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Abstract: Computer simulation of normal and diseased human heart activity requires a 3D anatomical
model of the myocardium, including myofibers. For clinical applications, such a model has to be
constructed based on routine methods of cardiac visualization, such as sonography. Symmetrical
models are shown to be too rigid, so an analytical non-symmetrical model with enough flexibility
is necessary. Based on previously-made anatomical models of the left ventricle, we propose a new,
much more flexible spline-based analytical model. The model is fully described and verified against
DT-MRI data. We show a way to construct it on the basis of sonography data. To use this model
in further physiological simulations, we propose a numerical method to utilize finite differences in
solving the reaction-diffusion problem together with an example of scroll wave dynamics simulation.
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1. Introduction

Integrative mathematical models of complicated hierarchic physiological systems, such as the
heart, allow the use of a computational mathematical approach to describe these systems from the
molecular level to the macro level, which characterizes the structure and functions of the whole
heart and/or certain heart chambers, including the LV. In the framework of numerical experiments,
a comprehensive analysis of such ventricular models provides a way to elucidate the mechanisms
of normal and pathological heart performance; these models also provide a way to predict potential
methods of effective therapy, such as correcting mechanical and electrical cardiac function disturbances.

Preferential paths for the propagation of an electrical excitation wave in the human ventricular
myocardium are associated with muscle fibers in tissue. The speed of an excitation wave along
a fiber is several times higher than that across the direction of a fiber. Thus, 3D simulation of
electrophysiological and mechanical activity of the heart requires an anatomical model that includes a
field of myofiber directions.

Recently, several models of the electrical and/or mechanical activity of the whole heart or its
chambers have been proposed [1–12]. The most valuable of these are based on a detailed description
of cardiac anatomy and the fiber orientation field, which is crucial for a correct representation of the
physiological function of the heart.
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In the existing literature, there are two approaches for modeling heart chamber architectonics,
including the morphological pattern of myocardium fiber orientation. The approaches are more
complementary to each other than alternative ones. For convenience, we have roughly and
non-rigorously assigned them as empirical and theoretical approaches.

In empirical approaches, fiber orientation is directly measured in the heart using various
experimental techniques, and in theoretical approaches, fiber orientation is generated using algorithms.

1.1. Examination of Individual Hearts and Empirical Models

Important and useful empirical approaches are represented in several well-developed published
models [13–15]. These models are based on the detailed experimental mapping of individual hearts.
In current research, directions of fibers in the myocardium can be measured by different experimental
methods. Particularly, the diffusion tensor imaging (DTI) technique has been used to obtain images
that show the fiber orientation and anisotropy of the heart [16–19]. Such measurements can be done
with a spatial resolution of up to 0.3–0.5 mm and, in general, produce high-quality data, which can be
used in computer-based models.

Another way of measuring anisotropy directly is the tedious histological study of fiber direction
in 3D [20,21], where the researcher makes a series of parallel slices of the part of the heart under
investigation. In every slice, angles of the fiber slope are measured. When all of the angular values are
composed, the researcher obtains a full picture of the fiber directions in the organ.

The initial quantitative approach to describing animal and human heart anatomy was established
by Streeter in the 1960s [20]. It is worthy of note that all of the approaches on fiber orientation in
the human heart are either based on or use the results of Streeter’s classical studies. Streeter not
only measured fiber orientation in the heart, but also proposed several hypotheses on how this
fiber orientation could be reproduced using geometrical transformations. However, for a long time,
Streeter’s ideas were not implemented in a mathematical model.

The question of laminar arrangement in the muscular fibers and sheets is one of the basic matters
in cardiac anatomy. Such an arrangement is hard to measure and is still under debate [21–23]. We have
not attempted to include it in our present description.

Every directly-measured dataset is connected to one concrete patient or laboratory animal and,
thus, cannot be directly used for personalized heart models. Hence, there is a demand for algorithms
that will allow existing data to be projected onto any geometry (see [18]) or that will allow researchers
to generate such fiber orientation fields from any given geometric data.

At the same time, strictly speaking, any model built on the basis of a particular arrow map is
a model of one particular heart, as it is difficult to distinguish between the common properties of
the heart of a given species and the individual specificity of the scanned heart sample. Of course,
individual computational models of heart chamber architectonics built with the empirical approach
may be developed further, up to the species model level. Correct averaging of data obtained via the
mapping of individual heart samples will be necessary for this. Several promising works are focusing
on this goal [24–27]. Models based on the empiric approach might, among other things, essentially
contribute to the parameter verification of the models developed via the theoretical approach.

Each of the listed experimental methods allows researchers to obtain the fiber orientation field
and use it to set up a model, and this approach is the best one to study a particular heart for which the
measurements were performed. However, a researcher may not only need to study a given anisotropy,
but also to modify it, e.g., to study its effects on various electromechanical processes. In many cases,
anatomy alone, not fiber orientation, is known, and some algorithms are needed to build up the
anisotropy. Such algorithms are based on generic views of cardiac anatomy, which have been obtained
through more than a century of cardiac research.
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1.2. Theoretical Models of Cardiac Anatomy

The theoretical approach to the modeling of heart chamber, e.g., the LV, architectonics arises
from the attempt to clarify a general principle or governing rule that determines the orientation of
the fibers in the ventricle wall. Such theoretical models may be especially useful when studying basic
mechanisms of normal and pathologic heart performance.

The discovery of rotational anisotropy in the myocardium was one of the first fundamental
findings in qualitative heart anatomy. The tangents to the myofibers turn, if we look at them
transmurally, and the turning angle equals approximately 120◦. Streeter compared this picture with a
Japanese fan [20]. Torrent-Guasp suggested that we consider the myocardium of both ventricles as a
“flattened rope” or a band that has two endings and makes a few turns [28]. According to Streeter [20],
myofibers are geodesic lines on a set of nested toroids, and outer toroids are more prolate, while inner
ones are more round. Besides this model, there are many models concerning a few myocardial layers
(usually three, namely superficial, middle and deep; see, for example, [29]). One can find a more
detailed description of the history of cardiac qualitative anatomy in [30].

