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Abstract: Computation of the non-central chi square probability density function is
encountered in diverse fields of applied statistics and engineering. The distribution is
commonly computed as a Poisson mixture of central chi square densities, where the terms
of the sum are computed starting with the integer nearest the non-centrality parameter.
However, for computation of the values in either tail region these terms are not the most
significant and starting with them results in an increased computational load without a
corresponding increase in accuracy. The most significant terms are shown to be a function
of both the non-centrality parameter, the degree of freedom and the point of evaluation.
A computationally simple approximate solution to the location of the most significant terms
as well as the exact solution based on a Newton–Raphson iteration is presented. A quadratic
approximation of the interval of summation is also developed in order to meet a requisite
number of significant digits of accuracy. Computationally efficient recursions are used over
these improved intervals. The method provides a means of computing the non-central chi
square probability density function to a requisite accuracy as a Poisson mixture over all
domains of interest.

Keywords: non-central chi-square probability density function; discrete mixture density
representation; computational efficiency

1. Introduction

Efficiently evaluating the non-central chi square probability density function (PDF) is of practical
importance to a number of problems in applied statistics [1]. For instance, the ratio of two densities
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f(x)/p(x), where p(x) is a non-central chi square density, may be necessary in an importance sampling
scheme or for hypothesis testing. The non-central chi square density [2], where λ is the non-centrality
parameter and ν the degree of freedom, arises in the general case where x = e′Σ−1e and e ∼ N (µ,Σ),
e ∈ Rν, and Σ positive definite. It follows that x ∼ χ2

ν(λ) where λ = µ′Σ−1µ. The notation e ∼ N (µ,Σ)

implies that e has Gaussian distribution [3], N (µ,Σ) = (2π)−ν/2|Σ|−1/2exp(−1
2
(e − µ)′Σ−1(e − µ))

and x ∼ χ2
ν(λ) denotes that x is distributed as a non-central chi square with ν degrees of freedom and

non-centrality parameter λ. For a non-central chi square variate E[x] = λ + ν, and V ar[x] = 4λ + 2ν.
The density at x can be represented [2] by

p(x;ν, λ) = 1/2 (x/λ)(ν−2)/4 Iν/2−1(
√
xλ) exp(−(x+ λ)/2)

where Iν(x) is the modified Bessel function of order ν. However this representation is numerically
problematic for large x or large λ. The asymptotic result (x− (λ+ ν)) /

(√
2ν+ 4λ

)
∼ N(0, 1) as λ

or ν→∞ can be useful, but is not a universal substitute for direct computation of p(x;ν, λ), even for
relatively large λ. For this reason the discrete mixture representation

p(x;ν, λ) =
∞∑
n=0

(λ/2)n

n!
exp(−λ/2) · p(x;ν+ 2n, 0) = En|λ[p(x;ν+ 2n, 0)] (1)

where it is recognized that the expectation is over the Poisson density [4] P (n|λ/2) =

(λ/2)nexp(−λ/2)/n! and

p(x;ν, 0) = pν(x) =
xν/2−1

2ν/2Γ(ν/2)
exp(−x/2) (2)

is the central chi square probability density function (PDF) [3] with ν degrees of freedom.
The non-central chi square density at the point x is therefore the average of an infinite set of central
chi square densities evaluated at x.

The goal of this article is to present a method to compute the value of the distribution function of a
non-central chi square variate using the mixture representation and to do so with minimal computational
effort to a specified accuracy in all domains of interest, including both the high density region (HDR)
and the tail regions. In doing so, we will illuminate the often employed standard method and discuss
the computational weaknesses that method has in the tails of the distribution. The cumulative density
function (CDF)

∫ x

0
p(α;ν, λ)dα of the non central chi square has been addressed by [5] and the

computational issues associated with the domains of evaluation have been addressed by a treatment
dependent on the parameters, {x,ν, λ} [6].

2. Computation of p(x;ν, λ)

With the goal to compute p(x;ν, λ) to a specified accuracy for arbitrary x, λ and ν in a
computationally efficient manner, start with the representation of the non-central chi-square density as a
mixture of central chi-square densities:

p(x;ν, λ) =
∞∑
n=0

f(x, n;ν, λ), (3)

f(x, n;ν, λ) =
(λ/2)n

n!
exp(−λ/2) · xν/2+n−1

2ν/2+nΓ(ν/2 + n)
exp(−x/2) (4)
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The sum is computed efficiently by ordering the terms to be summed according to their size, with the
larger terms first and then for each of the terms to be summed exploiting the following recursions:

P (n+ 1|λ) =
λ

2(n+ 1)
· P (n|λ) pν+2n+2(x) =

x

2n+ ν
· pν+2n(x),

thus ensuring that each term is computed in a computational efficient manner.
It is necessary to determine which terms maximally contribute to the sum and including these in

the summation in order to meet the requisite accuracy. This domain of summation must provide for
maximal computational efficiency for a given accuracy, or conversely minimal error for a pre-specified
computational budget.

