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Abstract: An extremely interesting problem in aero-hydrodynamics is the sound radiation of a single
vortical structure. Currently, this type of problem is mainly considered for an incompressible medium.
In this paper a method was developed to take into account the viscosity and thermal conductivity of
gas. The acoustic radiation frequency of a cylindrical vortex on a flat wall in viscous heat-conducting
gas (air) has been investigated. The problem is solved on the basis of the Navier–Stokes equations
using the small initial vorticity approach. The power expansion of unknown functions in a series
with a small parameter (vorticity) is used. It is shown that there are high-frequency oscillations
modulated by a low-frequency signal. The value of the high frequency remains constant for a long
period of time. Thus the high frequency can be considered a natural frequency of the vortex radiation.
The value of the natural frequency depends only on the initial radius of the cylindrical vortex, and
does not depend on the intensity of the initial vorticity. As expected from physical considerations, the
natural frequency decreases exponentially as the initial radius of the cylinder increases. Furthermore,
the natural frequency differs from that of the oscillations inside the initial cylinder and in the outer
domain. The results of the paper may be of interest for aeroacoustics and tornado modeling.
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1. Introduction

Vortical structures (vortex rings and cylindrical vortices) play an important role in the sound
radiation of gaseous flows. The general problems of sound radiation of vortices are considered in [1,2].
Research on the radiation of vortex systems has been conducted in [3] (system of two vortex rings)
and [4] (system of four cylindrical vortices). The computations were performed with the aid of a vortex
particle method [5]. Analysis of perturbation energy of eddy flows in connection with the problem of
stability was considered in [6–9].

It should also be mentioned that in the LES (Large Eddy Simulation), turbulence is simulated
as a set of large-scale vortices [10]. In this regard, the study of individual vortex dynamics and of its
acoustic radiation is of interest.

Sound generation by a single cylindrical vortex is of special interest. Unfortunately, this problem
was analyzed only for non-viscous fluid [11,12].

However, the presence of viscosity is responsible for the occurrence of tangential stresses, and
they generate vorticity. Thus, vortical structures can be regarded as substantially non-linear objects
and described based on the Navier–Stokes equations, taking into account the viscosity and thermal
conductivity of the medium.

We set forth a method for the calculation of multiple integrals which reduces the solution to
partial differential equations. This method is very promising for aeroacoustic problems, since it allows
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analysis of the sound generation of a single cylindrical vortex. Until now, researchers have analyzed
the sound generation during the interaction of vortices and vortex-acoustic interaction.

The method can be useful to simulate a tornado, and the results of its application to the cylindrical
vortex are of interest for aeroacoustics and description of characteristics of turbulent flow. The aim of
this paper is to investigate the acoustic radiation of a cylindrical vortex on a flat wall.

2. Governing Equations

The Navier–Stokes equations are derived by applying Newton’s Law of Motion to a fluid element.
It is supplemented by the mass continuity equation and the energy equation. The system also includes
the momentum equation. They are valid if the characteristic length is much greater than the free path
distance of molecules. The Navier–Stokes equations take into account vorticity diffusion and energy
dissipation in contrast to the Euler equations.

The non-stationary system of the Navier–Stokes equations is:
ρ dvi

dt =
∂Pij
∂xj

,
dρ
dt + ρ ∂vk

∂xk
= 0,

ρ de
dt = Pij

.
εij +

∂
∂xj

(λ ∂T
∂xj

).

(1)

d
dt

=
∂

∂t
+ vj

∂

∂xj
, Pij = 2µ

.
εij −

2
3

µ
.
εkkδij − pδij,

.
εij =

1
2
(

∂vi
∂xj

+
∂vj

∂xi
), e = CV T.

