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Abstract: In this study we present a computational approach to the generation of the major 

geometric structures of an idealized murine lymph node (LN). In this generation, we 

consider the major compartments such as the subcapsular sinus, B cell follicles, trabecular 

and medullar sinuses, blood vessels and the T cell zone with a primary focus on the 

fibroblastic reticular cell (FRC) network. Confocal microscopy data of LN macroscopic 

structures and structural properties of the FRC network have been generated and utilized in 

the present model. The methodology sets a library of modules that can be used to assemble 

a solid geometric LN model and subsequently generate an adaptive mesh model capable of 

implementing transport phenomena. Overall, based on the use of high-resolution confocal 

microscopy and morphological analysis of cell 3D reconstructions, we have developed a 

computational model of the LN geometry, suitable for further investigation in studies of 

fluid transport and cell migration in this immunologically essential organ. 
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1. Introduction 

The general functionality of the immune system is governed by a complex set of physical 

(transport), biochemical and biological processes occurring in space and time. Today, the need to 

embed immune processes into their spatio-temporal context is considered as a hallmark of systems 

immunology [1]. The immune system consists of a network of interconnected lymphatic vessels, 

primary and secondary lymphoid organs (SLOs) of which lymph nodes (LNs) are the major sites for 

induction and maintenance of immunity. LNs have a highly elaborate structure-functional organization 

with various subcompartments orchestrating immune responses [2–5]. The crosstalk between the 

hematopoietic and stromal cell compartments has a pivotal role in developing adaptive immunity in 

SLOs [6]. One such stromal cell type are fibroblastic reticular cells (FRCs) which organize in a 

densely connected network and provide structural support for lymphocytes, secrete cytokines and 

chemokines, such as CCL19 and CCL21, which are crucial for proper lymphocyte migration [7]. 

Mathematical modeling of the spatial organization of the immune system and LNs in particular, is 

still in its infancy [8]. Some studies have been performed in which the architecture of the LN is 

modeled as either 2D- or 3D regular orthogonal lattice [9–14] or a paradigmatic 3D view composed of 

a simplified set of basic structures [15]. The broad availability of various imaging techniques has 

enabled the characterization of the LN structures with a high degree of spatial resolution. One of the 

first 3D reconstructions of the positioning and morphology of cortical sinuses, the T cell zone and high 

endothelial venules (HEVs) from confocal imaging data of an entire inguinal murine LN using Imaris 

(Bitplane) and MATLAB (MathWorks) software is presented in [16] for studying lymphocyte egress 

dynamics. The macro-structures such as B cell follicles and vascular network (HEVs) for popliteal 

murine LNs were reconstructed from OPT-based mesoscopic images analyzed with Imaris in [17] to 

study LN remodeling during a virus infection. Three major compartments of a mesenteric rat  

LN—sinus, paracortex and follicles—were 3D reconstructed in [18,19] for simulations of T cell transit 

through the LN. Recent 3D reconstruction and quantification of macro-structures such as B cell 

follicles, T cell zone and subcapsular sinus of an inguinal mouse LN from sections stained  

with immunofluorescence antibodies is based on original software (FOR3D) implemented in 

MATLAB [20]. 

The first model of the FRC network reconstruction was proposed in [21] using a static network of a 

3D lattice that consists of thin, long rods with a random position and orientation. The in silico model of 

the FRC network defining the micro-architecture of the T cell zone was developed in [11], where the 

network edge length was based on imaging data from [22], and the motility of the T cell walk on the 

network was validated. To construct the FRC network, 3D lattices of nodes and edges were used with 

the FRCs randomly placed on a node in the lattice and the minimum number of fibers connecting the 

FRCs along the edges of the lattice set equal to two. In order to quantify the model parameters, two 

settings were considered: the “sparse” network structure based on the data from mice persistently 

infected with Lymphocytic Choriomeningitis Virus (LCMV) and the second “dense” (normal) setting 

with data provided from white pulp in the spleen of naive mice. In studies relevant for simulations of  

T cell movement [23], the reticular network was generated as a spatial random network without 

reference to topological data on FRC organization. In this study, a general mathematical model is 

described which is then parameterized with FRC edge length information from [22]. The authors 
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validate the random T cell motion on a network with this topology, generating quantitatively realistic 

migratory dynamics.  