A popular approach, which is the basis of most algorithms in use, is to start the recursion at the mode
of the Poisson density

nP = bE[n|λ]c = bλ/2c (5)

and proceed to sum in both directions until the relative accuracy is obtained. This approach is termed
Algorithm 1.

Algorithm 1

• n∗ = bλ/2c, Equation (5), ε = 10−B

• Compute P (n∗|λ), pν+2n∗(x)

• Initialize: k = 1, bp(x;ν, λ)c1 = P (n∗|λ) · χ2
ν+2n∗

• 1. If n∗ − k ≥ 0 compute Rk = P (n∗ + k|λ) · pν+2n∗+2k(x) + P (n∗ − k|λ) · pν+2n∗−2k(x).
Else if n∗ − k < 0 compute Rk = P (n∗ + k|λ) · pν+2n∗+2k(x) via Equation (5).

2. Update bp(x;ν, λ)ck = bp(x;ν, λ)ck−1 +Rk−1

3. If Rk/bp(x;ν, λ)ck > ε then k = k + 1 and repeat.
4. Else bp(x;ν, λ)cM1 = bp(x;ν, λ)ck stop.

This approach is nearly optimal for x in the high probability density region, however it is quite
inefficient in the tail regions of the density. That is the mode, bλ/2c is quite distant from the maximally
contributing terms of the summation in regions other than the high density region. For this reason,
starting at bλ/2c, as in Algorithm 1, wrongly focuses computation on terms that contribute little
information to the numerical result. The optimal solution would start at the location of the peak of
f(x, n; λ,ν). Determine this starting point by noting that as a function of n

f(x, n; λ,ν) ∝ (xλ/4)n

Γ(n+ 1)Γ(v/2 + n)
. (6)

Define

dnlnf(n) =
d

dn
ln f(x, n; λ,ν) = ln (xλ/4)−ψ(n+ 1)−ψ(n+ ν/2)

and employ the series expansion for ψ(n+ 1), the digamma function

ψ(n) = ln(n) +
1

2n
+
∞∑
k=1

B2k

2k · n2k
(7)
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where Bk the k-th Bernoulli number, to yield

dnlnf(n) = ln (xλ/4)− ln ((n+ 1)(n+ ν/2)) + 1/2
n+ν/2

+ 1/2
n+1

+O(n−2). (8)

Define

n∗ = argmaxnf(x, n|ν, λ) (9)

and an approximate solution for the integer n ≥ 0 is

ln (xλ/4) ≈ ln((n+ 1)(n+ ν/2)) (10)

implying

n∗ ≈ max

[
0,

1

2

(√
xλ+

(ν
2

+ 1
)2
− 2ν− (ν/2 + 1)

)]
. (11)

Notice that for x ≈ E[x|λ,ν] = λ+ν and λ > ν > 2 it follows that n∗(x = λ+ν) ≈ λ/2 = E[n|λ],
the expected value of the Poisson mixture weights. The advantage of using Equation (11) is that it is
both relatively simple, requiring only a square root operation on integers, and is accurate at locating
the largest terms of the sum in both the high density region and the tail regions. As will be shown for
domains outside of the high density region n∗ is computationally efficiency relative to starting at bλ/2c.

To determine argmaxnf(x, n|ν, λ) exactly, use a few Newton–Raphson iterations starting from
Equation (11) as

nk+1 = nk −Dg(nk)I−1(nk), n1 = n∗ Equation (11) (12)

where

I(n) =
d2

dn2
lnf(x, n; λ,ν) = −ψ(n+ 1)−ψ(n+ ν/2). (13)

Since the solution is needed only to the nearest integer, a single iteration of Equation (12) is sufficient.

Algorithm 2

• Compute n∗(x, λ) by Equations (11) or (12), ε = 10−B.
• Compute P (n∗|λ), pν+2n∗(x).
• Initialize: k = 1, bp(x;ν, λ)c1 = P (n∗|λ) · pν+2n∗(x)

• 1. If n∗ − k ≥ 0 compute Rk = P (n∗ + k|λ) · pν+2n∗+2k(x) + P (n∗ − k|λ) · pν+2n∗−2k(x).
Else if n∗ − k < 0 compute Rk = P (n∗ + k|λ) · pν+2n∗+2k(x) via Equation (5).