We use the Helmholtz decomposition of the velocity field into a potential part and a solenoidal one

→
v (
→
x , t) = −

→
∇
4π

∫ s(
→
ξ , t)∣∣∣∣→x −→ξ ∣∣∣∣d

→
ξ +

1
4π

→
∇×

∫ →
Ω(
→
ξ , t)∣∣∣∣→x −→ξ ∣∣∣∣d

→
ξ ; (2)

s =
→
∇→v ,

→
Ω =

→
∇×→v ,

→
∇ = (

∂

∂x1
;

∂

∂x2
;

∂

∂x3
).

Taking into account Equation (2), the Navier–Stokes System (1) in dimensionless form can be
written as follows:

∂Ωi
∂t = ν∆Ωi +

3
4

.
εijkν( ∂vk

∂xm
+ ∂vm

∂xk
) ∂2h

∂xj∂xm
− vj

∂Ωi
∂xj

+ Ωm
∂vi
∂xm
− sΩi + f1i,

∂w
∂t = −vj

∂w
∂xj

+ s,
∂s
∂t =

eh

γ ∆w + 4
3 ν∆s− ( 1

γ eh + 0.5sν)∆h + 1.5ν ∂vi
∂xj

∂2h
∂xi∂xj

− vj
∂s
∂xj

+ f2,
∂h
∂t = γ

Pr η∆h− (γ− 1)s− vj
∂h
∂xj

+ f3,

(3)

w = −Logρ, h = LogT, ν = µ/ρ, η = λ/ρ,
∆ = ∂2

∂xi∂xi
, i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, 3, m = 1, 2, 3.

Here εijl is the antisymmetrical tensor, ∆ is Laplacian, ρ, T,
→
v are dimensionless values of density,

temperature, velocity (divided by ρ0, T0, c0, respectively), µ, ν, λ, c is viscosity, kinematic viscosity, heat
conductivity and low-frequency sound speed, γ is the adiabatic exponent, and Pr is the Prandtl number.

The functions f1i, f2, f3 are non-linear terms with respect to the first derivatives over coordinates.
Subscript “0” refers to the initial state which is supposed to be uniform.

The System (3) was made dimensionless using the characteristic length l0 = ν0/c0 and the
characteristic time t0 = ν0/c0

2.The dependence of air viscosity and thermal conductivity on
temperature can be described as a power law: µ/µ0 = T0.75, λ/λ0 = T0.75.

Pressure, temperature and density are related to the Mendeleev–Clapeyron equation p = ρRT
M , M

being molar mass.
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2.1. The Initial Value Problem

At the initial instant the vorticity has a non-zero value ω0 only within a gaseous circular cylinder
of a radius r0 and of a height z0. The cylinder is situated on a flat wall. The axis of the cylinder is
normal to the wall (4).

The problem is considered under the assumption that the initial vorticity ω0 is small (ω0 � 1).
The initial conditions are:

Ωz

(→
x , 0
)
=

{
ω0, r ≤ r0

0, r > r0

w
(→

x , 0
)
= s

(→
x , 0
)
= h

(→
x , 0
)
= 0.

(4)

The velocity on the flat wall is equal to zero:
→
v (
→
x , t)

∣∣∣z=0 = 0. The solution does not depend on ϕ

(r, ϕ, z being cylindrical coordinates).

2.2. The Solution to the Problem

In order to solve Equation (3) let us expand the unknown functions in power series of a small
parameter ε = ω0. We get:

Ω(1)
1

(→
x , t
)
= ε2Ω(1)

1
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)
+ ε3Ω(2)

1
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1
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+ . . . ,
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2
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)
= ε2Ω(1)

2
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)
+ . . . ,
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)
+ . . . ,

w
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)
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s
(→
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)
= ε2s(1)
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x , t
)
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)

. . . ,

h
(→

x , t
)
= ε2h(1)

(→
x , t
)
+ ε3h(2)

(→
x , t
)
+ ε4h(3)
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)

. . . ,
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x , t
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(→
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)
+ ε2v(2)i
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x , t
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(5)

Inserting Equation (5) into Equation (3) gives for the lowest-order functions

∂Ω(1)
i

∂t = ∆Ω(1)
i ,

∂w(1)

∂t = s(1),
∂s(1)

∂t = 1
γ ∆w(1) + 4

3 ∆s(1) − 1
γ ∆h(1) + ψ

(1)
2 ,

∂h(1)
∂t = γ

Pr ∆h(1) − (γ− 1)s(1) + ψ
(1)
3 .