One group of models constructs the architectonics of myocardial fibers by using the analogy
of muscular skeletal fibers. Different models include from one to four systems of myocardial
bundles [31–35]. However, some researchers point to restrictions of the approach [36–38].

Another hypothesis to LV architectonics considers it as a kind of vascular musculature,
where many junctions between the fibers exist [39–43].

One of the key questions concerning the LV myocardium is related to its layers, namely
their existence, and if they exist, their number and positions. As a rule, models with sheets have a
number of layers inserted one into another [29]. Nevertheless, a layers-based model exists in which the
number of sheets is indefinite and the LV is not divided into internal and external parts. The model in
question is from an early work [28], published in 1973, in which Torrent-Guasp proposed a hypothesis
on how cardiac fiber orientation could be reproduced using geometrical transformations. However,
this idea has never been formulated in mathematical terms.

Let us now discuss mathematical models of the heart. Theoretical approaches to cardiac
architectonics include rule-based methods [44–46] and the mapping of fibers from animal hearts
to human heart geometry [47]. One of the most recent rule-based methods is a Laplace–Dirichlet
algorithm [46], which takes a noisy DTI-derived fiber orientation field as input data and yields, firstly,
the transmural and apicobasal directions for the entire myocardium and, secondly, a smooth and
continuous fiber orientation field. Another approach was used by Peskin, who derived the fiber
orientation field from the principles of mechanical equilibrium [48].

Chadwick considered a cylindrical LV model and specified the helix angle linearly depending
on the position of the point in the LV wall [49]. A spheroidal LV model, which involved the linear
dependence of the helix angle on the distance between the point and the endocardium, was proposed
by Beyar et al. in [2].

Another theoretical approach was created by Arts et al. in 1992 [50]. Their model was an ellipsoidal
LV with a piecewise quadratic law for helix angle change. The mechanical adaptational principle
suggested by Arts et al. in 1982 [51] was used to quantify the orientation of muscle fibers via the helix
fiber angle distribution.

1.3. Relation to Other Anatomical Ventricular Models

Torrent-Guasp in [28] suggested that the LV can be represented as a set of embedded surfaces,
i.e., muscular layers, covered by curves representing the myofibers. This idea was illustrated using
Pettigrew’s proposal [52] of these surfaces having the form of a planar semicircle with a number of
curves drawn on the semicircle. The sheets thereafter were transformed into conical surfaces. Finally,
the heart was considered as a family of such conical surfaces inserted into each other. It may be noted
that Streeter mentioned the importance of these ideas, but did not formalize them.
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The present work develops two analytical LV models based on Pettigrew’s anatomical concept.
One of the models is axisymmetric [53]. The other model is built on power functions and is not
symmetric [54]. Heart anatomy was described in these works using a family of inserted non-conical
surfaces, which allowed us to represent the smooth geometry of the LV properly. A family of lines
on these surfaces was used to represent cardiac fibers. The entire model was expressed in terms of
analytical functions.

Our experience shows that in many situations, a well-fitting non-symmetric LV model cannot be
made using the approach from [54]. We faced this when we tried to make “power-function” models
using sonography and tomography data of human hearts. The limitation of the approach is that the LV
model cannot fit shapes of some real hearts accurately enough.

The new model uses splines instead of power functions and, as we will show in this paper,
is flexible enough to fit real medical visualization data. At the same time, the new model uses
analytical calculations, so some of the derivatives necessary for solving reaction-diffusion systems
can be found exactly. In the proposed model, both the anatomy and fiber direction field are defined
analytically. We calculate fiber slope angles in a local coordinate system and compare them with
in vitro experimental data on human hearts.

In the next section, we describe the details of our model construction. In Sections 3 and 4,
we compare its output with experimental measurements of anisotropy in the human and canine LV.
In Section 5, we propose a technique for constructing a model based on sonography data, which
is especially important for clinical applications. Sections 6 and 7 provide a numerical method for
simulating the electrophysiological activity of the LV and an example of the usage of the numerical
method. Finally, Section 8 is a discussion on the results obtained.

2. Construction of the LV Model

In order to define the LV form, we use a special coordinate system (γ, ψ, φ), where the variable
γ ∈ [0, 1] corresponds to the position of a point in the LV wall layer: γ = 0 is the endocardium; γ = 1 is
the epicardium; ψ ∈ [0, π/2] is an analogue of latitude; ψ = 0 is the upper plane part of the LV model
(fibrous ring and valve zone); ψ = π/2 is the LV apex; and φ ∈ [0, 2π) is an analogue of longitude.

Initial data for the model construction are:

1. meridians φi, i = 0, 1, . . . n− 1, where measurements are taken;
2. coordinates ρ

epi
i,j , zepi

i,j , i = 0, 1, . . . n− 1, j = 0, 1, . . . nepi
i − 1, of marked points on the epicardium;

3. coordinates ρendo
i,j , zendo

i,j , i = 0, 1, . . . n − 1, j = 0, 1, . . . nendo
i − 1, of marked points on the

endocardium.

Now, we describe our algorithm to construct the LV model. First, for each meridian of the
epicardium, we connect the marked points by an interpolation curve (Figure 1). We obtain a set of
n curves in this step. Second, for each latitude ψ, we connect the n points on the curves by a closed
interpolation curve. Algebraically, this means that we use a periodic spline. We obtain an epicardial
surface in this step. Next, we do the same for the endocardium and, finally, we fill the space between
the epi- and endocardium by a linear function of γ.