2. Update bp(x;ν, λ)ck = bp(x;ν, λ)ck−1 +Rk−1

3. If Rk/bp(x;ν, λ)ck > ε then k = k + 1 and repeat
4. Else bp(x;ν, λ)cM2 = bp(x;ν, λ)ck stop.

The result is computationally more efficient than Algorithm 1 for x outside the high probability
region for a pre-specified accuracy. It does, however, require the initial computation of n∗ via
Equations (11) or (12) as well as retaining the need for computing the comparisons of Step 3 for each
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iteration. Employing the more accurate starting point of Equation (12) requires a Newton–Raphson
iteration and thus the evaluation of the information scale, I(n). Since integer arithmetic is
computationally insignificant relative to floating point arithmetic, the approach has merit for x outside
the high probability region.

There is a further advantage to computing the information scale. The information scale I(n) gives
an approximate measure of the number of terms required. This brings us to the last method presented:
eliminate Step 3 from Algorithm 2 by simply approximating the domain of summation with a Laplace
approximation [7] to f(x, n; λ,ν). The information scale is approximated with

I(n) =
d2

dn2
ln f(x, n; λ,ν) = − 1

n+ 1
− 1

n+ ν/2
− 1/2

(n+ ν/2)2
− 1/2

(n+ 1)2
+O(n−3).

These derivatives are approximations based on the truncated expansion of ln(Γ(n)) = (n −
1/2)ln(n)−n+ln(

√
2π)+1/12n+O(n−3) [8], whereO(np) is polynomial in nwith maximal degree p.

The decimal place contribution of the term f(x, n; λ,ν) is

bx(n) = log10

∞∑
k=0

f(x, k; λ,ν)− log10f(x, n; λ,ν) (14)

with a lower bound

bx(n) > log10 max
k
{f(x, k|λ,ν)} − log10f(x, n; λ,ν). (15)

We can attain accuracy to B decimal places by including in the sum terms for which

{n : ln f(x, n; λ,ν) > −B · ln(10) +maxk{ln f(x, k; λ,ν)}}. (16)

Therefore let

n∗(x,ν, λ) = argmaxn lnf(x, n; λ,ν), Equation (12)

D∗(B) = {n : |n− n∗|2 < −B · ln(10) I−1(n∗)/2 (17)

and include in the summation only those terms within the set D∗(B). The advantage of computing
the domain of summation a priori is that it obviates the need to compute the relative errors and
the computation can be performed with a simple for loop. The terms can be summed from least to
greatest, with terms near n = n∗ + D∗(B) summed first in order to minimize accumulation errors. The
disadvantage is that the set is larger than necessary, due to the approximation of Equation (15) as well as
the Laplace approximation.

Algorithm 3

• Compute : n∗(x, λ) by Equation (12),
• Lb = n∗ −

√
−2B · ln(10)/I(n∗), Ub = n∗ +

√
−2B · ln(10)/I(n∗), Equation (17),

• Compute P (n|λ), pν+2n(x)

• Initialize: kl = ku = 1, bp(x;ν, λ)c1 = P (n∗|λ) · pν+2n(x)

• 1. Compute
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– Rku = P (n+ ku|λ) · pν+2n+2ku(x) ,

– Rkl = P (n− kl|λ) · pν+2n−2kl(x) Equation (5).

2. Update bp(x;ν, λ)ck = bp(x;ν, λ)ck−1 +Rkl +Rku

3. – If ku < Ub then ku = ku + 1 repeat, else Rku = 0.

– If kl > Lb then kl = kl − 1 repeat, else Rkl = 0,

– If ku = Ub & kl = Lb then bp(x;ν, λ)cM3 = bp(x;ν, λ)ck stop.

where it is understood that the comparison of step 3 need not be made, as a for loop can perform this
function implicitly.

3. Results

The three algorithms are compared to illustrate the importance of initialization of the algorithm by
proper determination of n∗(x,ν, λ) in the computation of the non-central chi square PDF in the tail
regions. First, Figure 1 depicts the normalized joint densities

r(x, n|λ,ν) = log10
f(x, n; λ,ν)

maxnf(x, n|λ,ν)
(18)

for ν = 4 and for diverse non-centrality parameters of λ =1, 8, 20 and 100. The initialization point,
n∗ for Algorithm 2 and Algorithm 3 are shown, as well as the conventional starting point bλ/2c of
Algorithm 1. The difference between the actual maximum and bλ/2c is quite stark outside the HDR.
Also shown are the Laplace approximate upper (Ub) and lower bounds (Lb) associated with B = 4 used
for Algorithm 3.

