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Abstract: A large and growing body of research implicates aberrant immune response and 

compositional shifts of the intestinal microbiota in the pathogenesis of many intestinal disorders. 

The molecular and physical interaction between the host and the microbiota, known as the 

host-microbiota interactome, is one of the key drivers in the pathophysiology of many of these 

disorders. This host-microbiota interactome is a set of dynamic and complex processes, and 

needs to be treated as a distinct entity and subject for study. Disentangling this complex web of 

interactions will require novel approaches, using a combination of data-driven bioinformatics 

with knowledge-driven computational modeling. This review describes the computational 

approaches for investigating the host-microbiota interactome, with emphasis on the human 

intestinal tract and innate immunity, and highlights open challenges and existing gaps in  

the computation methodology for advancing our knowledge about this important facet of  

human health. 
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1. Introduction 

The Human Microbiome Project (HMP) and Metagenomics of the Human Intestinal Tract (MetaHIT) 

are two large-scale data collection projects that have helped to spur research on the microbial communities 
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that inhibit various niches of the human body [1–3]. Of the epithelial surfaces where microbes reside, the 

intestinal microbiota is one of the most diverse communities consisting of hundreds of species, and its 

composition varies between individuals as well as across space and time within the same individual [2,4–7]. 

The intestinal microbial community is established during infancy and coevolves with the host immune 

system into a symbiotic relationship [8–11]. Disturbance of this host-microbiota relationship has been 

implicated or suggested in numerous diseases such as inflammatory bowel disease [12], necrotizing 

enterocolitis [13], gut-derived sepsis [14], and cancer [15,16]. 

The primary hypothesis of the pathogenesis of these intestinal disorders invokes a series of stages  

in the progression from a healthy state to disease, whereby external perturbations, genetic predispositions 

and host-microbiota feedback interactions lead to a self-sustaining chronic state involving host dysfunction 

and microbiota dysbiosis. We consider a healthy state as one where the host intestinal architecture and 

immune system are in complementary homeostasis with the commensal microflora. This is a dynamic 

steady-state as the microbial community composition undergoes changes due to dietary input as well as 

host nutrient requirements throughout the typical work/sleep circadian rhythm, yet these changes are 

typically well within the normal robust boundaries of a healthy system. The divergence from a healthy 

state starts with the introduction of a significant perturbation that disturbs this homeostasis. It could be 

a host perturbation such as an injury, trauma, surgery or exposure to harsh chemicals, essentially anything 

that activates a systemic host immune response that reaches the intestinal cells. It could also be a microbiota 

perturbation due to the ingestion of toxins, tainted or poisoned food, or medicines and other drugs.  

Small perturbations may become further exacerbated in some individuals due to genetic susceptibility, 

likewise it may be a combination of perturbations through diet, antibiotic regiments, chemotherapy or 

radiation treatments that lead to a disruption of the baseline healthy homeostasis. Interactions that feed 

back and forth between the host and the microbiota, which may involve multiple steps and transitions, 

eventually either lead back to a healthy homeostasis or head along a disease trajectory. Along the disease 

trajectory the commensal microbiota may enter a dysbiotic state by shifting towards a pathobiome, which 

further enforces a pathogenic host response [17]. It is this interactome that is the current “black box” of the 

intestinal system: peering into and manipulating this black box holds the promise of designing interventions 

that can control the interaction dynamics and guide the system towards a healthy outcome (Figure 1). 

For patients with existing chronic conditions, appropriate control interventions would aim to steer patients 

back towards healthy homeostasis, or at least manage the interactome to prevent the outbreak of  

severe disturbances and relapses. There are numerous review articles that discuss the underlying biology for 

each of the different aspects of the host-microbiota interactome including the role of the immune  

system [18–20], host genetics [21,22], protection from pathogens by the microbiota [23], microbial 

community interactions [24–26], the microbiota’s influence on development [27] and relationship with 

pathogenesis [28,29]. Disentangling the complex multi-stage web of interactions that lead to these diseases 

will require novel approaches, using a combination of data-driven bioinformatics with knowledge-driven 

computational modeling. 
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Figure 1. The Host-Microbiota Interactome. The homeostasis of a healthy host and a benign 

microbiota can shift towards infection and disease in the host and a pathogenic microbiota 

due to many factors such as injury, trauma and genetic disposition, while interventions and 

therapy can shift it back. In actuality, there is a spectrum of physiological states, 

perturbations and interventions between those two extremes as abstractly represented by the 

color gradient. The host-microbiota interactome consists of multiple inter-connected 

components. Metabolic, signaling and regulatory components are shown as tightly-coupled 

processes within host and microbial cells. Extracellular metabolite exchange and 

competition occurs in the micro-environment shared by host and microbial cells, and these 

metabolites can directly affect metabolism and signaling processes. Signaling pathways 

within host and microbial cells secrete molecules into the extracellular environment, sense 

the local environment by processing extracellular molecules that bind to cell receptors, and 

mediate physical interactions between cells. 

Data-driven bioinformatics refers to the large body of analysis techniques and tools that seek to discover 

meaningful patterns from biological data. These techniques include a wide-range of statistical, 

mathematical and algorithmic methods. Bioinformatic tools are considered “data-driven” because of 

their common feature of using biological data as the primary input for their processing, and the output 

from these tools provide knowledge to better understand that data. In general, these tools are designed to 

operate on data produced by various high-throughput technologies, which generate a large quantity of 

experimental data, but other sources of data such as biological databases and literature are also applicable. 

