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Abstract:



Local effective potential theory, both stationary-state and time-dependent, constitutes the mapping from a system of electrons in an external field to one of the noninteracting fermions possessing the same basic variable such as the density, thereby enabling the determination of the energy and other properties of the electronic system. This paper is a description via Quantal Density Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping. It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a model system possessing all the basic variables; and that (b) with the requirement that the model fermions are subject to the same external fields, the only correlations that must be considered are those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. The cases of both a static and time-dependent electromagnetic field, for which the basic variables are the density and physical current density, are considered. The examples of solely an external electrostatic or time-dependent electric field constitute special cases. An efficacious unification in terms of electron correlations, independent of the type of external field, is thereby achieved. The mapping is explicated for the example of a quantum dot in a magnetostatic field, and for a quantum dot in a magnetostatic and time-dependent electric field.
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1. Introduction


This paper is concerned with the electron correlations within local effective potential theory (LEPT) such as Kohn–Sham [1] (KS) and Quantal (Q) [2,3] density functional theory (DFT). We begin with a brief description of the electron correlations that must be accounted for within LEPT. The understanding and definitions of these electron correlations is achieved via the equations of Quantal density functional theory (QDFT) [2,3]. QDFT is a description in terms of “classical” fields and quantal sources based on the “Quantal Newtonian” second [4,5,6] and first [7,8,9] laws for each electron. In this work, a comprehensive unification in terms of electron correlations is arrived at through QDFT for electrons in the presence of both an external static and a time-dependent electromagnetic field.



As readers may be more familiar with KS–DFT and its various extensions, a brief description of the ideas underlying QDFT is provided in the Appendix.



Stationary-ground-state LEPT such as Kohn–Sham (KS) [1] and QDFT constitute the mapping from an interacting system of N electrons in an external electrostatic field [image: there is no content] to one of noninteracting fermions, also in their ground state, with the same nondegenerate ground state density [image: there is no content]. The choice of density [image: there is no content] as the property of equivalence is governed by the fact that it constitutes a basic variable of quantum mechanics. According to the first Hohenberg–Kohn (HK) [10] theorem, a basic variable is a gauge invariant property knowledge of which determines the wave functions of the system. Thus, knowledge of the density [image: there is no content] uniquely determines the external scalar potential [image: there is no content] to with a constant. With the kinetic and electron-interaction potential energy operators assumed to be known, so is the Hamiltonian. Solution of the Schrödinger equation then leads to the wave functions of the system for both ground and excited states. In the mapping, it is further assumed that the model noninteracting fermions also experience the same external electrostatic field [image: there is no content]. Hence, the local effective potential of the model (S system) fermions [image: there is no content] is written as [image: there is no content] , where [image: there is no content], the effective electron-interaction potential, is the component in which all the many-body effects are incorporated. The electron correlations that the model system must account for via [image: there is no content] are those due to the Pauli exclusion principle and Coulomb repulsion. However, the potential must also account for correlations which arise because of the difference in kinetic energies of the interacting and model systems having the same density [image: there is no content], viz. the Correlation–Kinetic contribution. In KS–DFT, the many-body correlations are all subsumed in the electron-interaction energy functional [image: there is no content] of the density, and thereby via its functional derivative, in the potential [image: there is no content]. Within QDFT, the contributions of these correlations to both the potential [image: there is no content] and the corresponding Pauli, Coulomb, and Correlation–Kinetic components of the total energy E are separately delineated and explicitly defined [2,3,7,8] (As a point of interest, we note that within QDFT [2,3], it is also possible to map the interacting system in its ground state to a model system in an arbitrary excited state but with the same ground state density [image: there is no content]. The contribution to the corresponding potential [image: there is no content] of correlations due to the Pauli principle and Coulomb repulsion remain unchanged in each case. The difference in the potentials is solely due to Correlation–Kinetic effects).



