Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

Computation, Volume 5, Issue 1 (March 2017) – 18 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1212 KiB  
Article
An Accurate Computational Tool for Performance Estimation of FSO Communication Links over Weak to Strong Atmospheric Turbulent Channels
by Theodore D. Katsilieris, George P. Latsas, Hector E. Nistazakis and George S. Tombras
Computation 2017, 5(1), 18; https://doi.org/10.3390/computation5010018 - 18 Mar 2017
Cited by 20 | Viewed by 4789
Abstract
The terrestrial optical wireless communication links have attracted significant research and commercial worldwide interest over the last few years due to the fact that they offer very high and secure data rate transmission with relatively low installation and operational costs, and without need [...] Read more.
The terrestrial optical wireless communication links have attracted significant research and commercial worldwide interest over the last few years due to the fact that they offer very high and secure data rate transmission with relatively low installation and operational costs, and without need of licensing. However, since the propagation path of the information signal, i.e., the laser beam, is the atmosphere, their effectivity affects the atmospheric conditions strongly in the specific area. Thus, system performance depends significantly on the rain, the fog, the hail, the atmospheric turbulence, etc. Due to the influence of these effects, it is necessary to study, theoretically and numerically, very carefully before the installation of such a communication system. In this work, we present exactly and accurately approximate mathematical expressions for the estimation of the average capacity and the outage probability performance metrics, as functions of the link’s parameters, the transmitted power, the attenuation due to the fog, the ambient noise and the atmospheric turbulence phenomenon. The latter causes the scintillation effect, which results in random and fast fluctuations of the irradiance at the receiver’s end. These fluctuations can be studied accurately with statistical methods. Thus, in this work, we use either the lognormal or the gamma–gamma distribution for weak or moderate to strong turbulence conditions, respectively. Moreover, using the derived mathematical expressions, we design, accomplish and present a computational tool for the estimation of these systems’ performances, while also taking into account the parameter of the link and the atmospheric conditions. Furthermore, in order to increase the accuracy of the presented tool, for the cases where the obtained analytical mathematical expressions are complex, the performance results are verified with the numerical estimation of the appropriate integrals. Finally, using the derived mathematical expression and the presented computational tool, we present the corresponding numerical results, using common parameter values for realistic terrestrial free space optical communication systems. Full article
Show Figures

Figure 1

2751 KiB  
Article
Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions
by Mostafa Farajian, Mohammad Iman Khodakarami and Denise-Penelope N. Kontoni
Computation 2017, 5(1), 17; https://doi.org/10.3390/computation5010017 - 12 Mar 2017
Cited by 18 | Viewed by 7563
Abstract
Soil-structure interaction (SSI) could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks [...] Read more.
Soil-structure interaction (SSI) could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85) founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective) displacement is not affected by such effects due to its long period. Full article
Show Figures

Figure 1

2411 KiB  
Article
A Hybrid Computation Model to Describe the Progression of Multiple Myeloma and Its Intra-Clonal Heterogeneity
by Anass Bouchnita, Fatima-Ezzahra Belmaati, Rajae Aboulaich, Mark J. Koury and Vitaly Volpert
Computation 2017, 5(1), 16; https://doi.org/10.3390/computation5010016 - 10 Mar 2017
Cited by 15 | Viewed by 5636
Abstract
Multiple myeloma (MM) is a genetically complex hematological cancer that is characterized by proliferation of malignant plasma cells in the bone marrow. MM evolves from the clonal premalignant disorder monoclonal gammopathy of unknown significance (MGUS) by sequential genetic changes involving many different genes, [...] Read more.
Multiple myeloma (MM) is a genetically complex hematological cancer that is characterized by proliferation of malignant plasma cells in the bone marrow. MM evolves from the clonal premalignant disorder monoclonal gammopathy of unknown significance (MGUS) by sequential genetic changes involving many different genes, resulting in dysregulated growth of multiple clones of plasma cells. The migration, survival, and proliferation of these clones require the direct and indirect interactions with the non-hematopoietic cells of the bone marrow. We develop a hybrid discrete-continuous model of MM development from the MGUS stage. The discrete aspect of the modelisobservedatthecellularlevel: cellsarerepresentedasindividualobjectswhichmove,interact, divide, and die by apoptosis. Each of these actions is regulated by intracellular and extracellular processes as described by continuous models. The hybrid model consists of the following submodels that have been simplified from the much more complex state of evolving MM: cell motion due to chemotaxis, intracellular regulation of plasma cells, extracellular regulation in the bone marrow, and acquisition of mutations upon cell division. By extending a previous, simpler model in which the extracellular matrix was considered to be uniformly distributed, the new hybrid model provides a more accurate description in which cytokines are produced by the marrow microenvironment and consumed by the myeloma cells. The complex multiple genetic changes in MM cells and the numerous cell-cell and cytokine-mediated interactions between myeloma cells and their marrow microenviroment are simplified in the model such that four related but evolving MM clones can be studied as they compete for dominance in the setting of intraclonal heterogeneity. Full article
(This article belongs to the Special Issue Multiscale and Hybrid Modeling of the Living Systems)
Show Figures