The breadth and scope of bioinformatics has led to the numerous “omics” subfields based upon the type 

of biological data, i.e., genomics for genome data, proteomics for protein data, transcriptomics for gene 

transcription data, etc. Knowledge-driven computational modeling seeks to understand biological systems 

and their behavior by simulating the cause and effect relationships of biological mechanisms using 

mathematical methods. “Knowledge-driven” refers to the process of constructing the model that includes 
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a primary task of encoding knowledge about biological entities, processes and mechanisms into 

mathematical objects, and thus the model becomes an abstract representation of a biological system. The 

simulation of a model imitates the biological system over time and (possibly) space and allows for the 

behavior of the system to be analyzed. Specifically, models can be incorporated with hypothetical 

mechanisms and interventions to evaluate their plausibility and predict their efficacy. Combination of 

data-driven bioinformatics with knowledge-driven computational modeling will be crucial to understand 

the host-microbiota interactome because neither methodology is sufficient alone. Bioinformatics is needed 

to extract insights from experimental data and suggest new hypotheses but is incapable of evaluating the 

causal outcome of those hypotheses, which computational modeling can provide. Likewise, computational 

models are abstractions of the real biological system and require experimental data to validate and 

calibrate their behavior, and they produce simulated data that looks much like experimental data, which 

requires bioinformatics to properly analyze. This review covers both methodologies in the study of the 

host-microbiota interactome and highlights efforts to combine the two approaches. 

As the generation of high-throughput experimental data has become relatively inexpensive (though 

there are often sample collection hurdles to be overcome), analysis of that data has quickly become  

the primary bottleneck to extract meaningful knowledge. Construction of specialized databases such as 

IMG/M [30], SEED [31] and Greengenes [32] have consolidated annotated genomic data for bacteria, and 

some provide analytical pipelines (i.e., RAST [33], MG-RAST [34]). However, these tools provide only an 

initial, first-stage descriptive analysis of the data. Customized scripts and programs are still often required 

for performing in-depth bioinformatics analysis. In the future, projects like KBase will provide an open 

development environment based upon a standard data and service model for customized analysis 

pipelines [35]. Moving further down the chain of extracting knowledge from data, there is even less 

standardization for dynamic computational modeling, which is aimed at examining the behaviors associated 

with imputed bio-molecular mechanisms. While the efforts of the Systems Biology Markup Language 

(SBML) [36] and BioModels repository [37] have helped to standardize the use and simulation of 

biochemical reaction models, they are too specific to cover the broader range of biological modeling. 

Describing the various modeling methods and specific models using mathematical notation within the 

research article remains the primary mode of dissemination, with the implementation of the actual 

models often left as an exercise for the reader. 

In this review, we will focus on the computational approaches for investigating the microbiota and 

the host-microbiota interactome. Many of the current bioinformatic tools are in their early stages, often 

providing mostly descriptive analysis, yet there is progress towards increasing functional detail that will 

eventually lead towards mechanistic predictive models. Our objective is not to describe all of the existing 

tools and methods in detail, nor the protocols for performing the various analyses, though we will reference 

existing articles with this information when available. Instead we will highlight the current open 

challenges in the field and existing gaps in the integration of multiple techniques, with the hope that it 

will encourage research in new computational methods. 

2. Microbiota Studies 

Following ecology standards, the term “microbiota” is used to refer to the collection of microbial 

species that comprise a specific ecological niche, while the term “microbiome” refers to the genomic 
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content of those microbiota. Many research papers tend to intermix the two terms, so careful reading of 

the context is often required to differentiate the appropriate interpretation. Computational studies of the 

microbiota have primarily been DNA-based either with marker gene (i.e., 16S and 18S) profiling or 

metagenomics [38,39]. Marker gene profiling, also called amplicon sequencing, uses the known properties 

of the variable regions within ribosomal RNA (rRNA) genes that are present within all bacteria to provide 

a taxonomic characterization and relative abundance of the microbial community. Metagenomics performs 

sequencing of the entire genomic DNA and thus can provide a complete repertoire of genes within the 

microbiome. DNA-based techniques have been useful in characterizing the composition of the microbiome, 

especially in comparative studies of treatments and experimental conditions. Metatranscriptomics is an 

RNA-based approach that has become more practical with the decreasing cost of sequencing. Similar to 

RNA-seq used for eukaryotic organisms [40,41], the RNA of all bacterial species is captured in an unbiased 

way without requiring existing genome sequences with annotated genes as with microarray technology. 

Metatranscriptomics offers the promise of revealing the dynamics of microbial communities, however 

there are still significant experimental and computational hurdles [42,43]. 

While the bioinformatic analysis of microbiota is being rapidly adopted by the biological sciences, 

dynamic computational modeling and simulation has lagged behind. One bright spot is the development of 

genome-scale metabolic models for model bacteria organisms [44], and the constraint-based optimization 

method called flux balance analysis for predicting the flow of metabolites and compounds through a network 

of metabolic reactions [45,46]. These predictive models can reconcile culture conditions and phenotypes 

to experimental data, and offer intriguing possibilities for enhancing individual species and microbial 

community discovery [47]. On the other hand, most dynamic computational models have focused on an 

individual species and a specific signaling pathway or behavior within that species such as quorum-sensing, 

biofilm formation, motility or colony pattern formation. Recent research has started to tackle the more 

sophisticated problems of multi-species interactions [48,49] and whole-cell simulations [50]. 