This schema can be formalized using the following equations. To transform the special coordinates
into cylindrical ones (ρ, φ, z), we use a simple formula for z-coordinate transformation:

z(γ, ψ) = Z− (Z− hγ) sin ψ, (1)

where Z is the LV height and h is the LV wall thickness at the apex. Using this formula, we calculate
ψ-coordinates of the marked points:

ψ(γ, z) = arcsin
(

Z− z
Z− hγ

)
. (2)
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As mentioned above, γ = 0 on the epicardium, and γ = 1 on the endocardium.
In each section φi on the epicardium (endocardium), we make an epicardial (endocardial) curve:

ρepi(ψ, φi) = spline(ψ; ψ
epi
i,j 7→ ρ

epi
i,j ), ρendo(ψ, φi) = spline(ψ; ψendo

i,j 7→ ρendo
i,j ). (3)

Here, spline is a cubic spline with a zero second derivative at the endpoints. The notation
spline(x; xi 7→ yi) means a spline constructed by two given arrays of data, xi as an argument and yi as
a response variable. Then, we interpolate to obtain a surface between the curves:

ρepi(ψ, φ) = spline(φ; φi 7→ ρepi(ψ, φi)), ρendo(ψ, φ) = spline(φ; φi 7→ ρendo(ψ, φi)). (4)

Here, we use a periodic cubic spline. Finally, we fill the entire LV wall:

ρ(γ, ψ, φ) = ρepi(ψ, φ)(1− γ) + ρendo(ψ, φ)γ. (5)

Usually, if n meridional sections are considered, the angles between them are uniform,
so φi = iπ/n, i = 0, 1, . . . n− 1.

Figure 1. Vertical (meridional) sections of the LV free wall (on the left) and the IVS (on the right) of a
human heart. The points represent DT-MRI data; the solid red line represents the model epicardium;
the dashed blue line represents the model endocardium. The circles show the interpolation (marked)
points given by a user. The horizontal axis is ρ; the vertical axis is z. On the right panel, we see a
papillar muscle in the RV cavity (vertical one, ρ = 25, . . . , 45 mm) and an RV free wall (inclined).

2.1. Spiral Surfaces

Hierarchically, the LV model is subdivided into muscle layers. In its turn, each layer is filled by
myofibers. All of the layers have a spiral-like shape, so we call them “spiral surfaces” (SS). These
surfaces have the same equation in special coordinates:
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φ(γ, φmin, φmax) = φmin + γφmax, (6)

where φmax is the SS twist angle (which is the same for all SS), and different values of φmin ∈ [0, 2π)

determine different surfaces. The equation of the SS in the cylindrical coordinates is shown below
(see Equations (1) and (5)).

ρsp(ψ, φ, φmin) = ρ

(
φ− φmin

φmax
, ψ, φ

)
; (7)

zsp(ψ, φ, φmin) = z
(

φ− φmin

φmax
, ψ

)
. (8)

2.2. Filling a Spiral Surface with Fibers

We have utilized Pettigrew’s proposal [52] as we did in our previous models [53,54]. This proposal
has been chosen because it can be formalized easily, and it describes both myofibers and sheets.
Myocardial fibers are obtained as images of chords Y = const, Y ∈ [0, 1) of sector P ≤ 1,
Φ ∈ [πγ0, πγ1] (the chords are parallel to the diameter Y = 0) on the SS (Figure 2). Here, γ0

and γ1 (0 ≤ γ0 < γ1 ≤ 1) are parameters necessary to fit the sub-epicardial and sub-endocardial fiber
angles. The parameter of any chord is the polar angle Φ ∈ [Φ0, Φ1], where Φ0 = max(arcsin Y, πγ0)

and Φ1 = min(π − arcsin Y, πγ1). The mapping of a chord point (P, Φ) to an SS point is defined by
the formulae below (Figure 3):

γ(Φ) =
Φ− πγ0

π(γ1 − γ0)
,

ψ(P) = (1− P) · π

2
.

Figure 2. Horizontal chords on the sector P ≤ 1, Φ ∈ [πγ0, πγ1]. Here, Φ0 and Φ1 are polar angles of
the right and left chord ends, respectively. Parameter γ0 = 0.1, and γ1 = 0.95.

Figure 3. Images of the sector chords in (γ, ψ) coordinates. The horizontal axis is γ, and the vertical
axis is ψ. Parameter γ0 = 0.1, and γ1 = 0.95.
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For instance, if γ0 = 0 and γ1 = 1, the semicircle diameter is transformed into a fiber that
begins on the basal epicardium, descends to the apex (Φ = π/2), then ascends and ends on the basal
endocardium. Images of shorter chords are located closer to the LV base and have shorter lengths.

An algorithm for calculating the fibre direction vector in points of the model is given in
Appendix A.

2.3. Fitting the LV Form

In [54], a fitting of the more rigid model to a real canine heart dataset was done with satisfactory
results. Yet, fitting the dataset of a human heart into that model was less successful, partially due to
the limitations of the model’s parameters. In this study, the same dataset of the human heart was used
for the flexible model. The dataset is accessible online at [55].

The fitting procedure began with finding the LV axis Oz. Then, we sectioned the LV by N = 12
meridional half-planes φi = 2πi/N, i = 0, 1 . . . N − 1, passing this axis, and we manually marked
points on the epi- and endocardium in each section. The mean numbers of points were 10 for the
sub-endocardium and 11 for the sub-epicardium. In total, taking into account the coincidence of two
apical points in all of the sections, there were 227 points. After setting the points, we used periodic
cubic φ-splines and cubic ψ-splines. The results obtained are shown in Figures 4 and 5.

Figure 4. Epicardial and endocardial surfaces of the model that was constructed based on DT-MRI data.
(left) The epicardium is opaque; (right) The epicardium is semi-transparent. Color shows z-coordinates.

Figure 5. A spiral surface (SS) with fibers on it. Two views are shown. The left of the figure depicts
a view from the top and side of the SS, while the right of the image provides a side view with the
mid-myocardial part on the left and the epicardial layer on the right. Color shows z-coordinates.
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3. Methods for Model and Experimental Data Comparison

In the work [54], the theoretical model and experimental data were compared along normals to
epicardial meridional sections as described in [20]. However, this method is not useful: normals do not
have to intersect the endocardium, and they may intersect each other, so the task of finding a normal
passing through a point may result in multiple solutions. In the present article, we use the special
coordinates to construct straight pinning lines that do not intersect each other and always intersect the
endocardium. These lines have a simple equation: ψ = const, φ = const.