Graphical abstract

1023 KiB  
Article
Simplification of Reaction Networks, Confluence and Elementary Modes
by Guillaume Madelaine, Elisa Tonello, Cédric Lhoussaine and Joachim Niehren
Computation 2017, 5(1), 14; https://doi.org/10.3390/computation5010014 - 10 Mar 2017
Cited by 1 | Viewed by 4287
Abstract
Reaction networks can be simplified by eliminating linear intermediate species in partial steadystates. Inthispaper,westudythequestionwhetherthisrewriteprocedureisconfluent,so that for any given reaction network with kinetic constraints, a unique normal form will be obtained independently of the elimination order. We first show that confluence fails for the [...] Read more.
Reaction networks can be simplified by eliminating linear intermediate species in partial steadystates. Inthispaper,westudythequestionwhetherthisrewriteprocedureisconfluent,so that for any given reaction network with kinetic constraints, a unique normal form will be obtained independently of the elimination order. We first show that confluence fails for the elimination of intermediates even without kinetics, if “dependent reactions” introduced by the simplification are not removed. This leads us to revising the simplification algorithm into a variant of the double description method for computing elementary modes, so that it keeps track of kinetic information. Folklore results on elementary modes imply the confluence of the revised simplification algorithm with respect to the network structure, i.e., the structure of fully simplified networks is unique. We show, however, that the kinetic rates assigned to the reactions may not be unique, and provide a biological example where two different simplified networks can be obtained. Finally, we give a criterion on the structure of the initial network that is sufficient to guarantee the confluence of both the structure and the kinetic rates. Full article
(This article belongs to the Special Issue Multiscale and Hybrid Modeling of the Living Systems)
Show Figures

Figure 1

880 KiB  
Article
Schrödinger Theory of Electrons in Electromagnetic Fields: New Perspectives
by Viraht Sahni and Xiao-Yin Pan
Computation 2017, 5(1), 15; https://doi.org/10.3390/computation5010015 - 09 Mar 2017
Cited by 8 | Viewed by 5376
Abstract
The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem). (The time-independent law, a special case, provides a [...] Read more.
The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem). (The time-independent law, a special case, provides a similar description of stationary-state theory). These laws are in terms of “classical” fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, and an internal magnetic field component. The response of the electron is described by the current density field; (b) the scalar potential energy of an electron is the work done in a conservative field. It is thus path-independent. The conservative field is the sum of the internal and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its constituent property-related components known. As the sources of the fields are functionals of the wave function, so are the respective fields, and, therefore, the scalar potential is a known functional of the wave function; (c) as such, the system Hamiltonian is a known functional of the wave function. This reveals the intrinsic self-consistent nature of the Schrödinger equation, thereby providing a path for the determination of the exact wave functions and energies of the system; (d) with the Schrödinger equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new term that explicitly involves the external magnetic field. The new understandings are explicated for the stationary state case by application to two quantum dots in a magnetostatic field, one in a ground state and the other in an excited state. For the time-dependent case, the evolution of the same states of the quantum dots in both a magnetostatic and a time-dependent electric field is described. In each case, the satisfaction of the corresponding “Quantal Newtonian” law is demonstrated. Full article
Show Figures