2.1. Marker Gene Profiling 

Marker gene profiling (also called gene amplicon sequencing) requires DNA to be extracted from the 

samples, and large collection projects such as the Earth Microbiome Project recommend a standard 

experimental protocol [51]. Universal primers specific to the ribosomal RNA gene are then used to 

amplify the DNA sequence, while barcode sequences are also incorporated thus allowing multiple samples 

to be multiplexed on a single sequencing run. While initially using 454 pyrosequencing technology, 

amplicon studies have steadily switched to Illumina sequencing which provides equivalent results and 

greater coverage [52]. The computation tools have advanced quickly with pipelines such as QIIME [53] 

and MEGAN [54] providing many standard analytical techniques; even so there is continuing work to 

provide greater accuracy and fidelity [55,56]. Two primary limitations are: (1) reliance upon existing 

curated rRNA databases to align sequences for taxonomic assignment and (2) lack of specificity in the 

resultant taxonomic categories. The first limitation signifies that only existing well-characterized species 

can be identified in the samples, with truly novel species falling into a generic unknown category. Pipelines 

such as QIIME provide a “de novo” strategy, which clusters sequence reads together without requiring a 

reference database, yet additional annotation is required to meaningfully interpret the results. The preferred 

approach is an “open reference” strategy that first aligns sequence reads to the reference database, and then 
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uses clustering for any remaining reads. The latter limitation manifests as taxonomic categories typically 

at the family or genus level, and only rarely can specific species be identified. While this may be sufficient 

to give a general characterization of the microbial community, it offers little insight into particular strains 

or isolates of interest in clinical samples. 

Despite its limitations, marker gene profiling is popular partly because it is inexpensive, thus allowing 

large data collection projects to be performed. The open challenge is how to use these large datasets to 

extract meaningful patterns and predictive models about microbial communities. For example, PICRUSt 

is a tool that predicts the functional capability of the microbiota by inferring the metagenome from the 

marker gene data [57]. Standard techniques for analyzing the functional composition of metagenomes 

including pathway enrichment and metabolic reconstruction can then be applied [58,59]. More fruitful 

approaches might utilize well-established machine learning algorithms to predict phenotypes, perform 

classification, and extract discriminative features [60–62]. Deconstructing the microbe-microbe interactions 

and internal community structure is challenging using only taxonomic abundances, but with perturbation 

data or time-series data then the various network inference algorithms used on gene expression data can 

be applied to the microbiome [63–66]. These can provide correlation networks [67,68], while methods 

with an underlying mechanistic model can provide predictive dynamics [49,69]. 

2.2. Metagenomics 

Metagenomics requires substantial sequencing to be performed in order to obtain adequate depth and 

coverage of the microbiome, in contrast to marker gene profiling which only requires a few thousand 

sequence reads per sample. The presumption is the microbiome consists of numerous uncultivable species, 

so the sequence reads must be de novo assembled before being aligned to existing databases to catalog 

species and gene content. In theory with enough sequencing, whole genomes of novel species can be 

assembled [70–72]; however practically, de novo assembly tends to produces numerous short contigs 

(contiguous sequences). Producing high-quality drafts of microbial genomes will likely require borrowing 

techniques from eukaryotic genome assembly with longer read lengths and read-pair scaffolding [73,74], 

or possibly by utilizing single-cell sequencing technology [75,76]. However with the intense focus on the 

human microbiome, the number of fully assembled bacteria genomes is rapidly increasing, so the day may 

soon approach where the assembly step can be skipped in place of direct alignment to genome databases, and 

de novo assembly is reserved for the more diverse soil and marine ecologies. Alternatively, assembly-free 

methods could provide informative analysis with much less computational requirements [77,78]. 

Characterizing the gene content and associated functional composition of the microbiome is the initial 

descriptive analysis for metagenomic data, and the standard approach for determining gene content is to 

run BLAST, or similar alignment tools, on either the raw or assembled sequences against a reference 

database to find regions of local similarity (and presumed function) between sequences. For example, 

the MG-RAST pipeline uses the M5nr database, which is an aggregated set of non-redundant protein 

sequences from multiple sources [34,79]. Taxonomic categorization can also be performed by picking out 

just the marker gene sequences and is supported by the QIIME pipeline. Functional composition is generated 

by collating the functional categories assigned to the gene content from a set of functional databases such 

as KEGG Orthology [80] or SEED subsystems [31]. Specialized statistics tests can then be performed to 

compare the functional composition between experimental groups [81], and pathway analysis provides 
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higher-level aggregate insights [58,82]. Comparative functional analysis between metagenomic samples 

is complicated by the fact that many bacterial genes have poor or unknown functional annotation and 

gene content of a sample is a mixture of multiple species [83]. Genes with metabolic functions tend to 

be well annotated, allowing the construction of mechanistic metabolic models [59,84,85], while gene 

regulatory and signaling networks are poorly characterized except for a small number of pathways in 

model organisms. As a mixture of species with unknown internal interactions, attempts at computational 

modeling of the microbial community require careful consideration of what constitutes a “community”, 

and the appropriate mapping of the functional composition with that community [26,86]. Furthermore, 

DNA measurement does not differentiate between alive or dead microbes and whether those functions 

are active. 

Despite the difficulties, the broad unbiased approach of metagenomics is continuing to expand our catalog 

of known genes. The challenge of discovering the functions for many of these genes will likely require the 

development of high-throughput functional screens that can be applied to microbial communities [87]. 

Likewise, the largely unexplored world of bacterial phages and viruses in the intestine suggests another 

layer of complexity that will require metagenomics to adequately explore [88–90]. The primary challenge 

for metagenomics is determining the mechanistic underpinnings for changes in the microbiome, and 

deciding which changes are causal drivers with functional consequence versus less significant side effects. 

Integrating the metagenomics data with predictive computational models, such as is currently being done 

with metabolic modeling, provides one such route [91]. Including signaling pathways for virulence factors, 

reception and response to host and microbial factors and spatial organization of microbial communities 

will be key capabilities required for understanding the microbiome’s effect on human health. Another 

route is using dynamical system formulations of the microbial community and then inferring parameters 

from the experimental data [92], such as described above with marker gene profiling studies [49,69], but 

to date these techniques have not be applied to metagenomics data. 

2.3. Metatranscriptomics 

Metatranscriptomics requires RNA to be extracted from the samples, and unlike DNA techniques the 

experimental protocols are still being actively investigated to achieve both quality sequence and high yields. 