We will now describe the comparison procedure. To compare angles along such a pinning line,
one needs to specify a point A on the epicardium. Let its special coordinates be γ = 0, ψ = ψ∗

and φ = φ∗. Let us consider a corresponding meridional section φ = φ∗ of the model, semi-plane
Π. The line lies in Π and intersects the endocardium at a point B, having coordinates γ = 1, ψ = ψ∗

and φ = φ∗. On the segment AB, we set k equidistant points, including its ends, so that A = A1,
A2, . . . , Ak = B. The position of a point Ai on the segment AB is defined by the variable:

xi =
AiB
AB

(for the endocardium x = 0; for the epicardium x = 1). We have to draw an SS through every point
Ai(γi = (i − 1)/(k − 1), ψ∗, φ∗). The problem of finding such an SS is reduced to solving the SS
Equation (6) with respect to φmin:

φmin = φ∗ − γiφmax.

Strictly speaking, there can be no points from the tomogram exactly on semi-plane Π; therefore,
we selected points lying no further than ∆ = 1 mm from the straight line AB and inside the dihedral
angle |φ− φ∗| ≤ ∆φ = 0.1 rad= 5.7◦.

Figure 6. The definition of the local coordinate system is shown on the (left) of the image. Oxyz is
the global Cartesian coordinate system. The blue axis is normal, u, to the epicardium. The red axis is
parallel tangent, v. The dark green axis is a meridian tangent, w. The colorful surface is the epicardium;
the color depends on altitude z. The curve inside is a model fiber, and it does not lie on the epicardium.
The normal axis intersects the curve at a point. On the (right), the definitions of the true fiber angle α

and the helix angle α1 are shown. The thick, dashed line is a tangent to a myofiber segment constructed
at the origin of the coordinates. The dashed-and-dotted lines are projections of the myofiber tangent.
(Copied from [53] (Figure 9) with a deletion of angle α2.)

Streeter proposed specifying fiber direction using a local coordinate system (u, v, w) and two
angles, “true fiber angle” α and “helix angle” α1 [20] (p. 78) (see Figure 6); these angles are sufficient
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for specifying the direction of a fiber at a particular point. The true fiber angle reflects fiber direction
totally, with both helix and transverse components, while the helix angle neglects the transverse part.
The axis u is a normal to the epicardium pointed away from the LV; w is a meridian, i.e., an epicardial
tangent lying in a meridional semi-plane and pointed upwards, and v is a parallel, i.e., vector w× u.
Angle α ∈ [0, π/2] is between a fiber and the parallel, and angle α1 ∈ [−π/2, π/2] is between the fiber
projection on the plane uv and the parallel.

We compared the two angular characteristics of fiber directions with the experimental data for a
human heart in two meridians (one meridian lies in the LV free wall; another lies in the IVS) in the
upper, middle and lower parts of the LV wall.

4. Results of Comparing the Model with DT-MRI Data

In this section, we compare the directions and angles of myocardial fibers in the model and
DT-MRI data of one human and one canine heart.

4.1. Comparison of the Model with Human Heart Data along Straight Pinning Lines

The following parameter values, which are common for all meridians, were used: LV height
Z = 68 mm, LV wall thickness at the apex h = 8 mm, SS twisting angle φmax = 3π, endocardial fiber
parameter γ0 = 0.13 and epicardial fiber parameter γ1 = 0.9.

Graphs of the dependency of angles α, α1 on a point position on pinning lines are shown in
Figures 7–12. We will now analyze the results obtained.

Figure 7. Fiber angles in the model and in the experimental data. The basal area (ψ = 10◦) of the LV free
wall is shown. (A) A horizontal LV section. The points are myocardial points from a human heart DT-MRI
scan. (B) A meridional LV section. The solid (dashed) curve is the model epicardium (endocardium),
and the points are myocardial points from the DT-MRI scan. (C,D) The angles α and α1, respectively.
The X-axis displays the position of points in the wall depth; 0 corresponds to the endocardium, and 1
corresponds to the epicardium. The points show the experimental data, while the solid curves show our
model data, and the dashed curves display results yielded by the model from [46].



Computation 2016, 4, 42 10 of 25

Figure 8. Fiber angles in the model and experimental data. The LV free wall in the middle area
(ψ = 25◦) is shown. The conventional signs are the same as in Figure 7.

Figure 9. Fiber angles in the model and experimental data. The LV free wall in the apical area (ψ = 60◦)
is shown. The conventional signs are the same as in Figure 7.
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Figure 10. Fiber angles in the model and experimental data. The IVS in the basal area (ψ = 5◦) is shown.
The conventional signs are the same as in Figure 7.

Figure 11. Fiber angles in the model and experimental data. The IVS in the middle area (ψ = 30◦)
is shown. The conventional signs are the same as in Figure 7.
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Figure 12. Fiber angles in the model and experimental data. The IVS in the apical area (ψ = 65◦)
is shown. The conventional signs are the same as in Figure 7.

At the upper and middle LV areas (e.g., Figures 7A and 8A), one can see that the vertical axis does
not go through the center of the horizontal LV sections, but it is situated closer to the IVS. The axis is
positioned there because it must go through the apical LV area, and the LV apex projection to its basal
plane is not situated at the center of the base. If one moves the axis to the base center, then the apex is
far from the axis in one of the meridional sections; therefore, we cannot fit the LV wall shape using the
central position of the axis.

Let us consider the fiber slope angles in one of the LV free-wall meridians. In the upper LV
part (see Figure 7), the true fiber angle α (Panel C) in the model accurately reproduces the DT-MRI
data. Angle α descends from 75◦ on the endocardium to approximately 15◦ at the middle of the wall,
then it reaches 65◦ on the epicardium. The helix angle (Panel D) in the model is also quite close to
the experimental data. The middle part of the free wall, which is determined by height (see Figure 8),
shows an essentially large dispersion of the both angles’ values in the subendocardial zone (x < 0.2).
These angles’ values are similar to those in the basal zone, so the model can reproduce them well. The
angles at the lower part of the LV free wall (see Figure 9) are predicted by the model with slightly
lesser accuracy.

In the upper part of the IVS (see Figure 10), the model behaves in a different way than the
experimental data. In the middle part of the IVS (see Figure 11), the model reproduces the angles
reasonably accurately. Figure 12 shows that the model simulates the angles in the interior part of the
myocardium better than in the exterior part.