Figure 1

29679 KiB  
Article
Aerodynamic Performance of a NREL S809 Airfoil in an Air-Sand Particle Two-Phase Flow
by Dimitra C. Douvi, Dionissios P. Margaris and Aristeidis E. Davaris
Computation 2017, 5(1), 13; https://doi.org/10.3390/computation5010013 - 28 Feb 2017
Cited by 15 | Viewed by 8435
Abstract
This paper opens up a new perspective on the aerodynamic performance of a wind turbine airfoil. More specifically, the paper deals with a steady, incompressible two-phase flow, consisting of air and two different concentrations of sand particles, over an airfoil from the National [...] Read more.
This paper opens up a new perspective on the aerodynamic performance of a wind turbine airfoil. More specifically, the paper deals with a steady, incompressible two-phase flow, consisting of air and two different concentrations of sand particles, over an airfoil from the National Renewable Energy Laboratory, NREL S809. The numerical simulations were performed on turbulence models for aerodynamic operations using commercial computational fluid dynamics (CFD) code. The computational results obtained for the aerodynamic performance of an S809 airfoil at various angles of attack operating at Reynolds numbers of Re = 1 × 106 and Re = 2 × 106 in a dry, dusty environment were compared with existing experimental data on air flow over an S809 airfoil from reliable sources. Notably, a structured mesh consisting of 80,000 cells had already been identified as the most appropriate for numerical simulations. Finally, it was concluded that sand concentration significantly affected the aerodynamic performance of the airfoil; there was an increase in the values of the predicted drag coefficients, as well as a decrease in the values of the predicted lift coefficients caused by increasing concentrations of sand particles. The region around the airfoil was studied by using contours of static pressure and discrete phase model (DPM) concentration. Full article
Show Figures

Figure 1

11800 KiB  
Article
Numerical Modelling of Double-Steel Plate Composite Shear Walls
by Michaela Elmatzoglou and Aris Avdelas
Computation 2017, 5(1), 12; https://doi.org/10.3390/computation5010012 - 22 Feb 2017
Cited by 7 | Viewed by 7100
Abstract
Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have [...] Read more.
Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have used the Finite Element Method to investigate the behaviour of double-steel plate concrete walls. The majority of them model every element explicitly leading to a rather time-consuming solution, which cannot be easily used for design purposes. In the present paper, the main objective is the introduction of a three-dimensional finite element model, which can efficiently predict the overall performance of a double-steel plate concrete wall in terms of accuracy and time saving. At first, empirical formulations and design relations established in current design codes for shear connectors are evaluated. Then, a simplified finite element model is used to investigate the nonlinear response of composite walls. The developed model is validated using results from tests reported in the literature in terms of axial compression and monotonic, cyclic in-plane shear loading. Several finite element modelling issues related to potential convergence problems, loading strategies and computer efficiency are also discussed. The accuracy and simplicity of the proposed model make it suitable for further numerical studies on the shear connection behaviour at the steel-concrete interface. Full article
Show Figures

Figure 1

2406 KiB  
Article
Multiscale CT-Based Computational Modeling of Alveolar Gas Exchange during Artificial Lung Ventilation, Cluster (Biot) and Periodic (Cheyne-Stokes) Breathings and Bronchial Asthma Attack
by Andrey Golov, Sergey Simakov, Yan Naing Soe, Roman Pryamonosov, Ospan Mynbaev and Alexander Kholodov
Computation 2017, 5(1), 11; https://doi.org/10.3390/computation5010011 - 18 Feb 2017
Cited by 7 | Viewed by 5952
Abstract
An airflow in the first four generations of the tracheobronchial tree was simulated by the 1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D models of lumped alveolar components, which aggregates parts of the alveolar volume [...] Read more.
An airflow in the first four generations of the tracheobronchial tree was simulated by the 1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D models of lumped alveolar components, which aggregates parts of the alveolar volume and smaller airways, extended with convective transport model throughout the lung and alveolar components which were combined with the model of oxygen and carbon dioxide transport between the alveolar volume and the averaged blood compartment during pathological respiratory conditions. The novel features of this work are 1D reconstruction of the tracheobronchial tree structure on the basis of 3D segmentation of the computed tomography (CT) data; 1D−0D coupling of the models of 1D bronchial tube and 0D alveolar components; and the alveolar gas exchange model. The results of our simulations include mechanical ventilation, breathing patterns of severely ill patients with the cluster (Biot) and periodic (Cheyne-Stokes) respirations and bronchial asthma attack. The suitability of the proposed mathematical model was validated. Carbon dioxide elimination efficiency was analyzed in all these cases. In the future, these results might be integrated into research and practical studies aimed to design cyberbiological systems for remote real-time monitoring, classification, prediction of breathing patterns and alveolar gas exchange for patients with breathing problems. Full article
(This article belongs to the Special Issue Multiscale and Hybrid Modeling of the Living Systems)
Show Figures