(6)

ψ
(1)
2 =

∂v(1)i
∂xj

∂v(1)j

∂xi
, ψ

(1)
3 =

1
2

γ(γ− 1)Dijv(1)Dijv(1), Dijv(1) =

∂v(1)i
∂xj

+
∂v(1)j

∂xi

 .

The flow velocity is:

→
v (
→
x , t) = − 0.25

π

∫ {→
Ω(
→
x +

→
r
′
, t)×→n + s(

→
x +

→
r
′
, t)
→
n
}

dr′sinθ′dθ′dϕ′,

n = {sinθ′cosϕ′, sinθ′sinϕ′, cosθ′} .
(7)

The System (6) consists of three homogeneous parabolic equations with respect to Ωi (as a general
rule) and a non-uniform parabolic subsystem with constant coefficients. One can find the solution to
this subsystem using the Fourier transform.
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The first equation of System (6) yields

Ω(1)
i

(→
x , t
)
=

0.125
π3/2t3/2

∫
Ω(1)

i (ξ, 0)∗exp

(
−0.25

∣∣∣∣→x −→ξ ∣∣∣∣2 /t

)
d
→
ξ . (8)

In our case, only one component Ω(1)
3 = Ω is different from zero.

Equation (8) allows us to determine the terms ψ
(1)
2 , ψ

(1)
3 in Equation (6).

The Fourier transform of the homogeneous parabolic subsystem of (6) gives (the wavy line
de-notes the Fourier transform):

dw̃(1)

dt = s̃(1),
ds̃(1)

dt = − k2

γ w̃(1) − 4
3 k2 s̃(1) + k2

γ h̃(1),

dh̃(1)
dt = −k2 γ

Pr h̃(1) − (γ− 1)s̃(1).

(9)

The characteristic equation of the System (9) is [13]

f 3 + k2(
4
3
+

γ

Pr
) f 2 + k2(

4
3

γ

Pr
k2 + 1) f +

k4

Pr
= 0 (10)

The characteristic Equation (10) is a cubic one. It has one real root and two complex conjugate
roots at 0 ≤ k ≤ k∗.

At 0 ≤ k ≤ k∗, k∗ ≈ 1 for air, the solutions of Equation (10) are

f1 = σ1(k), f2,3 = σ2(k)± iωr(k); σ1, σ2 < 0.

All the solutions are real and negative in the domain k∗ < k < ∞.
They decay rapidly in a very short time, so we do not take this case into account. The dispersion

curve ωr(k) has two branches. We consider only the branch that corresponds to smaller values of the
attenuation coefficients σ1, σ2(0 ≤ k ≤ k1 < k∗).

The Fourier transform of the fundamental solution matrix for the parabolic Subsystem (9) is

A =
[
aij
]

, i = 1, 2, 3,
a1i = c1ieσ1t + c2ieσ2tcos(ωrt) + c3ieσ2tsin(ωrt),

a2i = c1iσ1eσ1t + (c2iσ2 + c3iωr)eσ2tcos(ωrt) + (c3iσ2 − c2iωr)eσ2tsin(ωrt),

a3i = c1i(1 + γσ1(
σ1
k2 + 4

3 ))e
σ1t + ((1 + γ

k2 (σ2
2 −ωr

2) + 4
3 γσ2)c2i+

2γωr(
σ2
k2 + 2

3 )c3i)eσ2tcos(ωrt) + (−2γωr(
σ2
k2 + 2

3 )c2i+

(1 + γ
k2 (σ2

2 −ωr
2) + 4

3 γσ2)c3i)eσ2tsin(ωrt).