Figure 2 likewise depicts the normalized densities r(x, n|λ,ν) for a degree of freedom parameter
value of ν = 20 and a range of non-centrality parameters λ =1, 8, 20 and 100. The increase in degree
of freedom parameter relative to Figure 1 is shown to not significantly alter n∗(x,ν, λ). The upper and
lower bounds of Algorithm 3 for B = 8 are shown. It is noted that for λ = 100 depicted in the lower
right of Figures 1 and 2, the difference between n∗ and bλ/2c in the lower tail of the distribution is also
quite stark.

In order to demonstrate the performance of each of the three algorithms, they are each displayed
relative to the value of the PDF computed from

bp(x;ν, λ)c100 =

|n−n∗|<100∑
n≥0

(λ/2)n

n!
exp(−λ/2) · xν/2+n−1

2ν/2+nΓ(ν/2 + n)
exp(−x/2) (19)

using the Algorithm 3 and summing least to greatest to obviate any accumulation errors. Define the
relative errors of the 3 algorithms as follows

el(x) =
bp(x;ν, λ)cM,l

bp(x;ν, λ)c100
, l = 1, 2, 3 (20)
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Figure 1. The magnitude of the normalized terms r(x, n|λ,ν) for ν = 4. The peak is shown
as a function of x for various non-centrality parameters λ. The difference between bλ/2c
and the actual n∗ = argmaxnf(x, n|λ,ν) in the tail regions is apparent. The upper (Ub)
and lower (Lb) bounds of Algorithm 3 for the interval of summation associated with B = 4

decimal place accuracy.
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Figure 2. The magnitude of the normalized terms r(x, n|λ,ν) for ν = 20. The peak is
shown as a function of x for various non-centrality parameters λ. The difference between
bλ/2c and the actual n∗ = argmaxnr(x, n|λ,ν) in the tail regions is apparent. The upper
(Ub) and lower (Lb) bounds of Algorithm 3 for the interval of summation associated with
B = 8 decimal place accuracy.

Figure 3 displays the relative errors for the three algorithms, with ε = 10−4. To the left and center
are Algorithms 1 and 2 respectively, and the figure demonstrates the close proximity of each to a relative
error of 10−4. To the right is Algorithm 3, and it can be seen that the use of the bounding approximation
of Equation (15) implies that more terms are being included, such that an extra decimal place is attained
across all non-centrality parameters shown.
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Figure 3. Left to right, the relative errors with B = 4, for the three algorithms. Left,
Algorithm 1 iterating starting from bλ/2c. Center, Algorithm 2 iterating from n∗. To the
right, Algorithm 3 iterating from n∗ and with the index set computed a priori.
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Figure 4 provides the number of terms necessary to attain the performance shown in Figure 3 for each
of the algorithms. It is noted that only for λ = 100 in Algorithm 3 are the number of terms in excess of
Algorithm 1 within the HDR . It is noteworthy that Algorithm 3 outperforms Algorithm 1 by over 2×40

floating point operations per evaluation in the tail region, since there are two additional floating point
operation per iteration in Algorithm 1 that are not necessary in Algorithm 2.
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Figure 4. The number of terms necessary for the three algorithms to attain the accuracy
shown in Figure 3 for ν = 4 and for various λ of 1, 8, 20 and 100. Algorithm 1, blue dashed.
Algorithm 2, red dashed. Algorithm 3, black solid.

4. Conclusions

The Poisson mixture representation of the non-central chi-square PDF is a useful and commonly
employed means of computing the PDF at various domain values. The summation of terms is often
initialized at the integer closest to half of the non-centrality parameter, the mode of the Poisson mixture
weights bλ/2c, and is efficient in the high probability density region (HDR). Outside of the HDR, the
method is computationally inefficient, since the dominant terms in the sum are distant from the mode
bλ/2c. This shortcoming is addressed here by providing the maximally contributing terms in the sum
regardless of the domain of evaluation. We do so in order to meet a requisite accuracy and computational
load. The approach provides a simple means to retain the mixture representation for computation of the
PDF outside of the HDR in a manner that is computationally reasonable. We present two methods
to accomplish this task outside the HDR that provide a computation versus accuracy trade-off that is
comparable within the HDR.
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