One of the experimental challenges for metatranscriptomics is the extraction of sufficient bacteria RNA 

to perform high-throughput sequencing without performing amplification. In combined host-microbiota 

in vivo experiments, even though the number of bacterial cells greatly outnumbers the host cells, they 

have much less total biomass, and host RNA dominates. Furthermore, the ribosomal RNA needs to be 

depleted from the bacterial RNA otherwise it will overpower the regulatory and signaling genes of primary 

interest. As a relatively new technique, there are numerous computational challenges to be addressed for 

metatranscriptomic data. The first is mapping of individual sequence reads to the appropriate genes. If 

only a functional characterization is required, then the techniques used to analyze metagenomic data can 

be used, as available with MG-RAST. Most desirable is to calculate gene expression values for the 

sequence reads and have them assigned to specific bacteria species. One approach is to collect a set of 

representative bacteria genomes and use fast alignment tools such as bowtie [93] or SSAHA [94] to align 

the sequences [43,95,96]. However, this only provides information for those species with a known genome, 

and furthermore will not work for clinical samples and bacterial isolates that have mutated significantly 
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from laboratory strains. For example, our experience with a microbiome extracted from an intensive care 

unit patient [97] containing multi-drug resistant pathogens, Enterococcus faecalis, Klebsiella oxytoca 

and Serratia marcescens, found that only 1% of the sequence reads could be aligned to the reference 

genomes in NCBI using bowtie. Sequence alignment using BLAST of some randomly selected reads 

showed 90%–95% homology, which are more mismatches than efficiently allowed by these tools. Some 

studies use only BLAST [43,98], but this requires substantial computing capability to align millions of 

sequence reads. Current pipelines use a variant of this basic approach [99,100]. 

Bacteria share many common genes, especially those with metabolic function, and BLAST-style 

approaches produce numerous matches that require some heuristic post-processing analysis to assign the 

sequence read to a species. An alternative approach is to de novo assembly the sequence reads into 

transcripts, which can then be aligned against the transcripts to produce gene expression counts. The longer 

assembled transcripts will provide a more unique BLAST match for designating the species, as well as 

fewer sequences to process. Even this approach has its difficulties though as it relies upon the assembly 

quality. The sequencing depth may not sufficient to provide coverage across the whole transcript, possibly 

resulting in multiple assembled transcripts that partially cover the same gene or contain chimeric sequence. 

Furthermore, multiple bacterial genes are typically transcribed as a single unit, called an operon, so each 

assembled transcript can contain multiple genes that need to be individually parsed. None of the approaches 

currently published are optimal, as the ambiguity in the assignment of species-gene pair for each sequence 

read still needs to be solved. Functional analysis can be performed, but tools that provide comparative 

metatranscriptomic analysis, which highlights species transcriptional differences, is lacking. There are 

currently no published attempts to integrate metatranscriptomic data with mechanistic computational 

models. Regardless, metatranscriptomics holds great potential to elucidate the dynamics of the microbiota, 

and techniques to capture both host and microbiota transcriptomes will provide a broad snapshot of the 

host-microbiota interactome [99,101]. 

2.4. Computational Modeling and Simulation 

Computational modeling and simulation of the microbiota has primarily focused on metabolic modeling 

due to the availability of genome-scale metabolic models for some bacteria [44,47], as well as software tools 

for automatically generating models from metagenomic data [45]. These approaches do not yet attempt 

to model the full complexity of the microbial community, instead the system is simplified using various 

abstractions. Models may focus on a single organism, a small community of interacting organisms or a 

supra-organism whereby all of the metabolic genes are aggregated together without regard to species [86]. 

The metabolic model is translated into a linear optimization problem where metabolic reactions become 

equality constraints for the reactants and products in the reaction. Inequality constraints are added to 

represent bounds on the system, such as the availability and rate that metabolites can be taken up from 

the environment, and an objective function is defined for the desired phenotype. Commonly a growth 

phenotype is desired, so an objective function that maximizes biomass is used. When the optimization 

problem is solved, it provides fluxes (or flows) on each reaction, the rate at which the metabolites are 

consumed or produced. This method is commonly called flux balance analysis (FBA) [46]. One critique 

of FBA metabolic models is the underlying assumption that the system is in steady state, which is likely 

false for in vivo systems, and the model does not take into account the availability and activity of the 
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enzymes which catalyze those metabolic reactions. Also, FBA models utilize and provide metabolic 

rates, as opposed to metabolite concentrations, which are most often measured in experimental systems. 

As such, comparing FBA model results to experimental metabolomics data is challenging. However, the 

success of FBA models at predicting experimental phenotypes has led to new method development that 

addresses these criticisms, including incorporation of dynamics [102,103], integration with transcriptional 

regulation and signaling [103–107], and integration with “omics” data sets [108–110]. An interesting 

twist on these models is reverse ecology, which infers the set of compounds that the microbial community 

extracts from the environment [111]. 

Beyond metabolic models, dynamic modeling of the intestinal microbiota is still in its infancy [112]. 

Dynamic modeling has a long tradition in ecology where methods such as agent-based modeling  

were developed to represent heterogeneous agents interacting with each other in a heterogeneous  

environment [113], and these ecological methods are slowly being applied to the human microbiome. 

Agent-based modeling is highly applicable to microbial communities, however getting appropriate and 

sufficient experimental data to calibrate and validate the model predictions is still a formidable hurdle. 

Simplified population models such as the generalized Lotka-Volterra equations have been successfully 

used with marker gene profile data, and analysis of generated taxonomic interaction networks can 

provide insights about community stability or dysbiosis [49,69]. Another technique is to model bacterial 

as functional groups and to investigate the interactions of those groups. This approach was used to study 

antibiotic-mediated switch behavior with bacteria classified into functional groups from metagenomic  

data [48]. Additional multi-species modeling approaches are applicable to the intestinal microbiota including 

biofilm formation [114,115], cooperation and competition [116], and other ecological processes [117]. 

When considering individual bacterial species, there is a large body of dynamical modeling research 

that investigates specific molecular signaling and gene regulatory systems, behaviors and phenotypes. Such 

systems include cell-cell communication, quorum-sensing that provides population-level communication, 

motility on surfaces and in media, growth and colony pattern formation, environmental interactions through 

chemotaxis and haptotaxis, virulence factors related to infection and disease, genetic mutability, antibiotic 

resistance and numerous others. The major challenge in the scaling of these methods from individual 

pathways or modules to actual microbial behavior is the task of taking many small specific individual 

models and integrating them together to produce useful system-level models of bacteria. One route is to 

produce genome-scale models similar to metabolic models that have a high degree of fidelity in their 

component description, while using scalable numerical methods to examine the system dynamics [118]. 

An alternative route is to produce logical conceptual models that abstractly implement the low-level physical 

details of the biology while qualitatively representing our biological knowledge and hypotheses [119]. 

A combination of the two approaches will be the likely strategy in the immediate future. Regardless of 

the approach, extracting useful predictions and insights from increasingly complicated models will be a 

continuing obstacle. 

3. Intestinal Host-Microbiota Interactome Studies 

Computational modeling of the host-microbiota interactome is still in its infancy. The bioinformatics 

techniques to study the microbiota described in the previous section are helping to provide an increasing 

descriptive analysis about the microbial community, with the intestinal tract being one of most studied. 
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On the other side of the interactome is the host immune system. There is a long history of immune system 

modeling. While this body of work is too large to adequately describe in this review, in the following 

sections we point out some main categories of interest. Consequently, we will highlight studies of 

intestinal inflammation where interactions with the microbiome can initiate, perpetuate or even disrupt 

the inflammatory response. 

There are some significant methodological challenges that need to be addressed before causal 

mechanisms of the host-microbiota interactome can be effectively evaluated with computational modeling. 

Foremost is determining appropriate levels of representation for both the host and the microbiota, i.e., 

what computational and mathematical constructs to use to represent the biological entities and processes. 

The host immune system manifests at the molecular, cellular, tissue, organ, whole organism and population 

scales of organization, and it is still an open question about how to define the interactions between these 

different scales as they can contain important inflection points of behavior [119–121]. The set of methods 

used in existing multiscale models would suggest that no single method would be sufficient for all 

purposes, as there are advantages and disadvantages with each. Meanwhile, microbes manifest at the 

molecular, cellular and population scales, and the quantity and diversity of individual bacteria presents 

computational challenges to specify the intra-community interactions in sufficient detail to establish 

dynamical changes in microbial community structure. The intestinal host-microbiota also exhibits spatial 

heterogeneity, with host cell responsiveness and microbial composition changing throughout the length 

of the intestinal tract. Moreover, the interactome acts through multiple routes including metabolite 

exchange and competition, signaling pathways mediated by extracellular molecules, physical interactions 

between host and bacteria cells, and the extracellular milieu which may be abundant with viruses, 

bacteriophages and mechanisms for horizontal gene transfer. Computational modeling is a knowledge-driven 

task, yet there are still large gaps in our biological knowledge about the interactome that can divert the 

modeling process. A combined data-driven and modeling framework will likely be the most effective 

approach to fill those gaps, with suggestive correlations from statistical analysis being evaluated for 

plausibility in mechanistic dynamical models. 

3.1. Computational Modeling of Host Immune System 

The host immune system is split between innate immunity and adaptive immunity. The innate immune 

system is the initial defense against infection and operates in a non-specific manner, while adaptive 

immunity invokes specialized responses to specific pathogens that are acquired during the lifetime of 

the host and maintained in immunological memory. Computational modeling of the immune system has 

historically concentrated either on specific host-pathogen interactions or on inflammation. Host-pathogen 

specific models include research on the diseases and pathogens with broad global health implications 

such as HIV [122–125], malaria [126–128], tuberculosis [129–131] and influenza [132,133]. These models 

primarily focus on the adaptive immune system and cover a wide range of topics related to the epidemiology 

of the diseases including the molecular biology interactions between host and pathogen pathways and 

molecules, disease progression and transmission both in the host and associated vectors (e.g., mosquito for 

malaria), evolutionary and selection forces on pathogen genetics, and drug discovery for vaccines and 

treatments. These models have helped to elucidate the dynamics associated with many of these processes, 
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however no models have yet considered the microbiota, and biological studies of the microbiota’s 

relationship to these diseases are only beginning. 

Computational studies of inflammation can be divided between acute and chronic inflammation, which 

both focus on, but consider different aspects of, the innate immune system [134–141]. Inflammation is a 

response by the immune system to injury or infection and involves three basic steps: (1) sensing of 

damage or threat; (2) containment and clearance of the threat; and (3) repair of the damaged tissue. Acute 

inflammation is the initial immune response to a threat, and it is a self-regulating system that, through a 

set of positive and negative feedbacks, will first upregulate immune processes and then downregulate 

them once the threat is removed [142–144]. Chronic inflammation is characterized by a disorder in the 

self-regulating inflammatory response system such that a persistent low-level inflammation continually 

damages and repairs host cells in localized tissue. For example, the disorder could be due to insufficient 

negative feedback that prevents the inflammatory response from completely turning off, or it could be 

excessive positive feedback that chronically re-starts the inflammatory response. Chronic inflammation 

can be due to genetic susceptibility in the host, the inability of the immune system to completely clear a 

bacterial infection or a combination of both. Early computational models emphasized acute inflammation, 

specifically in relation to trauma and sepsis, to better understand the self-regulating dynamics of the system 

for prevention and treatment of systemic inflammatory response syndrome (SIRS), a severe disruption of 

the innate immune system that can lead to organ dysfunction, failure and potentially death. While bacteria 

is known to cause or propagate the inflammatory response, these models generally define bacteria as an 

abstract perturbation to the host immune system, but there is increasing recognition that the interplay 

between host and microbial dynamics needs to be considered. Recently there has been greater interest in 

chronic inflammatory diseases such as necrotizing enterocolitis, Crohn’s disease and inflammatory 

bowel disease, and the role the microbiota can play on perpetuating or alleviating disease. 

Computational models have used a variety of mathematical methods such as ordinary (ODE) and 

partial (PDE) differential equations [139,141,145], Boolean networks [146] and agent-based models 

(ABM) [139,144] to represent the host immune system. Furthermore, these models have to consider the 

inherent multi-scale nature of the immune system that include intracellular signaling networks, cell level 

behaviors and organ function. Though some models focus on just a single scale, which tends to be signaling 

and regulatory networks, other models incorporate multiple scales of organization and the interactions 

between scales to better represent the complexity of the immune system. The variety of applicable methods 

means that researchers can pick an appropriate level of abstraction based upon the types of available 

knowledge and data, and models can produce a spectrum of outcomes from quantitative results to 

qualitative thought experiments across the multiple scales [136,147,148]. 

3.2. Inflammatory Diseases and the Intestinal Host-Microbiota Interactome 

The intestinal tract is subject to both acute and chronic inflammatory conditions. Acute intestinal 

inflammation can be part of a systemic response in sepsis and trauma, or due to intestinal surgery or injury, 

however current studies focus on individual opportunistic pathogens vs. the whole microbiota. Meanwhile, 

the microbiota and environmental factors that influence the microbiota have been shown to have a strong 

link with chronic intestinal inflammatory diseases [10,19]. The main challenge is how to translate the 
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correlative descriptive studies about the changes in the microbiota and host immunity into causal 

mechanisms [149]. 

One step in that direction are attempts to overlay a generic dynamic model for the microbial community 

onto time-course data then analyze the resultant dynamical system for insights [48,49,69]. Stein et al. 

took this approach to hypothesize the colonization mechanism for C. difficile infection based upon the 

effect of antibiotics on the microbial community [49]. Marino et al. analyzed colonization of germ-free 

mice with the cecal contents of conventionally raised mice and suggested that few microbial interactions 

are mutualistic, while most are neutral Parasitic and competitive interactions dominated within specific 

phyla like Bacteroidetes and Firmicutes [69]. Both of these studies used the generalized Lotka-Volterra 

equations to define the interactions between microbial species in the community. Bucci et al. used a model 

derived from statistical physics to show that a two-group community composed of antibiotic-sensitive and 

antibiotic-resistant bacteria can exhibit multistability and hysteresis whereby the community can be dominated 

by either group [48]. Furthermore, it is an open question about how evolution formed stable microbial 

communities in the first place [150], especially given evidence that mutualism of the host-microbiota 

interactome is fragile whereby fast growing microbes can outcompete host beneficial ones [151]. 

Computational modeling is well suited to provide insights into the importance of interaction mechanisms 

and to evaluate hypotheses about these processes. Some recent models have considered interactions such as 

host genome evolution [152], economic market strategies [153], and the role of spatial structure [154,155]. 

There is a large body of theoretical ecology modeling research about food webs, biodiversity and 

community structure that can inform future microbial community modeling. 

Spatial heterogeneity of the gut microbiota is well recognized, yet there are currently no computational 

models that consider the spatial host-microbiota interactome. However, there are models that consider 

the spatial architecture of the intestine in relation to disease and development that also include pathogen 

interaction. Three such models include a gastric mucosal immune response to Helicobacter pylori 

infection [156], Pseudomonas aeruginosa virulence activation in the pathogenesis of gut-derived sepsis [157] 

and dysentery resulting from Brachyispira hyodysenteriae infection [140]. Necrotizing enterocolitis is 

another intestinal disease that has received modeling attention [145,158,159]. The first paper develops 

a hybrid ODE and ABM model, with the ODE representing the signaling networks in and between four 

spatial compartments (lumen, epithelium, gastric lamina propria, gastric lymph nodes) while the ABM 

represents immune cell populations categorized by immunological states through the progression of  

H. pylori infection. The model depicts the migration of H. pylori from the mucus layer of the gastric 

lumen to invasion of the gastric lamina propria with spatiotemporal interactions between immune cells 

and spatial compartments. One of the challenges they identified was the lack of developed strategies for 

parameter estimation for ABMs in comparison to numerous methods available for ODEs, and thus 

because of the stochastic nature of ABMs, they needed to perform trial and error simulations to refine 

the parameters values. The high level of detail makes the model computationally expensive; the authors 

needed to use a high-performance computing cluster with 912 processor cores to run simulations. The 

Brachyispira hyodysenteriae infection model uses the same Enteric Immunity Simulator (ENISI) 

modeling environment as the previous model, and it describes in more detail the graphical discrete 

dynamical system that represents the spatial interaction between immune cell and bacteria agents. This 

method abstracts the spatial representation into compartments, which can be subdivided into sublocations. 

An agent’s location implicitly defines the set of other potentially interacting agents. This abstraction 
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allows the full set of interactions to be computed, and the dynamical graph can be partitioned and executed 

in a parallel discrete-event simulation. Scaling to a larger number of agents is a difficult challenge for 

ABMs, and ENISI provides a novel approach for accomplishing large-scale simulations. The 

Pseudomonas aeruginosa virulence activation model developed by our group is an ABM with multiple 

virulence signaling pathways represented within P. aeruginosa as well as an abstract representation of 

the commensal microbiota. The commensal microbiota is represented collectively as generic microbial 

species without genetic background or detailed molecular mechanisms, however they compete with  

P. aeruginosa for nutrient resources within the intestinal lumen. Commensal and P. aeruginosa populations 

are limited by a finite carrying capacity per volume of the mucus layer, and P. aeruginosa activation of 

its virulence pathways can secrete chemicals that target the elimination of commensal microbiota. The 

model also represents gut epithelial cells as agents, and it consists of four spatial data layers for the intestinal 

lumen, mucous layer, epithelial layer and systemic circulation. This model takes a bacteriocentric viewpoint 

vs. the typical immunocentric perspective of other models by including detailed virulence pathways in 

P. aeruginosa while using simple behavioral rules for the host immune cells. This approach allowed for 

the exploration of hypotheses based upon current knowledge of bacterial virulence activation even though 

the model does not accurately capture all of the host dynamics. The authors note that adding in sufficient 

host immune system detail to obtain complete host dynamics would have made the model computationally 

intractable (or at least require a large compute cluster as with the other models), which would have 

defeated the purpose to engage in expedient “thought experiments” about plausible lines of investigation. 

As is, the model can be run on a single computer. This demonstrates the ongoing need to consider appropriate 

levels of representation when developing host-microbiota interactome models. The open challenge for 

the modeling community is the question of whether models are going to inherently become more detailed 

over time, and we just need to accept the increased computational costs, or whether we can develop 

methods that allow models at different abstract levels to be composed together. One approach is to utilize 

a more generic representation that includes semantic content such as biomedical ontologies for model 

specifications, and thus models can be composed and manipulated at the semantic level [160–162]. 

While the microbial community has spatial structure, that community can also alter the host epithelial 

intestinal architecture through the perpetuation of a chronic inflammatory response. Our group has published 

a model that considers this interplay of the host inflammatory response with the morphogenetic pathways 

that control spatial patterning and tissue architecture [163]. The Spatially Explicit General-purpose 

Model of Enteric Tissue (SEGMEnT) reproduces the epithelial crypt-villus architecture under health and 

disease conditions such as colonic metaplasia, which is characterized by a shift to a colonic tissue 

phenotype with increased crypt depth and shortened villi. SEGMEnT uses a 3D spatial representation 

for crypt-villus architecture (Figure 2), and this is in contrast to the spatial models described above which 

use compartments or an abstract 2D interaction grid. This more sophisticated spatial representation is 

required to accurately depict the morphogenetic changes to the crypt-villus architecture so that they can 

be correlated with experimental histology images. It is not a complete 3D representation however as 

cells are not represented within the interior of the villi or the spaces between the crypts, instead a 2D 

grid is mapped onto the 3D surface (Figure 2C). The 2D grid can change in height over time as cells are 

either lost or gained, and morphogen gradients define the crypt-villus boundary and may also shift as the 

morphogenetic functions are altered by host inflammatory input. Currently, the microbial interaction is 

represented as stimulatory input into the host inflammation pathway, and the microbiota is assumed to 
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be in dysbiosis such that it maintains that input and generates a low-level chronic inflammatory response. 

However, in the future, SEGMEnT provides a framework for placing the microbial community in a 

spatial context from the intestinal epithelium to the lumen, and thus allows heterogeneous interactions 

to be modeled between microbes and host. 

 

Figure 2. Crypt-villus architecture for Spatially Explicit General-purpose Model of Enteric 

Tissue (SEGMEnT) model. Panel (A) shows a histology cross section of ileal tissue (top) 

and scanning electron microscopy of the mucosal surface of ileum (bottom). Panel (B) is the 

topology used by SEGMEnT where crypts and villi are represented with a matrix of 

rectangular prisms. Each crypt and villus is mapped onto a two-dimensional grid (Panel (C)), 

where signaling interactions, morphogen diffusion and cellular actions take place. The 

topology can be replicated and extended to represent any size piece of tissue. 

An uncommon feature that was implemented in SEGMEnT is time delays in the transcriptional 

machinery, translational machinery and transportation of the gene products for signaling networks. 

Standard continuous models (ODEs and PDEs) rely upon the reaction rate parameter values to characterize 

“slow” or “fast” interaction, which is physically accurate if all the detailed steps of an interaction are modeled, 

but oftentimes interactions are abstracted with many of the intermediate steps removed. In this case, the 

instantaneous nature of the continuous models is an approximation to the time delay from when a signal is 

received until the corresponding output is actualized. However, time delays can be incorporated in continuous 

models by defining functions that refer to the values of those functions at previous times; these are called 

delay differential equations (DDEs). While DDEs have been used in biological modeling [164–166], 

especially in models whereby such delays seem to be critical to behavior, their use is infrequent. Discrete 

simulations such as ABMs have an elegant method for implementing time delays by using a queue data 

structure to “hold” values for an appropriate amount of time steps until they are released. Figure 3 

demonstrates how a time delay queue operates. Queues can be implemented efficiently using standard 

array structures, and they can readily support heterogeneous time delays for different products and even 

dynamically changing time delays. Within SEGMEnT, time delays were introduced for the transcriptional 

machinery based upon the average rate of transcription per nucleotide and the total nucleotide length for 
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each gene. Time delays for the translational machinery was based upon the average rate of translation 

per amino acid and the total amino acid length for the protein, and transportation delays include moving 

products between the nucleus, the cytoplasm and the extracellular environment. Despite the ease of 

implementation, use of time delays in ABMs is also infrequent. For SEGMEnT, the objective for introducing 

time delays was to better correlate with the observed delays seen in experimental data, however the 

conclusion was that the time delays were insufficient to explain the experimental data. While such time 

delays could account for minutes of delay, it could not account for the multiple hours observed in 

experiments. It remains an open question about what degree of importance should be attached to the 

temporal calibration of models vs. qualitative reproduction of dynamic behavior. Including delays into a 

model that has feedback loops can introduce oscillations and other effects, yet it is also known that delays 

can benefit control [167]. This issue is relevant for host immune modeling because the whole system is 

geared around feedback control of sense and response, and the host-microbiota becomes another feedback 

layer that needs to be considered by the control circuitry. Accordingly, there is a growing collection of 

host immune system models that suggest time delays are an important factor to be considered [168–170]. 

 

Figure 3. Queue data structure for time delay in a discrete simulation. Values that are 

produced, indicated on the left, are placed at the end of the queue structure. At each time step, 

values are shifted in the queue and the value at the front of the queue is removed. Progression 

of values is shown for two time steps, and the queue length represents a time delay of  

five time steps. 

Future work is needed to more explicitly define microbial communities. Specifically, the challenge 

is how to obtain sufficient functional characterization of a microbial community such that it can be used 

as an input into a mechanistic computational model, and correspondingly how model outcomes can be 

matched to experimental data. The host-microbiota interactome acts through multiple routes, yet it is 

experimentally difficult, if not cost prohibitive, to obtain the vertical depth of observation that includes 

metabolism, gene transcription, protein abundance, microbial composition, signal transduction, and 

environmental milieu. It is likely that we will never obtain complete breadth of observation except for highly 

controlled model organism systems. Instead, combining data-driven analysis with computational modeling 

will allow the limited experimental data to be incorporated as a way to both calibrate and constrain the 

exploration of causal mechanisms. Such studies are starting to be performed for inflammation [136]. 

Lagoa et al. utilized transcriptomic analysis of liver tissue to test hypotheses generated by a mathematical 

model of inflammation and global tissue damage [171]. Another study utilized principal component 

analysis of inflammatory regulators to suggest principal cytokine drivers of the inflammatory response, 
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which was incorporated as putative hypotheses into an existing literature-based mathematical model [172]. 

By demonstrating that the modified model can recapitulate inflammatory and physiologic responses, the 

results provide plausible new knowledge about blood-lung inflammatory interactions. In both studies, 

the experimental data is not quantitatively calibrated with modeling variables, which is often not possible 

for complicated biological processes such as inflammation as those variables do not have a direct physical 

correlate. Instead, the first study used clustering and pathway analysis of the gene expression data to 

provide correlation with the modeling outcomes, while the latter study suggested potential interactions 

between biological components with the functional form of the interaction provided by the researchers. 

These studies illustrate that combining data-driven and mechanistic modeling is not a straightforward 

process of matching variables to data, instead metrics and higher-level analysis needs to be performed, 

an area of research that requires increasing attention as more of these studies are performed. 

An exciting future prospect for computational modeling is the development of in silico clinical trials 

to test the efficacy of therapies and interventions [147,173,174]. Known human variation is incorporated 

into the computational model, and patient cohorts are created with a set of randomly generated models. 

Simulations are performed for a control group and an intervention group of patient cohorts, and model 

outcomes are assessed to determine the effect of the intervention. Clermont et al. applied this idea to an 

anti-TNF (tumor necrosis factor) therapy. They were able to identify a window of opportunity when the 

therapy was effective, but also characterized a population that could be harmed by the therapy [173]. An 

alternative utilization of in silico clinical trials, with applicability to personalized medicine, is to analyze 

the modeling outcomes to define the characteristics of patients that would most benefit from the therapy, 

and modify the patient selection process accordingly when performing a human clinical trial [175]. With 

regards to the host-microbiota interactome, the accumulation of microbiome data in sequence databases 

provides a rich description of the microbiome variation present in humans in healthy and diseases 

conditions. By explicitly incorporating this variation into host-microbiota models, the complexity of the 

microbiota can serve to constrain the interactome in regions of dynamic stability that characterize 

appropriate host and microbiota responses. However, an appropriate mathematical characterization of 

microbiome variation has yet to be developed. To fully realize such models also requires gathering host 

genetic variation and other data applicable to host immunity modeling. 

4. Conclusions 

The host-microbiota interactome is the next frontier in the nascent field of translational systems 

biology and bioinformatics. The large collection of host immunity computational models plus expanding 

microbiome databases provide fertile ground for combining knowledge-driven computational modeling 

with data-driven bioinformatics in the development of new methods and analyses. Methodological 

progress is required in order to significantly advance our knowledge of the host-microbiota interactome 

and its impact on human health. In this review, we have highlighted some of the main challenges and 

existing gaps with the hope that it will encourage research in new computational methods. For microbiome 

analysis, the primary challenge is extracting functional characterization of the microbiota. New methods 

are required to analyze metatranscriptomic data, and integration of multiple data types is needed to 

provide a more complete reconstruction of the microbial community. While there has been significant 

progress in the metabolic modeling of individual microbial species, these models need to be extended to 
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encompass a community of interacting microbes and include signaling and regulatory networks. The 

disparate collection of knowledge about signaling and regulatory genes and pathways in microbial species 

needs to be combined into more comprehensive whole organism models. This is not purely an exercise of 

collecting together the parts list of physical components; instead multiple techniques for abstracting that 

knowledge into functional models should be devised to address the multi-scale nature of biology. This 

review has focused on the host-microbiota interactome in the human gut, with emphasis on the host 

immune system response, though many of these challenges apply to other epithelial surfaces and host 

organisms. Finally, existing host immunity computational models need to incorporate the microbiota 

and its interaction with the host. Accomplishing this integration requires appropriate representation of 

the microbiota so that it can be coupled with the host in a dynamic computational model. Furthermore, 

new metrics and analysis techniques are needed to correlate modeling outcomes with experimental data 

for calibration, validation and prediction. The development and utilization of comprehensive, multi-scale, 

validated computational models of the intestinal host-microbiota interactome could have profound 

relevance for clinical practice in the treatment and prevention of trauma, sepsis, surgical infections and 

chronic inflammatory diseases, as well as a better understanding for the role that diet, stress and other 

environmental factors influence our health. 
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