The transmural variation of angle α is parabolic both in the DT-MRI data and in the model.
This angle is locally maximal at the subendo- and subepicardium, and it is minimal, but not zero at
the middle of the wall, where the helix angle is zero. Angle α is not zero there due to the traverse
fiber angle.
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The dashed black lines in Figures 7–12 demonstrate the results of another modeling approach
described in [46]. We see that the functions are linear with respect to x, and the angles do not depend
on the region. Bayer et al.’s model has zero transmural angle (traverse angle α3 in Streeter’s notation),
so its angle α = |α1|.

If one considers the fibers in the radial direction, our model (like the model from [53]) imitates
the distinctive arrangement of fibers in the ventricular wall (see Figure 14 of [53]). As we mentioned
above, this arrangement was called the “Japanese fan” by Streeter (see Figure 42C of [20]).

4.2. 3D Verification

We compared the fiber directions of the human tomography dataset and the model in all DT-MRI
points located inside the model LV wall, and we made a histogram of the results (Figure 13). The mean
angle between the two directions is 21.1◦, and the median is 15.2◦. The standard deviation is 18◦.

Figure 13. Histogram of angles between fibers in experiment and model data. The human heart dataset
is used. X-axis is the angle; Y-axis is the number of points in the segments; the segment [0, 90◦] was
divided into 100 segments of equal length.

Furthermore, we used our model to fit a canine DT-MRI dataset, which is accessible through the
link [55] given in Section 2.3. The following parameter values, which are common for all meridians,
were used: LV height Z = 90 mm, LV wall thickness at the apex h = 12 mm, SS twisting angle
φmax = 3π, endocardial fiber parameter γ0 = 0.18 and epicardial fiber parameter γ1 = 0.9. A 3D
comparison of the dataset and the model was performed. This comparison showed the following
results: mean 19.5◦, median 16.1◦ and standard deviation 14.1◦, which is very close to the human heart
comparison.

The degree of error in the angles consists of two parts. One of them is the modeling error caused
by inaccuracies in the model. This error can be seen in Figures 7–12, where the blue curves are out of
the red point clouds. The second part is caused by errors of measurement and by the dispersion of
data. Even if a blue curve is in the middle of a point cloud, such errors accrue. To identify these parts
of errors, we partly averaged the true fiber angle (α) and helix angle (α1) data using the Smoothn
function in MATLAB [56], so we obtained data without outliers. The averaging is controlled by the
smoothing parameter s ≥ 0. If s = 0, the algorithm makes no changes in the input data. The noise in
the data diminishes with the growth of s. Full averaging was impossible because an increase in the
smoothing parameter above s ≈ 5 led to an oversmoothing without an essential noise reduction.
We used s = 5, and the results of the 3D comparison are shown in Tables 1 and 2. There, “st. dev.”
means “standard deviation”.

Table 1. Statistics of the error in the true fiber angle.

True Fiber Canine Human

Angle Raw Data Averaged Raw Data Averaged

mean 12.3◦ 10.9◦ 12.5◦ 10.1◦

median 9.2◦ 8.7◦ 8.8◦ 7.8◦

st. dev. 10.8◦ 9.1◦ 12.2◦ 9.2◦
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Table 2. Statistics of the error in the helix angle.

Helix Canine Human

Angle Raw Data Averaged Raw Data Averaged

mean 15.2◦ 12.3◦ 18.9◦ 13.3◦

median 11.0◦ 9.8◦ 12.1◦ 10.2◦

st. dev. 16.5◦ 9.8◦ 22.6◦ 11.5◦

We can conclude that the partial averaging of the input data decreases the error sufficiently.
The mean error in the fiber angles is about 10–15◦ for the data without outliers.

5. Constructing a Model Based on Sonography Data

The proposed model of the LV form can be constructed based on sonography data. We made one
such measurement using data from two- and four-chamber views of one patient’s heart. In Figure 14,
we show a comparison of two models: the old model based on power functions and the present
spline-based one. The model was made using 44 marked points, from which 22 were endocardial and
22 were epicardial. Since the posterior (right on the image) part of the LV wall has a complex curved
shape, it cannot be approximated accurately by the first model, but it can be well approximated by the
second one. The anterior (left on the image) part of the LV wall has a simpler shape, so both models
can be fitted into it well.

Figure 14. Ultrasound imaging as a base for model construction. (left) A sonographic two-chamber
view of a patient’s heart and two measurements: the first for the power-function-based model (white
lines) and the second for the spline-based model (blue lines show the endocardium; red lines show the
epicardium). The patient suffered from an old myocardial infarction, and a scar is present. The marked
points are shown as crosses. This view gives data for two model meridians. The model axis and base
are shown as grey lines. The image has been rotated so that the model axis Oz is vertical. (right) A
spline-based model of this patient’s LV. The view is semitransparent to show both the epicardial and
endocardial surfaces. The surface mesh was made using Ani3D-AFT software [57].

6. Numerical Method for Solving Reaction-Diffusion Systems on the Model

Electrophysiological processes in the myocardium are usually simulated using reaction-diffusion
systems of partial differential equations. In the monodomain case, they are:
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u̇ =div(D grad u) + f (u,~v), (9)

~̇v =~g(u,~v). (10)

Here, u is the transmembrane potential; ~v is the vector of other phase variables (its components
differ in different models); the diffusion matrix D has elements Dij = D2δij + (D1 − D2)wi(~r)wj(~r),
i, j = 1, 2, 3; and ~w is the unit vector of the fiber direction.

The boundary condition of zero flux of the potential through the myocardial boundary looks like:

~nD grad u = 0, (11)

where~n is a normal vector to the boundary. In the case of complex cardial shape, implementation of
the boundary condition is difficult, and it requires either a special method of Laplacian computation
near the boundary in Cartesian coordinates or a special coordinate system where the boundaries are
coordinate surfaces.

The LV base, epicardium and endocardium are just coordinate surfaces in the special coordinates
linked with this model. Indeed, the base has the equation ψ = 0, while the equation γ = const describes
the epicardium and endocardium. For the symmetrical LV model, we proposed an algorithm [58],
which has been used in a study of scroll wave dynamics [59]. For the previous (power-functions based)
non-symmetrical model [54], a modified algorithm has been described elsewhere [60]. That algorithm
can be used in the present case as well without any changes. However, since it was not published in
English, we depict its dissimilarity with the symmetrical case method briefly here. Formulae for the
Laplacian and boundary conditions in the special coordinates are given in Appendices B and C.