Here cij are defined from the initial conditions:

c11 = (γ(σ2
2 + ωr

2)− k2)/g1; c12 = −2(σ2 +
2k2

3 )/g0; c13 = k2

g1
;

c21 = (γσ1(σ1 − 2σ2) + k2)/g1; c22 = −c12; c23 = −c13;
c31 = (γσ1(σ2

2 − σ1σ2 −ωr
2) + k2(σ1 − σ2))/(ωrg1);

c32 = (σ1
2 − σ2

2 + ωr
2 + 4k2(σ1 − σ2)/3)/(ωrg0);

c33 = k2(σ2 − σ1)/3)/(ωrg1), g0 = (σ2 − σ1)
2 + ωr

2, g1 = γg0.
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In our case we investigate density oscillations. The function w(1) is

w(1)
(→

x , t
)
= 1

2π
√

π

t∫
0

dτ
∫
R3

d
→
ξ
∫
R3

d
→
k exp

(
i
→
k (
→
x −

→
ξ )

)
∗{

a12(k, t− τ)ψ
(1)
2 (
→
ξ , τ) + a13(k, t− τ)ψ

(1)
3 (
→
ξ , τ)

}
,

(11)

The functions Ω(n)
i , w(n)(

→
x , t), s(n)(

→
x , t), h(n)(

→
x , t), n > 1 can be obtained in the same manner.

Let us introduce the variable
→
X =

→
ξ −→x 0. With this new variable Equation (11) becomes

w(1)
(→

x 0, t
)
=
√

2
π

t∫
0

dτ
k1∫
0

kdk
∞∫
0

R3dR3

π∫
0

sinθ3dθ3

2π∫
0

dϕsin(kR3)∗{
a12(k, t− τ)ψ

(1)
2 (
→
x 0 +

→
X, τ) + a13(k, t− τ)ψ

(1)
3 (
→
x 0 +

→
X, τ)

}
.

(12)

Density deviation from its initial value has the form ρd−ρ0
ρ0

= ρd
ρ0
− 1 ∼= −w ∼= −ω2

0w(1), here ρd
denotes dimensional density.

Since w ∼= ω2
0w(1) and w(1) does not depend on the initial vorticity ω0, neither does the frequency

of the acoustic radiation. The value ω0 only affects the amplitude of w. The first terms of the series can
be used for the analysis of frequency band of density oscillations in the case of low vorticity.

The coefficients of the power series by ω0 are multiple integrals. The question of convergence of
the series has not been investigated in this study.

3. Results

Equation (12) was used for the calculation of the density evolution. The multiple integrals were
evaluated with the aid of Korobov grids [14].

The Korobov grids are elaborated for numerical evaluation of multiple integrals. Namely, integrals
over a unit cube in Rn are considered.

The grids are as follows:

Mk = ({ a1k
p
}, . . . , { ask

p
}), k = 1, 2, . . . , N.

where a1, . . . , as are optimal coefficients.
The numbers p = N and integer numbers a1, . . . , as are mutually primes ones. The procedure of

evaluating optimal coefficients is given in [14].
The discrepancy is proportional to N−αlnγN, γ = γ(α, s), Hα

s being the class of the functions
under consideration.

The program code for calculating w and support functions was written in the Wolfram Language
and was executed in Mathematica 5.0 program. The graphs and the spectra were built with the aid of
the Qtiplot 0.9.9.2.

As shown, density oscillations arise. Computations refer to the initial domain inside the vortical
cylinder as well as outside it. The process is different in these domains. There are high-frequency
oscillations modulated by a low-frequency signal.

3.1. Low-Frequency Oscillations

Figures 1 and 2 demonstrate density oscillations inside the initial vortical cylinder.
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Figure 1. The oscillations inside the initial cylinder.

The value of w = −Logρ against time at the axis of the cylinder, r0 = 0.188 cm, z0 = 2.909 cm,
z = 1.7 cm.
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Figure 2. The oscillations inside the initial cylinder.