In time-dependent LEPT, such as Runge–Gross (RG) [11] DFT or QDFT [4], the electrons are subject to a time-dependent external field [image: there is no content]. In this case, as proved by the RG theorem [11], a basic variable is the density [image: there is no content]. Knowledge of the density [image: there is no content] determines the external potential [image: there is no content] to within a time-dependent function, hence the Hamiltonian, and thereby the wave function (as an important point of note, the RG theorem also proves the current density [image: there is no content] to be a basic variable). Once again, it is assumed that the model fermions are also subject to the same external potential [image: there is no content], and in traditional time-dependent LEPT, the mapping is such as to reproduce solely the density [image: there is no content]. As shown by QDFT, the correlations that must be accounted for in this LEPT are, of course, those due to the Pauli exclusion principle, Coulomb repulsion and Correlation–Kinetic effects. However, there is, in general, an additional correlation [2,4,5,6] due to the difference in the current densities of the interacting and noninteracting fermions, viz. the Correlation–Current–Density effects, which must also be considered. In RG–DFT, these correlations are all subsumed in the corresponding electron-interaction action functional [image: there is no content] of the density and its functional derivative [image: there is no content]. Within QDFT, the separate contribution of all these correlations to the electron-interaction potential [image: there is no content] is explicitly defined. Correlation–Current–Density effects do not contribute explicitly to the (non-conserved) energy [image: there is no content], but do so implicitly via their contribution to [image: there is no content].



Finally, consider the case of N electrons in both an external electrostatic [image: there is no content] and magnetostatic [image: there is no content] field (This case, and the corresponding basic variables [12], is discussed in greater detail in the following section. Here, we focus on the correlations within the corresponding LEPT). A QDFT [13] can be formulated in the traditional manner, i.e., via the construction of both an effective scalar [image: there is no content] and vector [image: there is no content] potential for the model S system. The correlations that must be accounted for in this LEPT are those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. However, in addition, Correlation–Magnetic effects, i.e., correlations due to the difference in an internal magnetic field component of the interacting and model systems must also be considered.



To summarize, we observe that the correlations in LEPT as presently construed, are a function of the external potential. We provide here, via QDFT, a generalization of all LEPT such that the only correlations that need to be accounted for are solely those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. This requires that the noninteracting fermions (a) possess all the basic variables; and (b) be subject to the same external fields as those of the interacting system. In Section 2, we prove this for the case of an external electrostatic and magnetostatic field, a special case of which is stationary state KS–DFT and QDFT. In Section 3, the proof for an external time-dependent electromagnetic field is provided, a special case of which is time-dependent RG–DFT and QDFT. For the proof, we derive the “Quantal Newtonian” second law for electrons in an external time-dependent electromagnetic field, as well as the law for the corresponding model S system fermions (The derivation of these “Quantal Newtonian” laws is provided in Supplementary Material). The stationary state case is explicated by the example of a harmonically confined quantum dot in a magnetostatic field, and the time-dependent case via the quantum dot in a magnetostatic field perturbed by a time-dependent electric field. Concluding remarks are made in Section 4.




2. Case of External Static Electromagnetic Field


Consider a system of N electrons in a static external electric [image: there is no content] and magnetic [image: there is no content] field, where [image: there is no content] and [image: there is no content] are the corresponding scalar and vector potentials, respectively. The Schrödinger equation in atomic units (charge of electron [image: there is no content], [image: there is no content]) together with the assumption of [image: there is no content] is


[image: there is no content]



(1)




where the terms of the Hamiltonian are the physical kinetic [image: there is no content], electron-interaction potential [image: there is no content], and external potential [image: there is no content] energy operators; [image: there is no content] the eigenfunctions and eigenvalues; [image: there is no content]; [image: there is no content]; [image: there is no content] the spatial and spin coordinates of each electron.



In recent work [12], we have proved that the basic variables for the physical system described above, in which the interaction of the magnetic field is solely with the orbital angular momentum, are the nondegenerate ground state density [image: there is no content] and the physical current density [image: there is no content]. The proof is for uniform magnetic fields and for fixed electron number N and canonical angular momentum [image: there is no content]. The proof is rigorous in the original HK sense in that knowledge of [image: there is no content] uniquely determines the potentials [image: there is no content] to within a constant and the gradient of a scalar function, respectively. Thereby, the Hamiltonian is now known, and the wave functions of the system determined via solution of the Schrödinger equation of Equation (1) (The proof has also been extended to the Schrödinger–Pauli Hamiltonian, which additionally involves the interaction of the magnetic field with the spin angular momentum. We do not consider that case here). The theorem extends the applicability of LEPT to yrast states, which are states of lowest energy for fixed angular momentum—in particular, to harmonically trapped electrons in the presence of a uniform perpendicular magnetic field [14].