Figure 1

2686 KiB  
Article
Virtual Prototyping and Validation of Cpps within a New Software Framework
by Sebastian Neumeyer, Konrad Exner, Simon Kind, Haygazun Hayka and Rainer Stark
Computation 2017, 5(1), 10; https://doi.org/10.3390/computation5010010 - 18 Feb 2017
Cited by 5 | Viewed by 8274
Abstract
As a result of the growing demand for highly customized and individual products, companies need to enable flexible and intelligent manufacturing. Cyber-physical production systems (CPPS) will act autonomously in the future in an interlinked production and enable such flexibility. However, German mid-sized plant [...] Read more.
As a result of the growing demand for highly customized and individual products, companies need to enable flexible and intelligent manufacturing. Cyber-physical production systems (CPPS) will act autonomously in the future in an interlinked production and enable such flexibility. However, German mid-sized plant manufacturers rarely use virtual technologies for design and validation in order to design CPPS. The research project Virtual Commissioning with Smart Hybrid Prototyping (VIB-SHP) investigated the usage of virtual technologies for manufacturing systems and CPPS design. Aspects of asynchronous communicating, intelligent- and autonomous-acting production equipment in an immersive validation environment, have been investigated. To enable manufacturing system designers to validate CPPS, a software framework for virtual prototyping has been developed. A mechatronic construction kit for production system design integrates discipline-specific models and manages them in a product lifecycle management (PLM) solution. With this construction kit manufacturing designers are able to apply virtual technologies and the validation of communication processes with the help of behavior models. The presented approach resolves the sequential design process for the development of mechanical, electrical, and software elements and ensures the consistency of these models. With the help of a bill of material (BOM)- and signal-based alignment of the discipline-specific models in an integrated mechatronic product model, the communication of the design status and changes are improved. The re-use of already-specified and -designed modules enable quick behavior modeling, code evaluation, as well as interaction with the virtualized assembly system in an immersive environment. Full article
Show Figures

Figure 1

739 KiB  
Article
Excitons in Solids from Time-Dependent Density-Functional Theory: Assessing the Tamm-Dancoff Approximation
by Young-Moo Byun and Carsten A. Ullrich
Computation 2017, 5(1), 9; https://doi.org/10.3390/computation5010009 - 29 Jan 2017
Cited by 12 | Viewed by 5079
Abstract
Excitonic effects in solids can be calculated using the Bethe-Salpeter equation (BSE) or the Casida equation of time-dependent density-functional theory (TDDFT). In both methods, the Tamm-Dancoff approximation (TDA), which decouples excitations and de-excitations, is widely used to reduce computational cost. Here, we study [...] Read more.
Excitonic effects in solids can be calculated using the Bethe-Salpeter equation (BSE) or the Casida equation of time-dependent density-functional theory (TDDFT). In both methods, the Tamm-Dancoff approximation (TDA), which decouples excitations and de-excitations, is widely used to reduce computational cost. Here, we study the effect of the TDA on exciton binding energies of solids obtained from the Casida equation using long-range-corrected (LRC) exchange-correlation kernels. We find that the TDA underestimates TDDFT-LRC exciton binding energies of semiconductors slightly, but those of insulators significantly (i.e., by more than 100%), and thus it is essential to solve the full Casida equation to describe strongly bound excitons. These findings are relevant in the ongoing search for accurate and efficient TDDFT approaches for excitons. Full article
Show Figures

