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Abstract: The Schrödinger theory of electrons in an external electromagnetic field is described from
the new perspective of the individual electron. The perspective is arrived at via the time-dependent
“Quantal Newtonian” law (or differential virial theorem). (The time-independent law, a special
case, provides a similar description of stationary-state theory). These laws are in terms of “classical”
fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave
function. The laws reveal the following physics: (a) in addition to the external field, each electron
experiences an internal field whose components are representative of a specific property of the system
such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron
density, kinetic effects, and an internal magnetic field component. The response of the electron is
described by the current density field; (b) the scalar potential energy of an electron is the work done
in a conservative field. It is thus path-independent. The conservative field is the sum of the internal
and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its
constituent property-related components known. As the sources of the fields are functionals of the
wave function, so are the respective fields, and, therefore, the scalar potential is a known functional
of the wave function; (c) as such, the system Hamiltonian is a known functional of the wave function.
This reveals the intrinsic self-consistent nature of the Schrödinger equation, thereby providing a path
for the determination of the exact wave functions and energies of the system; (d) with the Schrödinger
equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new
term that explicitly involves the external magnetic field. The new understandings are explicated for
the stationary state case by application to two quantum dots in a magnetostatic field, one in a ground
state and the other in an excited state. For the time-dependent case, the evolution of the same states
of the quantum dots in both a magnetostatic and a time-dependent electric field is described. In each
case, the satisfaction of the corresponding “Quantal Newtonian” law is demonstrated.
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1. Introduction

In this paper, we explain new understandings [1] of Schrödinger theory of the electronic structure
of matter, and of the interaction of matter with external static and time-dependent electromagnetic
fields. Matter—atoms, molecules, solids, quantum wells, two-dimensional electron systems such as
at semiconductor heterojunctions, quantum dots, etc.—is defined here as a system of N electrons
in an external electrostatic field E(r) = −∇v(r), where v(r) is the scalar potential energy of an electron.
The added presence of a magnetostatic field B(r) = ∇ × A(r), with A(r) the vector potential,
corresponds to the Zeeman, Hall, Quantum Hall, and magneto-caloric effects, magnetoresistance,
etc. The interaction of radiation with matter such as laser–atom interactions, photo-electric effects at
metal surfaces, etc., are described by the case of external time-dependent electromagnetic fields.
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The insights are arrived at by describing Schrödinger theory from the perspective [2,3] of the
individual electron. This perspective is arrived at via the “Quantal Newtonian” second law [4–7]
(or the time-dependent differential virial theorem) for each electron, with the first law [8–10] being
a description of stationary-state theory. The laws are a description of the system [2,3] in terms of
“classical” fields whose sources are quantal in that they are expectations of Hermitian operators taken
with respect to the wave function (For the origin of these ideas see [11–13]). This manner of depiction
makes the description of Schrödinger theory tangible in the classical sense. The new understandings
described are a consequence of these “Quantal Newtonian” laws.

A principal insight into Schrödinger theory arrived at is that the Schrödinger equation can
be written in self-consistent form. To explain what we mean, consider first the stationary-state
case. It is proved via the “Quantal Newtonian” first law, that for arbitrary state, the Hamiltonian
Ĥ for the system of electrons in a static electromagnetic field is a functional of the wave function Ψ,
i.e., Ĥ = Ĥ[Ψ]. Hence, the corresponding Schrödinger equation can be written as Ĥ[Ψ]Ψ = E Ψ.
Thus, the eigenfunctions Ψ and eigenenergies E of the Schrödinger equation can be obtained
self-consistently. This form of eigenvalue equation is mathematically akin to that of Hartree–Fock
and Hartree theories in which the corresponding Hamiltonian ĤHF is a functional of the single
particle orbitals φi of the Slater determinant wave function. The corresponding integro-differential
eigenvalue equations are then ĤHF[φi]φi = εiφi . The orbitals φi and the eigenenergies εi are obtained
by self-consistent solution of the equation [14,15]. There are other formalisms, as for example within
the context of local effective potential theory where the electrons are replaced by noninteracting
fermions, for which the solution is also obtained self-consistently. Such theories are Kohn–Sham density
functional theory [16,17], the Optimized Potential Method [18,19], Quantal density functional theory
(QDFT) [2,3], and the Hartree and Pauli-correlated approximations within QDFT [3,20,21]. In general,
eigenvalue equations of the form L̂[ζ]ζ = λζ, where L̂ is an integro-differential operator, are solved
in an iterative self-consistent manner. However, whereas in Hartree–Fock and local effective potential
theories, the self-consistency is for the single particle orbitals φi leading to the Slater determinant
wave function, the self-consistent solution of the Schrödinger equation leads to the many-electron
fully-interacting system wave function Ψ and energy E. In the time-dependent case, it is shown via
the “Quantal Newtonian” second law that the Hamiltonian Ĥ(t) = Ĥ[Ψ(t)], so that the self-consistent
form of the Schrödinger equation is Ĥ[Ψ(t)]Ψ(t) = i∂Ψ(t)/∂t. Thus, in this instance, it is the evolution
of the many-electron time-dependent wave function Ψ(t) that is obtained self-consistently.

Other understandings achieved show that the scalar potential energy of an electron v(r) is the
work done in a conservative field F (r). The components of this field are separately representative of
properties of the system such as the correlations due to the Pauli exclusion principle and Coulomb
repulsion, the electron density, kinetic effects, an internal magnetic field contribution, and the
Lorentz field. The constituent property-related components of the potential v(r) are thus known.
The components of the field F (r) are each derived from quantal sources that are expectation values of
Hermitian operators taken with respect to the wave function Ψ. Thus, the potential v(r), (and hence
the Hamiltonian), is a known functional of the wave function. Finally, the presence of the Lorentz field
in the expression for v(r), admits a term involving the magnetic field B(r) in the Schrödinger equation
as written in self-consistent form. These insights all lead to a fundamentally different way of thinking
of the Schrödinger equation.

The new physics is explicated for the stationary-state case by application to two quantum dots or
two-dimensional “artificial atoms” in a magnetostatic field with one being in a ground state and the
other in a first excited singlet state. For the time-dependent case, the same states of these quantum
dots in a magnetostatic field perturbed by a time-dependent electric field are considered. In each case,
the corresponding “Quantal Newtonian” law is shown to be satisfied.

We begin with a brief summary of the manner in which Schrödinger theory is presently
understood and practiced. For this, consider stationary-state theory for a system of N electrons
in an external electrostatic field E(r) = −∇v(r) and magnetostatic field B(r) = ∇ × A(r).
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The Schrödinger equation in atomic units (charge of electron −e, |e| = h̄ = m = 1) together with the
assumption of c = 1 is[

1
2 ∑

i

(
p̂i + A(ri)

)2
+

1
2 ∑′

i,j

1
|ri − rj|

+ ∑
i

v(ri)

]
Ψ(X) = EΨ(X), (1)

where the terms of the Hamiltonian are the physical kinetic, electron-interaction potential, and scalar
potential energy operators; {Ψ(X); E} the eigenfunctions and eigenvalues; X = x1, x2, . . . , xN ; x = rσ ;
and (rσ) the spatial and spin coordinates.

We note the following salient features of the above Schrödinger equation:

(a) as a consequence of the correspondence principle, it is the vector potential A(r) and not the
magnetic field B(r) that appears in it. This fact is significant, and is expressly employed to explain,
for example, the Bohm–Aharonov [22] effect in which a vector potential can exist in a region of
no magnetic field. The magnetic field B(r) appears in the Schrödinger equation only following
the choice of gauge;

(b) the characteristics of the potential energy operator v(r) are the following:

(i) for the N-electron system, it is assumed that the canonical kinetic and electron-interaction
potential energy operators are known. As such, the potential v(r) is considered an extrinsic
input to the Hamiltonian.

(ii) the potential energy function v(r) is assumed known, e.g., it could be Coulombic, harmonic,
Yukawa, etc.

(iii) by assumption, the potential v(r) is path-independent.

With the Hamiltonian operator known, the Schrödinger differential equation is then solved for
{Ψ(X); E}. Physical observables are determined as expectations of Hermitian operators taken with
respect to Ψ(X).

We initially focus on the stationary-state case. In Section 2, we briefly describe the single-electron
perspective of time-independent Schrödinger theory via the “Quantal Newtonian” first law.
The explanation of the new understandings achieved is given in Section 3. These ideas are further
elucidated in Section 4 by the example of a quantum dot in a magnetostatic field. Both a quantum dot
in a ground state and one in an excited state are considered. The extension to the time-dependent case
via the “Quantal Newtonian” second law with examples is discussed in Section 5. Concluding remarks
are made in Section 6 together with a comparison of the self-consistent method and the variational [23]
and constrained-search variational methods [24–26] for the determination of the wave function.

2. Stationary State Theory: “Quantal Newtonian” First Law

In order to better understand the “Quantal Newtonian” laws for each electron, we first draw
a parallel to Newton’s laws for the individual particle. Hence, consider a system of N classical particles
that obey Newton’s third law, exert forces on each other that are equal and opposite, directed along the
line joining them, and are subject to an external force. Then, Newton’s second law for the ith particle is

Fext
i + ∑′

j
Fji = dpi/dt, (2)

where Fext
i is the external force, Fji the internal force on the ith particle due to the jth particle, and pi

the linear momentum response of the ith particle to these forces. In summing Equation (2) over all the
particles, the internal force contribution vanishes, leading to Newton’s second law.

Newton’s first law for the ith particle is

Fext
i + ∑′

j
Fji = 0. (3)
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Again, on summing over all the particles, the internal force component vanishes leading to Newton’s
first law.