The Method to Rarefy the Computation Mesh

Let us consider a mesh node with indices i, j, k of special coordinates γ, ψ, φ. In the case of the
symmetric LV model, we propose that its γ- and ψ-neighbors have indices i± 1, j± 1. Its φ-neighbors
have indices k±Q[j], where Q is an array of natural numbers, and the differences are found so that
the Cartesian distances between nodes are within some given limits. In the case of the non-symmetric
LV model, we have to introduce six arrays instead of one, Qdir

var, where var ∈ {γ, ψ, φ}, dir ∈ {+1,−1}.
The meaning of Qdir

var is that the index of the γ-neighbor of the node in direction dir is i + dir · Qdir
γ .

The index of the ψ-neighbor in direction dir is j + dir ·Qdir
ψ . The index of the φ-neighbor in direction dir

is k + dir ·Qdir
φ . The values of Q have to be found once, at the initialization stage. If for a node (i, j, k),

at least one of Qdir
var[i][j][k] cannot be found, this node is marked “out-of-mesh”. We compute the

potential in this node not by a finite difference method, but by interpolation, using the node’s closest
“in-mesh” neighbors.

The flowchart in Figure 15 depicts all of the steps of construction and the use of the model in
electrophysiological simulations.
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Mark points on the epi- 
and endocardium.

Convert their cylindrical coordinates 
into special ones. Connect points 

on each meridional curve by ψ-splines.

Connect all the epicardial curves 
using periodic φ-splines.

Connect all the endocardial curves 
using periodic φ-splines.

Make the LV volumetric
model (see (5)). 

Set parameters 
γ0, γ1, φmax.

Calculate fibre directions. 
Find curves and surfaces, 

if necessary. 
Correct the parameters, 

if necessary.

Make mesh(es) for the 
numerical method 
and visualisation.

Set electrophysiological 
and other parameters.

Calculate electro-
physiological activity.

For each 
section, do:

Set an axis and a flat 
base. Find h, Z.

Set N meridional sections.

Begin

End

Figure 15. Flowchart displaying the steps for the construction and use of the spline-based LV model.

7. An Example of the Spline-Based Model’s Practical Usage in Electrophysiological Simulations

The model was used to study the dynamics of scroll waves of electrical excitation. Such waves
are solutions of classical reaction-diffusion systems, and they correspond to dangerous arrhythmias,
such as paroxysmal ventricular tachycardia and ventricular fibrillation. Our simulation was based
on the Aliev–Panfilov model [61] of electrical excitation in the myocardium and the aforementioned
human heart DT-MRI dataset and anatomical model (see Sections 2.3 and 4). The electrophysiological
model is dimensionless and has the following form:

∂u
∂t

= div(D grad u)− ku(u− a)(u− 1)− uv,

∂v
∂t

= ε(u, v)(−v− ku(u− a− 1)), (12)

ε(u, v) = ε0 +
µ1v

u + µ2
,

where u is the transmembrane potential, v is the conductivity for the K current in the membrane,
D1,2 are diffusion coefficients along and across fibers and k, a, ε0, µ1, µ2 are cell model parameters.
These parameters had the values D1 = 7.12 mm2/ms, D2 = D1/9, k = 8, a = 0.1, ε0 = 0.01, µ1 = 0.12,
µ2 = 0.3. A boundary condition provided zero flux through the LV boundary. Initial conditions were
u = 1, v = 0 (initial stimulation) at ψ ≤ 0.4 · π/2, 0 ≤ φ ≤ 2π/12; u = 0, v = k (initial temporary
block of propagation) at ψ ≤ 0.4 · π/2, 2π/12 ≤ φ ≤ 2π/6; and u = 0, v = 0 (resting state) elsewhere.

We used the spatial mesh size dr = 0.5 mm; the time step dt = 0.01 ms; and the dimension
coefficients 5.4 ms, as the model time unit, and 6.2 mm, as the model length unit, based on the period
and wavelength of a spiral wave simulated on a flat isotropic surface. The duration of the simulation
was 10 s.
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The results we obtained are shown in Figures 16 and 17. From these results, we can see that the
solitary filament drifted towards the base (ψ = 0), and then, several filaments appeared. The number
of filaments slowly increased from 1 to 9 and then decreased to 5–6. This observation means that a
tachycardia paroxysm transformed into a fibrillation.

Figure 16. The special coordinates ψ (top) and φ (bottom) of the scroll wave filaments.

Figure 17. The number of filaments (×10; blue circles) and their lengths (red dots).

8. Discussion

This section analyses the algorithm, compares it with other models and techniques, examines its
methods of verification and concerns the usage and further development of the constructed model.

8.1. Advantages and Disadvantages of the Proposed Model

The model adequately reproduces the fiber angles in the LV free wall and in the middle zone of
the IVS of the human heart. Nevertheless, the data agreement in the apical zone of the IVS is only
qualitative; in the IVS upper part of the human heart, the model yields results that differ from the
experimental data.

Our model has the following merits:

• It has relatively few parameters for shape, fibers and sheets.
• The LV apex is smooth thanks to the special choice of function z. This is a useful feature for

integration methods sensitive to the smoothness of the boundary.
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• It uses only simple one-variable splines, and no two- or three-parametric splines are required.
• The fitting of shape and fiber directions are independent tasks in this model.
• It is flexible enough to fit not only normal, but pathological LVs.
• It yields not only fibers, but also sheets.

Limitations of the model include the following:

• Similar to our previous models, its base is flat, which is not the case in real mammal anatomy.
• The fibers are not geodesic lines in the model sheets. It is difficult to determine if this is a

disadvantage of the fibers, the sheets or both.
• Model fibers end at the base. However, this demerit can be amended by combining this model

with the toroids-based one described in [62].
• It is unclear whether the model is generalizable for both ventricles.