Figure 1

16608 KiB  
Article
Numerical and Computational Analysis of a New Vertical Axis Wind Turbine, Named KIONAS
by Eleni Douvi, Dimitra Douvi, Dionissios Margaris and Ioannis Drosis
Computation 2017, 5(1), 8; https://doi.org/10.3390/computation5010008 - 11 Jan 2017
Cited by 6 | Viewed by 7620
Abstract
This paper concentrates on a new configuration for a wind turbine, named KIONAS. The main purpose is to determine the performance and aerodynamic behavior of KIONAS, which is a vertical axis wind turbine with a stator over the rotor and a special feature [...] Read more.
This paper concentrates on a new configuration for a wind turbine, named KIONAS. The main purpose is to determine the performance and aerodynamic behavior of KIONAS, which is a vertical axis wind turbine with a stator over the rotor and a special feature in that it can consist of several stages. Notably, the stator is shaped in such a way that it increases the velocity of the air impacting the rotor blades. Moreover, each stage’s performance can be increased with the increase of the total number of stages. The effects of wind velocity, the various numbers of inclined rotor blades, the rotor diameter, the stator’s shape and the number of stages on the performance of KIONAS were studied. A FORTRAN code was developed in order to predict the power in several cases by solving the equations of continuity and momentum. Subsequently, further knowledge on the flow field was obtained by using a commercial Computational Fluid Dynamics code. Based on the results, it can be concluded that higher wind velocities and a greater number of blades produce more power. Furthermore, higher performance was found for a stator with curved guide vanes and for a KIONAS configuration with more stages. Full article
Show Figures

Figure 1

165 KiB  
Editorial
Acknowledgement to Reviewers of Computation in 2016
by Computation Editorial Office
Computation 2017, 5(1), 7; https://doi.org/10.3390/computation5010007 - 10 Jan 2017
Cited by 12 | Viewed by 2754
Abstract
The editors of Computation would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
1479 KiB  
Article
Towards a Multiscale Model of Acute HIV Infection
by Anass Bouchnita, Gennady Bocharov, Andreas Meyerhans and Vitaly Volpert
Computation 2017, 5(1), 6; https://doi.org/10.3390/computation5010006 - 10 Jan 2017
Cited by 18 | Viewed by 7637
Abstract
Human Immunodeficiency Virus (HIV) infection of humans represents a complex biological system and a great challenge to public health. Novel approaches for the analysis and prediction of the infection dynamics based on a multi-scale integration of virus ontogeny and immune reactions are needed [...] Read more.
Human Immunodeficiency Virus (HIV) infection of humans represents a complex biological system and a great challenge to public health. Novel approaches for the analysis and prediction of the infection dynamics based on a multi-scale integration of virus ontogeny and immune reactions are needed to deal with the systems’ complexity. The aim of our study is: (1) to formulate a multi-scale mathematical model of HIV infection; (2) to implement the model computationally following a hybrid approach; and (3) to calibrate the model by estimating the parameter values enabling one to reproduce the “standard” observed dynamics of HIV infection in blood during the acute phase of primary infection. The modeling approach integrates the processes of infection spread and immune responses in Lymph Nodes (LN) to that observed in blood. The spatio-temporal population dynamics of T lymphocytes in LN in response to HIV infection is governed by equations linking an intracellular regulation of the lymphocyte fate by intercellular cytokine fields. We describe the balance of proliferation, differentiation and death at a single cell level as a consequence of gene activation via multiple signaling pathways activated by IL-2, IFNa and FasL. Distinct activation thresholds are used in the model to relate different modes of cellular responses to the hierarchy of the relative levels of the cytokines. We specify a reference set of model parameter values for the fundamental processes in lymph nodes that ensures a reasonable agreement with viral load and CD4+ T cell dynamics in blood. Full article
(This article belongs to the Special Issue Multiscale and Hybrid Modeling of the Living Systems)
Show Figures

Figure 1

3608 KiB  
Review
First Principle Modelling of Materials and Processes in Dye-Sensitized Photoanodes for Solar Energy and Solar Fuels
by Mariachiara Pastore
Computation 2017, 5(1), 5; https://doi.org/10.3390/computation5010005 - 01 Jan 2017
Cited by 18 | Viewed by 6637
Abstract
In the context of solar energy exploitation, dye-sensitized solar cells and dye-sensitized photoelectrosynthetic cells offer the promise of low-cost sunlight conversion and storage, respectively. In this perspective we discuss the main successes and limitations of modern computational methodologies, ranging from hybrid and long-range [...] Read more.
In the context of solar energy exploitation, dye-sensitized solar cells and dye-sensitized photoelectrosynthetic cells offer the promise of low-cost sunlight conversion and storage, respectively. In this perspective we discuss the main successes and limitations of modern computational methodologies, ranging from hybrid and long-range corrected density functionals, GW approaches and multi-reference perturbation theories, in describing the electronic and optical properties of isolated components and complex interfaces relevant to these devices. While computational modelling has had a crucial role in the development of the dye-sensitized solar cells technology, the theoretical characterization of the interface structure and interfacial processes in water splitting devices is still at its infancy, especially concerning the electron and hole transfer phenomena. Quantitative analysis of interfacial charge separation and recombination reactions in multiple metal-oxide/dye/catalyst heterointerfaces, thus, undoubtedly represents the compelling challenge in the field of modern computational material science. Full article
Show Figures