The oscillation spectrum of w = −Logρ at the cylinder axis (r = 0), r0 = 0.188 cm, z0 = 2.909 cm,
z = 1.7 cm.

Figure 1 refers to the axis of the cylinder. As seen, the amplitude of the oscillations grows at first
and then decays up to zero. Later on the oscillations arise anew. Figure 2 shows that there are two
natural frequencies (about 115 Hz and 280 Hz) and a continuous spectrum.

Figure 3 represents the oscillations at the point r = r0/2. As seen, there are two temporal intervals,
in which the amplitude of the oscillations is large enough but the maximum amplitude is reached in
the second area of oscillations. The oscillation spectrum (Figure 4) has two natural frequencies (about
115 Hz and 280 Hz), but there is no continuous spectrum.
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Figure 3. The oscillations inside the initial cylinder.

The value of w = −Logρ against time at r = r0/2, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm.
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The oscillation spectrum of w = −Logρ at r = r0/2, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm.
The process is different in the flow outside the initial cylinder. Below we consider geometrically

similar cylinders (Figures 5–8).

Computation 2016, 4, 32 7 of 13 

 

Figure 3 represents the oscillations at the point r = r0/2. As seen, there are two temporal intervals, 
in which the amplitude of the oscillations is large enough but the maximum amplitude is reached in 
the second area of oscillations. The oscillation spectrum (Figure 4) has two natural frequencies (about 
115 Hz and 280 Hz), but there is no continuous spectrum. 

 

Figure 3. The oscillations inside the initial cylinder. 

The value of w = −Log against time at r = r0/2, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm. 

 
Figure 4. The oscillations inside the initial cylinder. 

The oscillation spectrum of w = −Log at r = r0/2, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm. 
The process is different in the flow outside the initial cylinder. Below we consider geometrically 

similar cylinders (Figures 5–8). 

 
Figure 5. The scaling factor is equal to 1. 

The value of w = −Log against time at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm. 

0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0

w

t,s

0 5 10 15 20 25
-1.0

-0.5

0.0

0.5

1.0

w

t,s

Figure 5. The scaling factor is equal to 1.

The value of w = −Logρ against time at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm.Computation 2016, 4, 32 8 of 13 

 

 

Figure 6. The scaling factor is equal to 2. 

The value of w = −Log against time at r > r0, r = 3.418 cm, r0 = 0.376 cm, z0 = 5.818 cm, z = 3.4 cm. 

 
Figure 7. The scaling factor is equal to 3. 

The value of w = −Log against time at r > r0, r = 5.127 cm, r0 = 0.564 cm, z0 = 8.727 cm, z = 5.1 cm. 

 
Figure 8. The scaling factor is equal to 4. 

The value of w = −Log against time at r > r0, r = 6.836 cm, r0 = 0.752 cm, z0 = 11.636 cm, z = 6.8 cm. 
Figure 5 shows the oscillations at the point outside the cylinder. As can be seen, the oscillations 

grow at first (0–3 s), then a sharp decrease of amplitude takes place (3–12 s). Further on saturation 
occurs and then the oscillations decay slowly. The radiation starts when the wave arrives at the 
observation point. 

Let us consider the acoustic radiation from cylinders with scaling factors 2, 3 and 4. 
The process in Figure 6 (the scaling factor is 2) is almost identical to the original one, but it 

develops slowly. The increase of the amplitude occurs in the interval 0–15 s. Later on, the amplitude 
decreases. 

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

w

t,s

0 50 100 150 200 250
-1.0

-0.5

0.0

0.5

1.0

w

t,s

0 100 200 300 400
-1.0

-0.5

0.0

0.5

1.0

w

t,s

Figure 6. The scaling factor is equal to 2.

The value of w = −Logρ against time at r > r0, r = 3.418 cm, r0 = 0.376 cm, z0 = 5.818 cm, z = 3.4 cm.
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The value of w =−Logρ against time at r > r0, r = 6.836 cm, r0 = 0.752 cm, z0 = 11.636 cm, z = 6.8 cm.
Figure 5 shows the oscillations at the point outside the cylinder. As can be seen, the oscillations

grow at first (0–3 s), then a sharp decrease of amplitude takes place (3–12 s). Further on saturation
occurs and then the oscillations decay slowly. The radiation starts when the wave arrives at the
observation point.

Let us consider the acoustic radiation from cylinders with scaling factors 2, 3 and 4.
The process in Figure 6 (the scaling factor is 2) is almost identical to the original one, but it develops

slowly. The increase of the amplitude occurs in the interval 0–15 s. Later on, the amplitude decreases.
If the scaling factor is equal to 3 (Figure 7), the process occurs more slowly than the previous one.

In addition, one can observe two areas of increase of the oscillation amplitude: namely, 0–25 s and
80–160 s.

Figure 8 corresponds to a scaling factor 5. Clearly, the area of the determination of oscillations
(0–110 s) is shown. Then, as in the previous cases, there is a region of steady oscillations with gradually
decreasing amplitude.

The acoustic oscillations are pressure fluctuations. In our case the density dependence is
similar to that of the pressure. The intensity of acoustic radiation is proportional to the square
of density fluctuations.

The spectrum of the oscillations represented in Figure 5 is given in Figure 9. There are two natural
frequencies (17 Hz and 24 Hz).



Computation 2016, 4, 32 9 of 12

Computation 2016, 4, 32 9 of 13 

 

If the scaling factor is equal to 3 (Figure 7), the process occurs more slowly than the previous 
one. In addition, one can observe two areas of increase of the oscillation amplitude: namely, 0–25 s 
and 80–160 s. 

Figure 8 corresponds to a scaling factor 5. Clearly, the area of the determination of oscillations 
(0–110 s) is shown. Then, as in the previous cases, there is a region of steady oscillations with 
gradually decreasing amplitude. 

The acoustic oscillations are pressure fluctuations. In our case the density dependence is similar 
to that of the pressure. The intensity of acoustic radiation is proportional to the square of density 
fluctuations. 

The spectrum of the oscillations represented in Figure 5 is given in Figure 9. There are two 
natural frequencies (17 Hz and 24 Hz). 

 
Figure 9. The oscillations outside the initial cylinder. 

The oscillation spectrum of w = −Log at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm. 

3.2. High-Frequency Oscillations 

Furthermore, one can observe high-frequency oscillations (Figures 10 and 11). Once again, two 
high characteristic frequencies are observed for different vortex radii: 920 and 1120 Hz (r0 = 0.188 cm, 
Figure 12), 790 Hz and 1150 Hz (r0 = 2 cm, Figure 13). 

 

Figure 10. High-frequency oscillations. The scaling factor is equal to 1. 

The value of w = −Log against time at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm. 

12.22 12.24 12.26 12.28
-0.4

-0.2

0.0

0.2

0.4

w

t,s
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The oscillation spectrum of w = −Logρ at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm,
z = 1.7 cm.

3.2. High-Frequency Oscillations

Furthermore, one can observe high-frequency oscillations (Figures 10 and 11). Once again, two
high characteristic frequencies are observed for different vortex radii: 920 and 1120 Hz (r0 = 0.188 cm,
Figure 12), 790 Hz and 1150 Hz (r0 = 2 cm, Figure 13).
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The value of w = −Logρ against time at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm, z = 1.7 cm.Computation 2016, 4, 32 10 of 13 
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The value of w = −Logρ against time at r > r0, r = 18.12 cm, r0 = 2 cm, z0 = 30.84 cm, z = 18.02 cm.
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The oscillation spectrum of w = −Logρ at r > r0, r = 1.709 cm, r0 = 0.188 cm, z0 = 2.909 cm,
z = 1.7 cm.
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Figure 13. High-frequency oscillations. The scaling factor is equal to 10.6.