8.2. The Present Model Compared with Other Qualitative Models

The ventricular myocardium’s structure and its qualitative description have been explored
for several centuries. Reviews of experimental findings and theoretical conceptions can be found,
for example in [23,63] and other reviews in the supplementary volume [64]. The present model is
conceptually close to Krehl’s nested toroids to the extent that the LV myocardium, except the papillary
muscles, is filled by non-overlapping surfaces, and each surface is filled by non-overlapping curves.
The distinctive feature of the proposed model is the spiral shape of the surfaces. Whether the SSs are
close enough to real heart sheets is a topic for future research.

In [20], Streeter proposed the geodesic principle of winding fibers on the sheets. This principle
holds in the toroidal model, but not in the present one. However, if we keep the fibers only, the surfaces
may be adjusted to them. This interesting problem remains for future research: How should we
draw a set of non-overlapping surfaces on the given set of curves so that the curves are geodesic
on the surfaces?

Some qualitative models of the myocardium describe its structure on the levels of cells, myofibers
and myolaminae (see, for example, [22,29,65]); such models examine the interconnections and
arrangement of cardiomyocytes and other types of cardiac cells. However, the main task of our
model is to yield fiber and sheet normal directions in all points of the LV myocardium, but not to
represent the amazingly complex micro- and macro-structure of the cardiac muscle. A union of our
model with a structural tissue-level model, which includes Y-junctions of the cells, capillaries, fibrous
tissue and other elements, would be of great practical value.

A key feature of the proposed model is its numerical, quantitative nature, so it should be compared
with other quantitative models and data.

8.3. Comparison with Experimental Data and Quantitative Models

Some experimental techniques that can be used to verify our model have been mentioned in our
previous work [54]. These techniques include DT-MRI (already used here), as well as micro-CT [66],
histological investigation [67] and quantitative polarized light microscopy [30]. These methods provide
fiber orientation data that may be used for the construction of anatomical computational models in
different ways.

• Finite-element models can utilize the data as a discrete dataset [13,68,69].
• Rule-based models, i.e., the models formed on the basis of some constitutive rule [44–47], can be

compared against the data, which allows them to be verified.

A comparison with a recent rule-based method, the Laplace–Dirichlet algorithm [46], and with
a wrapping-based myocardium model [70] was done in our previous paper [54]. The idea of using
splines to fit cardiac imaging data is not new. An example of such LV shape model, constructed with
B-splines, together with a review of spline-based models, can be found in [71]. A common weak point
of many such models, however, is a lack of computing fiber direction field.
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A quantitative comparison with a model from [46] can be made by measuring the mean difference
angle between the experimental and model data. Bayer et al. in [46] report that their result is 23◦ ± 20◦.
Our result on the human heart dataset is 21◦ ± 18◦, and on the canine dataset, it is 19.5◦ ± 14.1◦,
which is comparable with their achievement.

Our model fits the shape of the LV and has only three parameters (γ0, γ1, φmax) to adapt fiber
directions. Fiber directions can also be fitted through widely-used fitting functions with many more
parameters, as was done in [72]. In that work, fiber direction field in mice was approximated in
spheroidal coordinates by a product of two algebraic and one trigonometric polynomials. A certain
advantage of that approach is its flexibility. The reported root-mean-square error was about 2.3◦–10◦.
Yet, that method usually requires about 10 parameters for each algebraic and 10–40 for trigonometric
polynomials, whereas our technique uses only three parameters. Furthermore, the parameters in [72]
have unclear geometrical or physical meaning, unlike ours. Moreover, the numbers of those parameters
for different hearts vary, so the coefficients cannot be averaged to obtain recommended species-level
parameter sets. We hope that our parameters can be averaged or fitted on the species level or at
least for the norm and pathologies of particular species. This will allow researchers to construct fiber
direction fields based on the shape of patients’ hearts without DT-MRI data.

Let us discuss the level of model error in the fiber directions. How can local and global cardiac
characteristics be affected if the fiber angles change?

In an article by Campbell et al. [73], the electromechanics of dogs’ hearts was modeled using
different cell- and tissue-level parameter values. One of the authors’ simulations included three
models with different values of the total transmural fiber angle α1, i.e., 112◦, 145◦ and 170◦, while all
other parameters were the same. The mean transmural difference of the helix angle between the
middle model and the extreme models was about 12◦. The authors discovered that such a fiber angle
distribution affects the range of fiber strains and weakly changes hemodynamics and transmural delay
in activation.

In a conference work by Wong et al. [74], the sensitivity of the average displacement of some
points of the heart to epi- and endocardial fiber angles was studied. The angles were changed
at increments of 20◦ from 20◦–80◦. The analysis showed that a minimal change of the angle
(though 20◦ is an essential angle) leads to a significant variation in the displacement of the points.
Our model has special parameters for fitting the epi- and endocardial fiber angles, so such a significant
average error in these angles is unlikely to appear.

In Sánchez’s PhD thesis [75], linear and cubic laws of the helix fiber angle dependence on wall
position were used in electromechanical simulations. The maximal difference between the angles
was 23◦, and it led to significant changes in maximal contraction time and total activation time.

Baron et al.’s conference paper [76] is focused on the effect of fiber orientation on LV stroke
volume. A change of 10◦ in epi- and endocardial helix angles leads to the following effects: an 18%
difference in the atrioventricular plane displacement, quite a small difference (≈ 2 mm Hg) in blood
pressure in the LV, a 5% difference in the minimal LV-cavity volume, a 3.5% difference in the ejection
fraction and a 2% difference in pressure-volume work.

Summarizing all of the aforementioned works, we conclude that fiber (helix) angle differences or
errors on the order of 10◦ can sufficiently change the local parameters of cardiac activity, but affect its
global characteristics lightly.

The goal of our model is to predict the average field of fiber directions for a given species.
Therefore, the model error has to lie in the intraspecies limits. For example, the limits reported in [73]
for dogs (12◦) are close to the error achieved by our model (10.9◦; see Table 1), which justifies the
relevance of our technique.
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8.4. Further Development and Usage of the Model

The model does not include the uppermost part of the ventricular myocardium, the basal ring,
where myofibers form torus-like shapes (Figure 14 of [28]). Moreover, some of the data available on the
apical region show that myofibers there make toroidal layers, similar to basal ones (Figure 6 of [28]).