Figure 1

1228 KiB  
Article
An SVM Framework for Malignant Melanoma Detection Based on Optimized HOG Features
by Samy Bakheet
Computation 2017, 5(1), 4; https://doi.org/10.3390/computation5010004 - 01 Jan 2017
Cited by 81 | Viewed by 9248
Abstract
Early detection of skin cancer through improved techniques and innovative technologies has the greatest potential for significantly reducing both morbidity and mortality associated with this disease. In this paper, an effective framework of a CAD (Computer-Aided Diagnosis) system for melanoma skin cancer is [...] Read more.
Early detection of skin cancer through improved techniques and innovative technologies has the greatest potential for significantly reducing both morbidity and mortality associated with this disease. In this paper, an effective framework of a CAD (Computer-Aided Diagnosis) system for melanoma skin cancer is developed mainly by application of an SVM (Support Vector Machine) model on an optimized set of HOG (Histogram of Oriented Gradient) based descriptors of skin lesions. Experimental results obtained by applying the presented methodology on a large, publicly accessible dataset of dermoscopy images demonstrate that the proposed framework is a strong contender for the state-of-the-art alternatives by achieving high levels of sensitivity, specificity, and accuracy (98.21%, 96.43% and 97.32%, respectively), without sacrificing computational soundness. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

12486 KiB  
Article
Critical Issues in Modelling Lymph Node Physiology
by Dmitry Grebennikov, Raoul Van Loon, Mario Novkovic, Lucas Onder, Rostislav Savinkov, Igor Sazonov, Rufina Tretyakova, Daniel J. Watson and Gennady Bocharov
Computation 2017, 5(1), 3; https://doi.org/10.3390/computation5010003 - 24 Dec 2016
Cited by 10 | Viewed by 6628
Abstract
In this study, we discuss critical issues in modelling the structure and function of lymph nodes (LNs), with emphasis on how LN physiology is related to its multi-scale structural organization. In addition to macroscopic domains such as B-cell follicles and the T cell [...] Read more.
In this study, we discuss critical issues in modelling the structure and function of lymph nodes (LNs), with emphasis on how LN physiology is related to its multi-scale structural organization. In addition to macroscopic domains such as B-cell follicles and the T cell zone, there are vascular networks which play a key role in the delivery of information to the inner parts of the LN, i.e., the conduit and blood microvascular networks. We propose object-oriented computational algorithms to model the 3D geometry of the fibroblastic reticular cell (FRC) network and the microvasculature. Assuming that a conduit cylinder is densely packed with collagen fibers, the computational flow study predicted that the diffusion should be a dominating process in mass transport than convective flow. The geometry models are used to analyze the lymph flow properties through the conduit network in unperturbed- and damaged states of the LN. The analysis predicts that elimination of up to 60%–90% of edges is required to stop the lymph flux. This result suggests a high degree of functional robustness of the network. Full article
(This article belongs to the Special Issue Multiscale and Hybrid Modeling of the Living Systems)
Show Figures

Figure 1

10566 KiB  
Article
Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach
by Supratik Kar, Juganta K. Roy, Danuta Leszczynska and Jerzy Leszczynski
Computation 2017, 5(1), 2; https://doi.org/10.3390/computation5010002 - 23 Dec 2016
Cited by 22 | Viewed by 7077
Abstract
Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs). Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE) to bypass some of the disadvantages of silicon-based solar cell [...] Read more.
Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs). Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE) to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR) models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT) and time-dependent DFT (TD-DFT) methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency. Full article
Show Figures

Figure 1

5936 KiB  
Article
Application of the Recursive Finite Element Approach on 2D Periodic Structures under Harmonic Vibrations
by Reem Yassine, Faten Salman, Ali Al Shaer, Mohammad Hammoud and Denis Duhamel
Computation 2017, 5(1), 1; https://doi.org/10.3390/computation5010001 - 22 Dec 2016
Cited by 3 | Viewed by 4532
Abstract
The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount [...] Read more.
The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load) nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings) under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic). The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop