[q], τmtx)

8: ωp =
〈p,L[p]〉
2|〈p,q〉| , ωq =

〈q,L[q]〉
2|〈p,q〉| , ω = ωp + ωq

9: gp = q ωq −L[p], gq = pωp −L[q]

10: erel =
(
ωold − ω

)
/ω

11: gmax = max
i,j

{
[gp]ij , [gp]ij

}
12: βp =

〈gp, gp−gold
p 〉

〈gold
p ,gold

p 〉 , βq =
〈gq , gq−gold

q 〉
〈gold

q ,gold
q 〉

13: ωold ← ω, goldp ← gp , goldq ← gq

14: hp ← gp + βphp, hq ← gq + βqhq
15: hv = F (hp,hq), hv ← fa (hv)

16: filter (hp,hq,hv, τmtx)

17: L [hv] = [F , hv] + [G[hv], P ]

18: L[hp] = f− (L[hv]), L[hq] = f+ (L[hv])

19: filter (L[hp], L[hq], τmtx)

20: {λp, λq} = argmin
{λp,λq}

ω [p+ λphp, q + λqhq]

21: p← p+ λphp, q ← q + λqhq

22: v ← F (p, q), v ← fa (v)

23: filter (p, q,v, τmtx)

24: end while
25: end procedure

The Tsiper functional is the sum of dual quotients ωp and ωq, determined at line 8, followed by the
gradients gp and gq computed at line 9. After the first cycle, the corresponding relative error erel (10) and
maximum matrix element of the gradient gmax (11) are computed and used as an exit criterion at line 4,
along with non-variational behavior ω > ωold.

Next, the Polak-Ribiere variant of non-linear conjugate gradients yields the search direction in each
channel, hp and hq (12–14). The action of L[·] on to hp and hq is then computed, again with a MATBST
sequence (15–19), followed by a self-consistent dual channel line search at line 20, as described below.
With steps λp and λq in hand, minimizing updates are taken along each conjugate direction (22), and the
cycle repeats with the MATBST sequence spanning lines 21–23 and 5–7.
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Optimization of the Tsipper functional ω [λp, λq] ≡ ω [p+ λphp, q + λqhq] involves a two
dimensional line-search (line 20) corresponding to minimization of

ω [λp, λq] =
Ap + λpBp + λ2pCp + Aq + λqBq + λ2qCq

Rpq + λpSpq + λqTpq + λpλqUpq
(3)

with coupling entering through terms in the denominator such as Upq = 〈hp,hq〉. A minimum in
Equation (3) can be found quickly to high precision by alternately substituting one-dimensional solutions
one into the other until self-consistency is reached. This semi-analytic approach starts with a rough guess
at the pair {λp, λq} (eg. found by a coarse scan) followed by iterative substitution, where for example
the p-channel update is

λp ←
{[

(2CpRpq + 2CpλqSpq)
2 − 4 (CpTpq + CpλqUpq)[

BpRpq +BpλqSpq −
(
Aq + Ap +Bqλq + Cqλ

2
q

)
Tpq

−
(
Aqλq + Aqλq +Bqλ

2
q + Cqλ

3
q

)
Upq
]]1/2

(4)

− 2CpRpq − 2CpλqSpq
}/

[2Cp (Tpq + λqUpq)]

with an analogous update for the q-channel obtained by swapping subscripts. As the solution decouples
(Spq, Tpq and Upq become small) the steps are found independently.

3. Results and Discussion

QUIRQI has been implemented in FreeON [22], which employs the linear scaling Coulomb and
Hartree-Fock exchange kernels QCTC and ONX with cost and accuracy controlled by the two-electron
screening threshold τ2e [18]. N-scaling solution of the QUIRQI matrix equations is achieved through
“sparsification” (In previous works [15], this process has been loosely referred to as SpAMM, involving
both truncation and dynamic dropping of small row-column contributions from the sparse matrix
multiply based on the BCSR data structure. See Section IVA3 of Reference [15]. In this work, only
truncation in the BCSR data structure has been used, but was incorrectly referred to as SpAMM in a
previous instance [21]. In more recent developments, SpAMM refers to recursive, hierarchical truncation
in the product space [23,24], rather than the row-column approach outlined in Reference [15].), of the
underlying vector space, where the filter operation is applied to drop atom-blocks with norm smaller
than a drop tolerance τmtx in a block-CSR data structure (BCSR) [15–17]. All calculations were carried
out with version 4.3 of the gcc/gfortran compiler under version 8.04 of the Ubuntu Linux distribution
and run on a 2GHz AMD Quad Opteron 8350.

For systems studied to date, QUIRQI is found to converge monotonically with rates comparable to
the TDA as shown in Figure 1. Based on the comparative performance presented by TINC, the TDA
rate of convergence appears to be a lower bound for RPA solvers. In addition to the convergence rate,
performance is strongly determined by the initial guess. The following results have been obtained using
the polarization response density along the polymer axis [12], which can be computed in O(N) by
Perturbed Projection [25]. Also, a relative precision of 4 digits in the excitation energy is targeted
with the convergence parameters ε = 10−4 and γ = 10−3, with exit from the optimization loop
on violation of monotonic convergence (ω > ωold due to precision limitations associated with linear
scaling approximations).



Computation 2014, 2 6

Figure 1. Convergence of RHF/3-21G Tamm-Dancoff approximation (TDA) and
Random Phase Approximation (RPA) with the Rayleigh Quotient Iteration (RQI) and
QUasi-Independen RQI (QUIRQI) algorithms for linear decaene (C10H2). Calculations
were started from the same random guess, and tight numerical thresholds were used
throughout. In the representation independent scheme, the cost per iteration is the same
for TDA and RPA.
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In Figure 2, linear scaling and convergence to the bulk limit are demonstrated for a series of
polyphenylene vinylene (PPV) oligomers at the RHF/6-31G** level of theory for the threshold
combinations {τmtx, τ2e} = {10−4, 10−5} and {10−5, 10−6}. Significantly more conservative thresholds
have been used for the Coulomb sums, which incur only minor cost. Convergence is reached
in 24–25 iterations, with the cost of Coulomb summation via QCTC comparable to the cost of
BCSR(τmtx = 10−4). In Figure 3, linear scaling and convergence to the bulk limit are demonstrated
for a series of (4,3) carbon nanotube segments at the RHF/3-21G level of theory for the same threshold
combinations, again with convergence achieved in about 24–25 cycles. In both cases, tightening the
pair {τmtx, τ2e} leads to a systematically improved result. While the {10−4, 10−5} thresholds that work
well for PPV lead to a non-monotone behavior with respect to extent for the nanotube series, dropping
one more decade to {10−5, 10−6} leads to a sharply improved behavior. Dropping thresholds further to
{10−6, 10−7} yields identical results to within the convergence criteria (∼four digits) across the series,
also scaling with N but at roughly twice the cost.

These results demonstrate that QUIRQI can achieve both systematic error control and linear scaling
in solution of the RPA eigenproblem for systems with extended conjugation. Relative to PPV, the greater
numerical sensitivity encountered with the nanotube series is consistent with the ground state problem,
where a smaller band gap and greater atomic connectivity typically demand tighter thresholds.
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Figure 2. Approach to the bulk limit of the polyphenylene vinylene (PPV) first excited state
at the 6-31G**/RPA level of theory, with inset showing linear scaling cost for Hartree-Fock
(HF) exchange (ONX) and sparse linear algebra (BCSR). The cost of Coulomb sums with
much tighter thresholds are comparable to those for the BCSR.

Figure 3. Approach to the bulk limit of the first excited state of the (4,3) carbon nanotube
segment at the 3-21G/RPA level of theory, with inset showing linear scaling cost for HF
exchange (ONX), sparse linear algebra (BCSR) and Coulomb sums (QCTC).
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4. Conclusions

Since this note appeared some time ago in arXiv [21], several related efforts have appeared that
deserve comment: (A) single channel optimization with radial cutoffs [26] and (B) conventional algebra
with a four channel line search [27,28]. In the first instance, the ONETEP group have implemented a
single channel quotient scheme for the TDA and demonstrated linear scaling for a number of systems
using the radial cutoff approach to achieve reduced complexity. In the radial cutoff approach, portions of
the vector space are eliminated from the linear algebra when the Cartesian distance between associated
atoms becomes greater than some cutoff radius (Going a step further, new technologies are emerging
that achieve reduced complexity without truncation in the vector space [23,24].). The ONETEP paper
is recommended by their careful discussion of radial cutoffs leading to artificial truncation in cases
of long range charge transfer, e.g., Reference [26] Figure 5. In the current implementation, the filter
operation eliminates elements of the vector space that are numerically small; in the case of long range
charge transfer, extended conjugation, etc., an unphysical truncation does not occur. For problems
without long range charge transfer or extended conjugation, for example large problems with well
localized chromophores as in References [29,30], the complexity of QUIRQI with respect to system size
becomes O(1).

In the second instance, the QUIRQI method has been extended to include two additional channels
in the line search [27,28]; argmin

{α,β,λp,λq}
ω [αp+ λphp, βq + λqhq]. The authors claim without elaboration

that “the solution by our 4D search is and can be much better (than the dual channel approach)” [28].
As shown in Figure (1), QUIRQI decouples in the first few steps achieving convergence equivalent to
TDA[RQI], Rpq → 1, Spq → 0, Tpq → 0, Upq → 0 in Equation (3), so it is hard to understand this
unsupported claim, considering also the imperative that α ∗ β = 1 to maintain normalization. These
claims are also undercut by apparently slow rates of convergence; compare for example Figure (1) of
this work with Reference [27], especially Figure 3. These authors further claim without explanation that
“dual channel optimization are not readily extensible to the subspace search” [28]. Again, its hard
to understand how the dual channel case isn’t extensible to subspace schemes for finding multiple
eigenvalues; the equivalent of (single channel) block RQI has been demonstrated in the ONETEP
paper [26], and no obvious problems are foreseen with more sophisticated methods such as
LOBPCG [31] for single or dual channel approaches.

To summarize, the QUIRQI method is characterized by two innovations: First, dual channel
optimization separates the Tsipper functional into two, nearly independent quotients that cannot be
further improved by additional channels in the line search. Reflecting this separation, convergence
of the TD-SCF matrix eigenproblem with QUIRQUI is found to be equivalent to the single quotient
matrix eigenproblem in the Tamm-Dancoff approximation, as shown in Figure 1. Second, the method
is variational with respect to an incomplete linear algebra, controlled in this work through the filter
threshold τmtx [15–17], as shown in Figures 2 and 3. While QUIRQI is not variational with respect
to the screening parameter τ2e, the solution can be systematically improved by tightening τ2e [18],
in comparison to nested subspace methods that encounter an iterative accumulation of errors [19,20].
Indeed, eigensolution posed as optimization provides considerable flexibility in choosing a path to
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solution, offering opportunities for mixed precision GPU acceleration [32] and variable thresholding
(tightening the parameter τ2e during convergence).
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