This model has been constructed based on and verified against only two DT-MRI datasets, one
canine and one human. Such validation is limited, so its development is an important topic of our
future research.

The spline apparatus enables researchers to use this model in cases of complex wall geometry,
such as in patients with old myocardial infarctions, and other situations where the wall has loci of
thickening and thinning.

The analytical description of cardiac geometry has been used in developing a new numerical
method for the study of the electrophysiological activity of the LV. The model can also be utilized to
generate different anisotropic properties of the heart, to alter the LV shape (by changing the model
parameters) and to study their influence on cardiac electrical and mechanical functions.
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RV right ventricle
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Appendix A. Calculation of the Fiber Direction in Points of the LV Model

In practical applications of cardiac anatomical models, it is necessary to compute a vector of
fiber direction in a point whose position is given in a Cartesian coordinate system. Let the point
coordinates be (x, y, z). One can easily convert them into cylindrical coordinates (ρ, φ, z). The vector of
fiber direction can be found using the following algorithm:

1. Use Formula (5) to find the special coordinates γ and ψ of the point numerically. This problem
can be reduced to solving one algebraic equation with one unknown quantity γ on the segment
[0, 1]. We utilize the expression for ψ(γ, z) from Formula (1) and substitute it into (5):

ρ = ρepi(ψ(γ, z), φ)(1− γ) + ρendo(ψ(γ, z), φ)γ.

We solve this equation with respect to γ. Let the root be γ. Hence, the point’s special coordinate
ψ = arcsin

(
Z−z

Z−hγ

)
.

2. Differentiate (numerically or analytically) the function ρ(γ, ψ, φ) with respect to all arguments
and obtain three partial derivatives ργ, ρψ and ρφ. We can find one derivative analytically:

ργ = ρendo(ψ, φ)− ρepi(ψ, φ).
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3. The LV model point is an image of a point on the sector P ≤ 1, Φ ∈ [πγ0, πγ1]. This point,
the preimage, has polar coordinates P = 1 − 2ψ

π , Φ = πγ(γ1 − γ0) + πγ0 and Cartesian
coordinates X = P cos Φ, Y = P sin Φ.

4. The LV point~r, parameterized by Φ, has Cartesian coordinates:

x(Φ) = ρ(γ(Φ), ψ(P(Φ)), φ(γ(Φ), φmin, φmax)) cos φ(γ(Φ), φmin, φmax),

y(Φ) = ρ(γ(Φ), ψ(P(Φ)), φ(γ(Φ), φmin, φmax)) sin φ(γ(Φ), φmin, φmax),

z(Φ) = ρ(γ(Φ), ψ(P(Φ))),

where φmin = φ− γφmax, P(Φ) = Y/ sin Φ.
5. The non-normalized vector ~w = (wx, wy, wz) = d~r

dΦ of the fiber direction has components:

wx =
sin Φ

(π − 2ψ)(γ1 − γ0)
·
(
yφmax − (ργ + ρφφmax) · cos φ

)
− cos φ · ρψ ·

π

2
· cos Φ,

wy =
sin Φ

(2ψ− π)(γ1 − γ0)
·
(

xφmax + (ργ + ρφφmax) · sin φ
)
− sin φ · ρψ ·

π

2
· cos Φ,

wz =
h sin Φ sin ψ

(2ψ− π)(γ1 − γ0)
+ (Z− hγ) cos ψ · π

2
· cos Φ.

Appendix B. Formulae for the Laplacian in the Special Coordinates

Let us denote the special coordinates (γ, ψ, φ) uniformly as (ξ0, ξ1, ξ2) and consider matrices:

J = (Jij) =

(
∂ξi
∂xj

)
,

W = (Wij) =

(
∂vi
∂xj

)
, S = (Sij) =

(
∂vi
∂ξ j

)
,

Tk = (Tk
ij) =

(
∂2ξk

∂xi ∂xj

)
, Hk = (Hk

ij) =

(
∂2xk

∂ξi ∂ξ j

)
,

where v = (v0, v1, v2) is the unit fiber direction vector. These matrices are linked by the relations:

W = SJ,

Tk
mp = −∑

l
Jkl(J

THlJ)mp.

The Laplacian can be written as:

div(D grad u) = ∑
k

pk ·
∂u
∂ξk

+ ∑
k,l

qkl ·
∂2u

∂ξk ∂ξl
,

where:
pk = D2 tr Tk + (D1 − D2) ·

(
(Jv)k · tr(SJ) + (JSJv)k + vTTkv

)
,

and qkl are elements of matrix Q:
Q = JDJT.

Appendix C. The No-Flux Boundary Conditions in the Special Coordinates

The boundary condition:
nD grad u = 0, (C1)
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where n is the normal vector to the LV surface, can be written in the form:

nTDJγ ∂u
∂γ

+ nTDJψ ∂u
∂ψ

+ nTDJϕ ∂u
∂ϕ

= 0, (C2)

where Jγ,ψ,ϕ are the vector-columns of derivatives of the special coordinates with respect to
Cartesian ones:

Jγ =

γx

γy

γz


and so on. We use the method of fictitious nodes and make an additional layer of nodes outside the LV
model. Values of the potential are found based on first-order derivatives with respect to the special
coordinates. This method allows us to calculate the Laplacian in all non-fictitious nodes, be it points
on the LV boundary or in its depth, on a consistent basis.

For the endo- and epicardium, Equation (C2) has to be solved for ∂u
∂γ . Then, we find the potential

at the fictitious node behind the endocardium (in the LV cavity) or the epicardium, respectively.
For the LV base, we transform Equation (C1) to form:

∑
k

(
∑

j
D2j ∂ξk

∂xj

)
∂u
∂ξk

= 0,

and express ∂u
∂ψ :

∂u
∂ψ

= −
(

D20γx + D21γy + D22γz
)

∂u
∂γ +

(
D20 ϕx + D21 ϕy + D22 ϕz

)
∂u
∂ϕ

D20ψx + D21ψy + D22ψz
.

The required derivatives can be found numerically. The fictitious node is located above the LV base.
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