Computational generation of 3D morphology of biological tissues and organs using data from  

high-resolution microscopy has received increasing attention in recent years [24]. Due to extremely 

variable histological appearance and resolution limitations of specific techniques, the generation of an 

entire LN from 2D scanned images seems to be infeasible yet. An alternative approach is to develop a 

generalized 3D solid model of the LN from a set of “elementary” macroscopic structures such as the 

subcapsular sinus, B cell follicles, trabecular and medullar sinuses, blood vessels, the T cell zone and 

FRC network. We sought to develop a LN model which included an anatomically realistic 

representation of the FRC network using high-resolution microscopy data, as FRCs have been shown 

to be vital for induction and maintenance of immune responses [6,7,21,22]. We characterized 

experimentally the properties of the LN macro-structures and developed a computational method to 

reconstruct them in 3D. Finally, we generated a geometric LN model which is a crucial preliminary 

step necessary to establish an integrative LN model capable of further implementations of lymph flow, 

transport phenomena and cell migration. 

2. Materials and Methods 

In order to specifically target FRCs in murine LNs, a bacterial artificial chromosome (BAC)-transgenic 

mouse model was previously developed, which utilizes the Cre-loxP system under the control of the 

Ccl19 promoter [25], referred to as Ccl19-Cre x R26-eyfp reporter mice. The Ccl19-Cre transgene 

activity targets past and present CCL19 production in LN FRCs in vivo. 

A representative immunofluorescence Z-stack image of the murine LN is shown in Figure 1a. The 

major visible structural units are the subcapsular sinus (SCS) stained by α-smooth muscle actin 

(SMA), efferent lymphatic vessel, B cell follicles (B220) and the FRC network (EYFP). For the 

geometric modeling, we quantified the relevant sizes as follows: the LN diameter ~500 µm, the arteries 

and veins diameter 15 µm. The B cell follicles can be viewed as asymmetric biconvex lenses having a 

diameter of 150 µm and height of ~75 µm. Lens refers to the shape of a 3D object obtained by rotating 

a 2D lens about its narrow axis of symmetry. 

The most complex geometric structure in the LN is the FRC network as shown in Figure 1b. The 

area shown is a representative paracortex T cell zone which is occupied by FRCs, sufficiently large for 

quantitative morphological analysis. The T cell zone FRCs themselves occupy approximately 3%–4% 

of the total volume, estimated by 3D reconstruction of the EYFP+ FRC network from n = 7 mice using 

Imaris (Bitplane). The diameter of an FRC body is 5–7 µm and the average distance between centers 

of mass of FRCs is ~23 µm, determined by isolating single FRCs from 3D reconstructions in Imaris. 

Each FRC contains 4–5 protrusions (median) and the protrusions have a very variable length. The 

overall summary of the statistical distributions of the degree and the length of the edges for the FRC 

network is shown in Figure 2.  
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(a) (b) 

Figure 1. (a) Lymph node (LN) architecture with major structural units: subcapsular sinus 

(red), efferent lymphatic vessel (red), B cell follicles (cyan) and the FRC network (green). 

White rectangle indicates representative T cell zone; (b) High resolution Z-stack of the 

topology of the T cell zone fibroblastic reticular cell (FRC) network. Podoplanin (PDPN) 

is also used as a marker for FRCs. Scale bars represent 200 and 30 μm, with Z-depth  

38.6 and 23.6 μm, respectively. 

 

Figure 2. Fundamental characteristics of the FRC network: the nodes represent the FRC 

body and edges are physical links between them. The edges per node- and the edge length 

distributions for the T cell zone FRC network. Data obtained from n = 7 mice from two 

independent experiments. 

3. Results and Discussion 

The visualization of the solid objects in the computational LN model was performed using 3D 

computer graphics software Autodesk 3ds Max. The solid elements were constructed using original 

algorithms written in C++ language implemented in Microsoft Visual Studio 2012. 

3.1. B Cell Follicles, Trabecular Sinuses, Blood Vessels and Medulla 

B cell follicles were reconstructed using LN confocal data. In the homeostatic case, which we 

consider, the B cell follicles are rather stable in forming spheroid-type shapes. The basic starting 

structure of the B cell follicles is defined a priori using original data quantitatively consistent with  
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an independent study [20]. By marking several points along the B cell follicle, we created a  

piecewise-linear approximation of the B cell follicle border as shown in Figure 3a. Spline interpolation 

was used to generate a smoother model approximation [26]. The next step was to set up the number of 

triangles on the top of the solid object (Figure 3b), which is a variable parameter that allows one to 

control the resolution of the B cell follicle discretization. The overall algorithm can be summarized as 

a pseudo code using the following stages: 

(1). Initial piecewise-linear approximation of the B cell follicle border is created by marking 

several points on the confocal image. 