The oscillation spectrum of w = −Logρ at r > r0, r = 18.12 cm, r0 = 2 cm, z0 = 30.84 cm, z = 18.02 cm.
It is important to note that the high-frequency oscillations as well as the low-frequency ones

have two natural frequencies. The occurrence of two-period oscillations can be explained by two
characteristic sizes (radius and height) of the cylinder.

4. Discussion

The dependence of low-frequency oscillations of scaling factor is presented in Figure 14. It shows
that the frequency decreases exponentially with increasing scaling factor.
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Unfortunately, there are no available experimental data referring to acoustic radiation of vertical
gaseous cylindrical vortexes.

Therefore, we compared our results with experimentally observed frequencies of vortex rings
and frequency of turbulent atmospheric fluctuations.

The atmospheric frequencies are in the 0.5–290 Hz range [15]. According to our data, the
low-frequency oscillations of the vortex cylinder are in the 17–280 Hz range.

The high-frequency oscillations were already theoretically observed in another paper [16].
We compared the high-frequency oscillations with the acoustic radiation of turbulent vortex rings [17].

The vortex rings investigated in the other paper [17] were generated in an anechoic chamber by
means of a piston-driven vortex generator with a nozzle diameter d = 4 cm and an initial jet ejection
velocity 30 ms−1 (corresponding to Reynolds number Re = 6.8 × 104). The ring noise was determined
from the averaged spectrum in a series of 12 selected time samples of length 31.2 ms starting after
220 ms from the initiation of the ring (this corresponds to the part of the path at a distance from 200
to 230 cm from the nozzle orifice), manifesting itself as strong peaking of the spectrum in a narrow
frequency band (∆ω = 300 Hz) with the maximum near the frequency ω0 = 1200 Hz.

This value coincides with our results for cylinder radius 2 cm (Figures 11 and 13) (high-frequency
oscillations for vortex cylinder are 790 and 1150 Hz).

It also is interesting to note that the acoustic radiation of jets refers to the Strouhal number
(Sh = fL/v; here, L and v are the characteristic size and the characteristic speed, respectively, f is
frequency) in the range St = 0.1–0.2 [18]. It corresponds well to the Strouhal number in our calculations,
which is in the 0.01–0.7 range.

5. Conclusions

On the basis of the Navier–Stokes equations, for the first time, the problem of the acoustic
radiation of a single vortical cylinder in viscous heat-conducting gas has been solved. The solution
has been obtained in the form of a power series in the initial vorticity ω0, multiple integrals being the
appropriate coefficients. The first-order term of the series represents the solution, if ωd � c2

0/d, where
the subscript “d” denotes the dimensional value and c0 is the low-frequency sound speed referred to
the initial state.

The validation of the results has been provided using modern methods. The Korobov grid has
been used for calculations. The accuracy of the Korobov method is higher than that of Monte–Carlo.

The analysis of the acoustic radiation of a single vortical cylinder has led to the
following conclusions:

(i) It was found that there are high and low frequencies corresponding to the frequencies
experimentally observed for the vortex ring and atmospheric frequencies, respectively.

(ii) As seen, the pattern of oscillations is different inside the initial cylinder and outside it. This fact
may be explained as follows. There are multiple reflections of acoustic waves inside the initial
cylinder. The reflected waves must be weaker in the domain outside.

(iii) There are high-frequency oscillations modulated by a low-frequency signal. The value of high
frequency remains constant during a long time. Thus it is possible to consider the high frequency
as the natural frequency of the vortex. The value of the natural frequency depends on the initial
radius of the vortical cylinder and does not depend on the intensity of the initial vorticity. Namely,
it diminishes if the radius of the cylinder increases, as expected from physical considerations.
The natural frequency has different values inside the initial cylinder and in the outer domain.

Hitherto, researchers analyzed sound generation under vortex–vortex and vortex–acoustic
generation interactions. We considered sound generation by a single vortex due to vortex diffusion.
The results of the paper may be of interest for aeroacoustics and tornado modeling.
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