The “Quantal Newtonian” first law for each electron for the above interacting system states that the sum of the external [image: there is no content] and internal [image: there is no content] fields experienced by each electron vanish [13,15]:


[image: there is no content]



(2)







The law is valid for arbitrary gauge, and satisfies the continuity condition [image: there is no content]. The external field is the sum of the electrostatic [image: there is no content] and Lorentz [image: there is no content] fields:


[image: there is no content]



(3)




where [image: there is no content] is defined in terms of the Lorentz “force” [image: there is no content] as [image: there is no content], with [image: there is no content] the density; [image: there is no content] the density operator; [image: there is no content]; [image: there is no content] the physical current density; with [image: there is no content] the physical current density operator.



The internal field [image: there is no content] is the sum of the electron-interaction [image: there is no content], kinetic [image: there is no content], differential density [image: there is no content], and internal magnetic [image: there is no content] fields:


[image: there is no content]



(4)







These fields are defined in terms of the corresponding ‘forces’ [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] (each ‘force’ divided by the density [image: there is no content] constitutes the corresponding field). The “force” [image: there is no content], representative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, is obtained via Coulomb’s law via its quantal source, the pair-correlation function [image: there is no content], with [image: there is no content] the expectation of the pair operator [image: there is no content]; the kinetic “force” [image: there is no content], representative of kinetic effects, is obtained from its quantal source, the single-particle density matrix [image: there is no content], where the kinetic energy tensor [image: there is no content] with [image: there is no content] the expectation of the operator [image: there is no content], [image: there is no content], [image: there is no content], with [image: there is no content] a translation operator such that [image: there is no content]; the differential density ‘force’, representative of the density is [image: there is no content], the quantal source being the density [image: there is no content]; and internal magnetic force [image: there is no content] whose quantal source is the current density [image: there is no content], [image: there is no content]. The components of the total energy E—the kinetic, electron-interaction, internal magnetic, and external—can each be expressed in integral virial form in terms of the respective fields [13].



We next map the interacting system to one of noninteracting fermions possessing the same basic variables [image: there is no content], the same electron number N, and orbital angular momentum [image: there is no content]. We assume the model fermions experience the same external fields [image: there is no content] and [image: there is no content]. The corresponding model S system LEPT differential equation is then


{12[p^i+A(r)]2+vs(r)}ϕi(x)=ϵiϕi(x);i=1,…,N,



(5)




with


[image: there is no content]



(6)




and where all the many-body effects are incorporated in the effective electron-interaction potential [image: there is no content]. The wave function of the S system is the Slater determinant [image: there is no content] of the orbitals [image: there is no content]; the density and physical current density are the expectations [image: there is no content] and [image: there is no content].



The mapping to the model system possessing the same basic variables [image: there is no content] ensure the constancy [12] of both the electron number N and orbital angular momentum [image: there is no content].



With the above assumption, the “Quantal Newtonian” first law for the S system is then


[image: there is no content]



(7)




where [image: there is no content] is the same as Equation (3), and the internal field [image: there is no content] is


[image: there is no content]



(8)







Here, the kinetic field [image: there is no content] is defined in a manner similar to that of the interacting system but in terms of the Dirac density matrix [image: there is no content]. The differential density [image: there is no content] and internal magnetic [image: there is no content] field components remain the same as in Equation (4).



On comparing the “Quantal Newtonian” laws of Equations (2) and (7), we see that the effective electron-interaction potential [image: there is no content] is the work done to move a model fermion from a reference point at infinity to its position at [image: there is no content] in the force of a conservative effective field [image: there is no content]:


[image: there is no content]



(9)




where


[image: there is no content]



(10)




with the Correlation–Kinetic field defined as


[image: there is no content]



(11)







Note that since [image: there is no content], the work done [image: there is no content] is path-independent. The total energy E as obtained from the S system is


[image: there is no content]



(12)




where the electron-interaction energy [image: there is no content] is


[image: there is no content]



(13)




and the Correlation–Kinetic [image: there is no content] energy is


[image: there is no content]



(14)







For completeness, we note [2,3] that the electron-interaction field [image: there is no content] can be decomposed in terms of its Hartree [image: there is no content], Pauli [image: there is no content], and Coulomb [image: there is no content] components. This is accomplished by writing the pair–correlation density [image: there is no content], where [image: there is no content] is the Fermi-Coulomb hole: [image: there is no content], with the Fermi hole defined as [image: there is no content], and the Coulomb hole [image: there is no content] defined thereby. The density, Fermi, and Coulomb hole charge distributions then constitutes the quantal sources of the fields [image: there is no content], [image: there is no content], and [image: there is no content] as determined via Coulomb’s law.