(2). Smoothing of the 2D object using spline approximation. 

(3). Generating an updated set of the border points.  

(4). Setting up the number of triangles on the surface of the object to achieve a required mesh 

resolution to be used for computational discretization of the B cell follicle.  

Trabeculae and the medulla area were modeled using a piecewise-linear approximation as well. 

Trabeculae are a mix of connective tissue and small amounts of plain muscle fibers, penetrating into 

the LN and they were constructed separately from the SCS inner membrane. A piecewise linear 

trajectory starting from the membrane and consisting of vectors orientated in different angles was used 

to create a jogged line. In the next step this line was converted into a 3D object and random numbers 

were added to the coordinates of all points on the surface to obtain the final object as shown in  

Figure 3c. In general, the term “medulla” denotes the entire macrophage-rich, loose region around the 

efferent lymphatics. In the above computational construction we restrict the notion of “medulla” to just 

the efferent lymphatic vessels. Consideration of the extended boundaries of the “medulla” domain can 

be incorporated within the solid modeling approach once the quantitative data on the material 

properties are available.  

(a) (b) (c) (d) 

Figure 3. (a) 2D spline-based approximation of the B cell follicle; (b) 3D approximation  

of the B cell follicle; (c) 3D solid model of the trabecular sinus; (d) 3D solid model of  

the medulla. 

The blood vessels and high endothelial venules (HEVs) in the LN were approximated using the 

jogged line approach as described above and then triangulated (Figure 4). In general, the appearance 

and localization of the trabeculae, blood vessels and cortical and medullar sinuses is highly variable 

between different LNs [16,20]. The constructions of trabeculae, blood vessels and medullar sinuses are 
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based on our original 3D confocal data including those from [17]. Using the developed code, the 

geometric model can be further tuned to take proper account of specific data on shapes and localization 

of trabeculae, blood vessels and medullar sinuses. 

(a) (b) 

Figure 4. Basic solid models for (a) blood vessels and (b) vessels branching in the  

high endothelial venules (HEV) domain. 

The outer and inner surfaces of the SCS were approximated as a triangulated sphere with a noise 

factor in the mesh coordinates (Figure 5a). The noise was used to make the appearance of the SCS closer 

to a realistic LN. Indeed, the boundary of the SCS, as shown in imaging-based reconstructions [20], 

has a different appearance than an ideal sphere. It is rather an irregular surface with mathematically 

unknown yet pattern properties. As the structural characterization of the SCS shape remains  

poorly analyzed, we follow the principle of the Central Limit Theorem, indicating that the most 

reasonable choice for the distribution of a random variable is Gaussian, in the absence of any other 

information [27]. Therefore, we used normally distributed random variables with zero mean and the 

standard deviation of 1.6 μm to perturb the mesh coordinates of an ideal sphere, thus representing more 

realistic SCS geometry. In addition, the perturbation was checked for not being too large for the nodes 

with small coordinates. The integrated view of the reference LN with macroscopic solid objects 

constructed in this section is shown in Figure 5b.  

 

(a) (b) 

Figure 5. (a) Subcapsular sinus and (b) the composed LN without FRCs. 
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3.2. Generation of the FRC Network  

The process includes the following steps described below: 

(1). Generate the FRC network tree according to the experimental statistical data. 

(2). Build the voxel approximation according to the FRC network tree. 

(3). Cut intersecting segments of FRC voxel approximation. 

(4). Cut separated voxels. 

(5). Convert the voxel approximation to triangulated surface mesh. 

(6). Smooth the triangulation and export the solid object as an OBJ model. 

The computational generation of the FRC network includes the following stages. The first step is 

creation of the FRC network tree. The first mesh node is placed in the origin, i.e., at the point with 

coordinates (0, 0, 0) and in the next step, vectors (Xi, i = 1,…,n) are generated according to the 

parameters specified in Table 1 for the lengths of edges between FRCs and number of edges (degree) 

for single FRCs. Each vector group is checked whether the sum of the vectors is close to zero (“near 

zero value” check): for vectors (X1,…, Xn) it computes the mean value Xs = [sum(Xi)/n]. The group is 

generated and checked again if Xs is greater than defined parameter [possErr]. The final point [Pf] of 

each generated vector can become a next FRC node if the distance between [Pf] each of the existing 

nodes is more than [minDist] parameter. Otherwise, a new node will be randomly generated. This 

process continues until one of the edges reaches some specified object (e.g., the surface of the  

B cell follicle). 

Table 1. The parameters of the algorithm for generating the fibroblastic reticular cell (FRC) network. 

Name Description Value 

possErr 
Acceptable error length for  
node group of edge vectors 

0.4 

minDist 
Minimal possible distance between 

two nodes of the FRC tree 
11.0 

voxLength Dimension of voxel cube, µm 2.0 

nodeLength Statistic data on edge length, µm 
0.24–44.73  

(mean value 11.63) 
See also Figure 2 

nodePipes 
Experimental data on  
the node edges count 

2–7 (mean square 4.22) 
See also Figure 2 

The second step is a voxel-based approximation of the FRC tree created as described above. Each 

voxel of the tree is a cube with specified edge length (voxLength). The algorithm computes the centers 

of the two adjacent voxels as follows: 

V1 = ([x1/voxLength], [y1/voxLength], [z1/voxLength]) 

V2 = ([x2/voxLength], [y2/voxLength], [z2/voxLength]) 

where (x1, y1, z1)−>(x2, y2, z2) are the coordinates of  some subvector of tree vectors. Each tree vector 

is represented like an array of subvectors with length less than the voxel size.  



Computation 2015, 3 229 

 

 

The voxel-based approximation of the FRC network is shown in Figure 6a. As the FRC network is 

localized to the LN paracortex, it is necessary to add spatial restrictions while constructing the 

geometric model. The algorithm selects two vectors of each polygon, normalizes them according to the 

size of the voxel and generates a set of linear combinations that do not exceed the boundaries of the 

designated domains. New voxels are then generated according to the calculated set of points. 

 

(a) (b) 

Figure 6. Voxel-based generation of the FRC network. (a) Initial local structure;  

(b) Smoothed solid model of the local structure.  

After the third step, the overall set of voxels consists of three voxel groups: (1) FRC network voxels 

reachable (connected to) from the first node at the origin (0, 0, 0); (2) FRC network voxels  

non-accessible from the first node and (3) a set of voxels that touch the domain border. The algorithm 

identifies and creates all the voxels of the FRC network that can be reached from the first node  

(0, 0, 0). 

Some voxel pairs could touch via edges or vertices and they are considered as incorrect segments in 

the set. The algorithm fixes them by adding new voxels around the problematic contact zone. The 

extension of the voxel set continues iteratively until no incorrect segments are found. 

The fifth step of the algorithm generates a pre-final solid model of the FRC network. It converts 

voxel coordinates to real coordinates in μm and each voxel is represented as a set of 12 triangles. 

Importantly, only those faces that do not touch the faces of neighboring voxels are selected for the 

model. Each vertex is also checked for its uniqueness. The problem of enumerating the voxels without 

duplications is a computationally demanding task of the algorithm. 

Finally, the algorithm performs the smoothing of the voxel-based structure to achieve biologically 

appealing shapes of the FRCs. For each vertex [Vc] the algorithm calculates the midpoint [Vm], which 

depends on data from the pre-final solid model and vector Vn = [Vc, Vm]. The vertex is then assigned 

a new coordinate Vc* = Vc + [alpha]*Vn, where [alpha] is a smoothing parameter in the range (0, 1). 

The result of the smoothing of the local FRC network is shown in Figure 6b, morphologically 

consistent with the appearance of the FRC network in vivo (Figure 1b). Further modifications of the 

FRC network can be implemented once additional topological data become available. 
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3.3. Generation of the Whole LN 

The final 3D geometric model of the LN is shown in Figure 7a. It consists of a set of embedded 

objects and has the overall complexity specified by the following parameters: As a result of 

retriangulation of all objects, the LN geometry was reproduced with 621,376 triangles and the FRC 

network required 1,759,180 triangle polygons. For Intel Core i7-2670QM CPU @ 2.20 GHz the 

computation time of the LN model generation, namely the assembly of all macroscopic elements, is 

approximately 1 h. It is clear that the overall complexity of the FRC network is much more demanding 

as compared to the other macroscopic LN structures. The consistency of the FRC network with the 

biological data can be appreciated from the 20 µm slice of the LN model (Figure 7b) and the following 

statistics: the average number of degrees per node (links per FRC) is 4.2, the length of edges ranges 

from 0.24 to 44.73 µm, with a mean value of 17.5 µm, the subcapsular sphere with diameter of 500 µm 

contains ~104 nodes (FRCs). The source code and the LN model data file in the below specified 

formats are available upon request. 

(a) (b) 

Figure 7. 3D geometric model of (a) the whole LN and (b) the 20 µm slice showing the 

FRC network, B cell follicles and the medulla.  

(a) (b) 

Figure 8. Statistical properties of the generated FRC network. The histograms of (a) the 

number of edges per node and (b) the edge length.  
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We analyzed the statistical properties of the computationally constructed FRC network in order to 

validate the model compared to experimental data. The distribution of the number of edges per node 

and the length of the edges is shown in Figure 8. 

The solid LN model can be further processed to generate an adaptive mesh model of the LN suitable 

for finite-element discretization of the transport equations. The tetrahedral mesh approximation of the 

B cell follicles, the trabecular and medullar sinuses of the LN model is shown in Figure 9, generated 

using the open-source adaptive mesh generator Ani3D (http://sourceforge.net/projects/ani3d/). A 

number of formats are supported, including Ansys, Acis, STL, Gmsh, OpenFOAM, OBJ. 

 

Figure 9. Adaptive mesh for B cell follicles, the trabecular and medullar sinuses of the 

geometrical LN model generated using tetrahedral spatial discretization software Ani3D. 

4. Conclusions 

This is a first study in which a 3D solid model of the LN geometry has been systematically 

developed in a biologically relevant manner. A computational algorithm has been developed to 

generate the macroscopic structures of a murine LN based on high-resolution confocal microscopy 

data. The technology provides a bridge between existing models of immune processes based on a 

simple 2D- or 3D lattice representation of the LN morphology and anatomically realistic LN models. 

A library of solid objects modeling the geometry of SCS, B cell follicles, trabecular and medullar 

sinuses, blood vessels, the T cell zone and FRC network has been created. The models can be exported 

in any format, e.g., OBJ, STL, making it suitable for further use in computational studies of lymph and 

cytokine transport/distribution and chemokine-guided cell migration in the LN.  

Overall, a reference geometric model of the 3D LN structure consistent in its resolution with the 

generalized imaging data-driven view of LN organization has been developed. The model can be 

further adapted for individual LNs once specific structural data are available. In the present approach, 

the basic starting structure of the B cell follicles has to be defined a priori; it cannot emerge from 

another property. The whole LN structure changes in the course of an immune response, but the 

underlying processes are beyond the scope of our study. The generated meshed model of the LN in 
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conjunction with the computational algorithm implementing the 3D model represents an important step 

towards studying transport phenomena in SLOs and the dynamics of LN remodeling during viral 

infections is a further milestone we aim to computationally model in the future. 

The 3D geometry of LNs is highly complex and a mathematical model of LN architecture is a 

necessary pre-requisite to computational fluid dynamics studies. The 3D solid model of the LN can be 

used via adaptive 3D meshing and finite-element discretization of the governing equations in 

computational studies of a broad range of transport phenomena in LNs, including the prediction of 

cytokine fields, chemokine gradients and pharmacokinetics of drugs [28]. 

It has been recognized that space is the current frontier in immunology. Capturing the structure-function 

relationship in a computationally efficient manner is the key to successful systems immunology 

approaches [29]. It requires anatomically-based mathematical models integrating interaction processes 

across multiple scales. This sets an agenda for further interdisciplinary research on SLOs, which 

should address the following aspects: the material properties, blood and lymph flow patterns,  

fluid-tissue interactions, and last but not least – the fine architecture of the lymphoid organs. The 

results of our study clearly indicate that the modern technologies available in computational 

mathematics enable a systematic advance of systems immunology to a genuinely integrative approach, 

which can be further utilized in studies of regulation of the immune system in health and disease. 

Supplementary Information 

The solid 3d model of the lymph node (in OBJ format) can be accessed at: 

http://www.mdpi.com/2079-3197/3/2/222/s1. Please note that the source code and the LN model data 

file in specified formats are available upon request. 
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