The QDFT equations for the local potential [image: there is no content] and total energy E show that for electrons in an external static electric and magnetic field it is (a) possible to map to a model system of noninteracting fermions possessing the same basic variables [image: there is no content]; and (b) that the only correlations that need to be considered in the mapping are those of the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects.



To elucidate the above, we consider the mapping from the ground state of the two-dimensional two-electron quantum dot in a magnetic field [16,17] to one of noninteracting fermions possessing the same [image: there is no content] also in its ground state. The external scalar potential in the Hamiltonian of Equation (1) is then [image: there is no content] with [image: there is no content] the harmonic frequency. The ground [image: there is no content] [13] state wave function of the quantum dot in the symmetric gauge [image: there is no content], is [image: there is no content], where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], the effective force constant [image: there is no content] with [image: there is no content] the Larmor frequency. In Figure 1a, we plot the components [image: there is no content] and [image: there is no content] of the effective field [image: there is no content] of Equation (10). In this example, the fields [image: there is no content] and [image: there is no content] are separately conservative. Thus, in Figure 1b, we plot the potentials [image: there is no content] and [image: there is no content], which are, respectively, the work done in the fields [image: there is no content] and [image: there is no content]. The sum of [image: there is no content] and [image: there is no content] is the local effective electron-interaction potential [image: there is no content], which is also plotted in Figure 1b. The local potential [image: there is no content] then generates single-particle orbitals, which lead to the same [image: there is no content] as that of the interacting system quantum dot. As a consequence of the reduction in dimensionality, Correlation–Kinetic effects are significant: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. A similar mapping [18] from an excited state of the quantum dot can be accomplished. Once again, it is observed that Correlation–Kinetic effects play a significant role.


Figure 1. Fields and potentials of the model noninteracting fermions in their ground state for the mapping from a quantum dot in a magnetic field also in a ground state: (a) the electron-interaction (Pauli–Coulomb) [image: there is no content] and Correlation–Kinetic [image: there is no content] fields; (b) the local effective electron-interaction potential [image: there is no content] and its Pauli–Coulomb [image: there is no content] and Correlation–Kinetic [image: there is no content] components.



[image: Computation 04 00030 g001]






Finally, we note that the sole presence of an external electrostatic field [image: there is no content] with the density [image: there is no content] as the basic variable, constitutes the special case of Kohn–Sham theory. The expressions for [image: there is no content] remain the same. Hence, the electron correlations that must be accounted for in the mapping to the corresponding model system of density [image: there is no content] are also the same [2,3].




3. Case of External Time-Dependent Electromagnetic Field


Consider next a system of N electrons, in an external time-dependent electric field [image: there is no content]; [image: there is no content], in the presence of an electromagnetic field [image: there is no content], [image: there is no content], with [image: there is no content] scalar and [image: there is no content] vector potentials (a special case is when the electric field [image: there is no content] is static, i.e., [image: there is no content]). The corresponding time-dependent Schrödinger equation is then


[image: there is no content]



(15)




where the terms of the Hamiltonian are the physical kinetic [image: there is no content], electron-interaction potential [image: there is no content], and external scalar potential [image: there is no content] energy operators; [image: there is no content], and [image: there is no content] the wave function.



It has been proved [19,20] that for the physical system described by the above Hamiltonian, the basic variables are the density [image: there is no content] and the physical current density [image: there is no content]. Thus, knowledge of [image: there is no content] uniquely determines the external scalar potentials to within a time-dependent function, and the vector potential to within the gradient of a scalar function of time, and thereby the Hamiltonian and the wave function. The properties [image: there is no content] are also the basic variables for the special case when the only external field is [image: there is no content]. This then corresponds to the Runge–Gross [11] theorem (we note that the proofs given in [19,20] are different).



The “Quantal Newtonian” second law for each electron for the system of Equation (15) is (see Supplementary Material for the Derivation)


[image: there is no content]



(16)




where the response of the electron to the external [image: there is no content] and internal [image: there is no content] fields is the current density field [image: there is no content]. Here, the density [image: there is no content] and physical current density [image: there is no content] are the expectations of the density and current density operators defined previously taken with respect to the wave function [image: there is no content]. The law is gauge invariant and derived using the continuity equation [image: there is no content]. The external field [image: there is no content] is


[image: there is no content]



(17)






Fext(y)=-∇v(y)-L(y)+∇Φ(y)+∂A(y)∂t,



(18)




where the Lorentz field [image: there is no content], with the Lorentz “force” [image: there is no content].



The internal field [image: there is no content] is


[image: there is no content]



(19)




where the component fields [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are defined as in the previous section but from time-dependent quantal sources obtained via the wave function [image: there is no content] (a special case [4] of the ‘Quantal Newtonian’ second law of Equation (16) corresponds to an external field [image: there is no content]. The term [image: there is no content] is then absent from Equation (19)).



In mapping to the model S system such that it possesses the same basic variables [image: there is no content], we again assume the noninteracting fermions are subject to the same external fields as those of the electrons. The LEPT differential equation for the single-particle orbitals [image: there is no content] is then


12p^+A(y)2+vs(y)ϕj(y)=i∂ϕj(y)∂t;j=1,…,N,



(20)




with


[image: there is no content]



(21)




where all the many-body effects are incorporated into the local effective electron-interaction potential [image: there is no content]. The S system wave function is the Slater determinant [image: there is no content] of these orbitals.



For the above described model system, the “Quantal Newtonian” second law is (see Supplementary Material for the Derivation)


[image: there is no content]



(22)







Here, the S system current density field [image: there is no content], with [image: there is no content] the current density defined as the expectation of the operator [image: there is no content] taken with respect to the determinant [image: there is no content]. The last equality of Equation (22) follows from the equivalence of [image: there is no content] of the interacting system to [image: there is no content] of the model system.



The internal field [image: there is no content] is




[image: there is no content]



(23)





The kinetic field [image: there is no content] is defined as in the previous section but in terms of the time-dependent Dirac density matrix [image: there is no content]. The remaining fields [image: there is no content] and [image: there is no content] are the same as in Equation (19).



Hence, on comparing the “Quantal Newtonian” second law of Equations (16) and (22), the potential [image: there is no content] is then the work done at each instant of time, to move the model fermion from some reference point at infinity to its position at [image: there is no content] in the force of a conservative effective field [image: there is no content]:


[image: there is no content]



(24)




where


[image: there is no content]



(25)




with [image: there is no content] the electron-interaction, and [image: there is no content] the Correlation–Kinetic field defined as [image: there is no content]. As [image: there is no content], the work done [image: there is no content], at each instant of time, is path-independent.



The QDFT equations for the above LEPT once again show that the only correlations that need to be accounted for are those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects.



The expression for [image: there is no content] of Equation (24) remains the same for the special case when the external potential is solely [image: there is no content]. This then means that the correlations that must be accounted for in the corresponding mapping to the model system are also the same.



For harmonically confined electrons in a magnetostatic field [image: there is no content], perturbed by a time-dependent electric field [image: there is no content], the corresponding wave function referred to as the Generalized Kohn Theorem, has been recently derived [21]. It is comprised of a phase factor times the unperturbed wave function in which the coordinates of each electron are translated by a value that satisfies the classical equation of motion (In the absence of the harmonic external potential, the wave function reduces to the Kohn Theorem [22] wave function. In the absence of the external magnetic field, the wave function reduces to the Harmonic Potential Theorem [23] wave function). Hence, if the unperturbed wave function is known, the time evolution of all properties is known. Observables represented by non-differential Hermitian operators, such as the density [image: there is no content] then correspond to the unperturbed value translated by a time-dependent function. Thus, the example of the QDFT mapping of the quantum dot in a magnetostatic field given in the previous section is equally representative of the case when the time-dependent field [image: there is no content] is additionally present. In this example, both the density [image: there is no content] and physical current density [image: there is no content] satisfy the above translational property. The results of Figure 1 correspond to [image: there is no content] (the case of the quantum dot in a time-dependent electromagnetic field is not provided because the corresponding wave function has not yet been derived).




4. Conclusions


The conclusions of this work, arrived at via QDFT, are the following: (a) in traditional LEPT, one maps a system of electrons in external time-independent or time-dependent electromagnetic fields, to one of noninteracting fermions possessing the same density [image: there is no content] or [image: there is no content], a basic variable. However, what is proved here is that, within QDFT, it is possible and efficacious to map to a model system such that it possesses all the same basic variables. In the presence of both an electric and magnetic field, the basic variables are the density [image: there is no content] and physical current density [image: there is no content] (the reason for treating the time-independent and time-dependent cases separately is because, for the former, in addition to the constraint of fixed electron number, there is the constraint of fixed canonical angular momentum). External fields that are solely either electrostatic or time-dependent electric fields for which the basic variables are [image: there is no content] or [image: there is no content] constitute a special case; (b) in order to map to such a model system, the external fields experienced by the interacting electrons and noninteracting fermions must be the same. Hence, within QDFT, it is only the effective S system scalar potential [image: there is no content], or equivalently the effective electron-interaction potential [image: there is no content] in which all the many-body effects are incorporated that must be determined (In traditional LEPT (see e.g., [19]), although one also assumes the model fermions are subject to the same external fields, both an effective scalar [image: there is no content] and vector [image: there is no content] (containing an additional electron-interaction component) potential must be obtained); (c) finally, given the requirement that the noninteracting fermions possess the same basic variables and are subject to the same external fields, then, irrespective of the form of external field, the only many-body correlations that must be accounted for in the mapping to the model system are those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. This provides a unification of all LEPT in terms of the electron correlations that must be considered. It also provides a considerable simplification in that Correlation–Current–Density and Correlation–Magnetic effects need no longer be addressed. Additionally, in three-dimensional, high density, low-electron-correlation systems, Correlation–Kinetic effects are usually small. For such systems, these effects can therefore be ignored in a first approximation. On the other hand, in lower dimensional systems and in the low density, high-electron-correlation Wigner regime, these effects play a significant role [24,25] and must be considered.
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Appendix Brief Summary of Quantal Density Functional Theory


The Quantal density functional theory (QDFT) described in this work is based on recent developments in Schrödinger theory and the fundamental theorems of density functional theory. Consider a system of N electrons in an external static or time-dependent electromagnetic field [image: there is no content] (the coordinate [image: there is no content] could be either [image: there is no content], or [image: there is no content], as the case may be). QDFT maps this system of electrons as described by the Schrödinger equation to one of noninteracting fermions possessing the same basic variables. A basic variable is a gauge invariant property, knowledge of which uniquely determines the wave function of the system. For the quantum-mechanical systems described, the basic variables are the density [image: there is no content] and the physical current density [image: there is no content].



The next step is the description of Schrödinger theory from the perspective of the individual electron. This perspective is described via the “Quantal Newtonian” second and first laws, which are the equations of motion of the single electron in the sea of electrons in the external field [image: there is no content]. These laws are in terms of “classical” fields that pervade all space, and whose sources are quantum-mechanical expectations of Hermitian operators taken with respect to the wave function [image: there is no content] (with [image: there is no content] or [image: there is no content]. In addition to the external field [image: there is no content], there is an internal field [image: there is no content] experienced by each electron. The internal field [image: there is no content] is comprised of components representative of properties of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the density, kinetic effects, and an internal magnetic field component. There is then the response of the electron to all the fields described by a current density field [image: there is no content] (in summing over all the electrons, the contribution of the internal field [image: there is no content] vanishes, thereby leading to Ehrenfest’s theorem). The energy E and the nonconserved energy [image: there is no content], and their components can be written in integral virial form in terms of the individual fields.



With the assumption of the existence of a noninteracting fermion model system possessing the same basic variables [image: there is no content], and the assumption of the model fermions experiencing the same external field [image: there is no content], one then derives the corresponding “Quantal Newtonian” second law. The resulting internal field [image: there is no content] now contains a field involving the local electron-interaction potential [image: there is no content] in which all the many-body effects are incorporated. It also contains the fields corresponding to the density, kinetic effects, and an internal magnetic field component. The density and internal magnetic field components are the same as those of the interacting system by the assumptions above. The kinetic field differs as can be understood from the Heisenberg uncertainty principle. There is finally the response of the model fermion represented by the field [image: there is no content], which is also equivalent to [image: there is no content] of the interacting system, as the currents densities [image: there is no content] are also assumed to be the same.



As [image: there is no content] experienced by the electron and the model fermion is the same, equating the corresponding “Quantal Newtonian” laws then leads to the potential [image: there is no content] being the work done by the model fermion in a conservative effective field. This field is the sum of the electron-interaction field representative of Pauli and Coulomb correlations, and the Correlation–Kinetic field, which arises from the difference in the kinetic fields. Note that the expression for the potential [image: there is no content] is explicitly defined and solely in terms of these electron correlations of the system. Additionally, irrespective of the form of external field, whether it be static or time-dependent, the correlations are the same. Finally, the electron interaction and Correlation–Kinetic components of the energy [image: there is no content] can be expressed in terms of the respective fields.



The most general derivation of the “Quantal Newtonian” second law is given in Supplementary Material. For further derivations of the individual quantal sources and fields, approximation methods and applications, we refer the reader to [2,3].
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