The “Quantal Newtonian” first law for the quantum system described by Equation (1)—(the
counterpart to Newton’s first law for each particle)—states that the sum of the external F ext(r) and
internal F int(r) fields experienced by each electron vanish [2,27,28]:

F ext(r) +F int(r) = 0. (4)

Just as the Schrödinger equation Equation (1), so is the “Quantal Newtonian” first law valid for
arbitrary state. It is gauge invariant and derived employing the continuity condition ∇ · j(r) = 0. Here,
j(r) is the physical current density which is the expectation

j(r) = 〈Ψ(X)|ĵ(r)|Ψ(X)〉, (5)

with the current density operator

ĵ(r) =
1
2i ∑

k

[
∇rk δ(rk − r) + δ(rk − r)∇rk

]
+ ρ̂(r)A(r), (6)

and the density operator
ρ̂(r) = ∑

k
δ(rk − r). (7)

The external field is the sum of the electrostatic E(r) and Lorentz L(r) fields [2,27]:

F ext(r) = E(r)−L(r) = −∇v(r)−L(r), (8)

where L(r) is defined in terms of the Lorentz “force” `(r) and density ρ(r) as

L(r) =
`(r)
ρ(r)

, (9)

where
`(r) = j(r)×B(r), (10)

and the density is the expectation

ρ(r) = 〈Ψ(X)|ρ̂(r)|Ψ(X)〉. (11)

The internal field F int(r) is the sum of the electron-interaction Eee(r), kinetic Z(r),
differential density D(r), and internal magnetic I(r) fields [2,27]:

F int(r) = Eee(r)−Z(r)−D(r)− I(r). (12)

These fields are defined in terms of the corresponding “forces” eee(r), z(r), d(r), and i(r).
(Each ”force” divided by the (charge) density ρ(r) constitutes the corresponding field). Thus,

Eee(r) =
eee(r)
ρ(r)

; Z(r) =
z(r)
ρ(r)

; D(r) =
d(r)
ρ(r)

; I(r) = i(r)
ρ(r)

. (13)

The “force” eee(r), representative of electron correlations due to the Pauli exclusion principle
and Coulomb repulsion, is obtained via Coulomb’s law via its quantal source, the pair-correlation
function P(rr′):

eee(r) =
∫ P(rr′)(r− r′)

|r− r′|3 dr′, (14)
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with P(rr′) the expectation
P(rr′) = 〈Ψ(X)|P̂(rr′)|Ψ(X)〉, (15)

of the pair operator
P̂(rr′) = ∑′

i,j
δ(ri − r)δ(rj − r′). (16)

The kinetic “force” z(r), representative of kinetic effects, is obtained from its quantal source,
the single-particle density matrix γ(rr′):

zα(r) = 2 ∑
β

∇βtαβ(r), (17)

where the kinetic energy tensor

tαβ(r) =
1
4

[
∂2

∂r′α∂r′′β
+

∂2

∂r′β∂r′′α

]
γ(r′r′′)|r′=r′′=r, (18)

with γ(rr′) the expectation
γ(rr′) = 〈Ψ(X)|γ̂(rr′)|Ψ(X)〉 (19)

of the density matrix operator
γ̂(rr′) = Â + iB̂ (20)

Â =
1
2 ∑

j

[
δ(rj − r)Tj(a) + δ(rj − r′)Tj(−a)

]
(21)

B̂ = − i
2 ∑

j

[
δ(rj − r)Tj(a)− δ(rj − r′)Tj(−a)

]
, (22)

with Tj(a) a translation operator such that Tj(a)ψ(. . . rj . . .) = ψ(. . . rj + a, . . .). The differential density
“force” d(r), representative of the density, is

d(r) = −1
4
∇∇2ρ(r), (23)

the quantal source being the density ρ(r). Finally, the internal magnetic “force” i(r) whose quantal
source is the current density j(r):

iα(r) = ∑
β

∇β Iαβ(r), (24)

with the tensor
Iαβ(r) =

[
jα(r)Aβ(r) + jβ(r)Aα(r)

]
− ρ(r)Aα(r)Aβ(r). (25)

The components of the total energy—the kinetic T, electron-interaction Eee, internal magnetic I,
and external Eext—can each be expressed in integral virial form in terms of the respective fields [2,27]:

T = −1
2

∫
ρ(r)r ·Z(r)dr, (26)

Eee =
∫

ρ(r)r · Eee(r)dr, (27)

I =
∫

ρ(r)r · I(r)dr, (28)

Eext =
∫

ρ(r)r ·F ext(r)dr. (29)
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3. New Perspectives

We next discuss the new understandings achieved via the single-electron perspective. They are
valid for both ground and excited states.

(i) In addition to the external electrostatic E(r) and Lorentz L(r) fields, each electron experiences
an internal field F int(r). This field via its Eee(r) component is representative not only of
Coulomb correlations as one might expect, but also those due to the Pauli exclusion principle
due to the antisymmetric nature of the wave function. Additionally, there is a component
Z(r) representative of the motion of the electrons; a component D(r) representing the density,
a fundamental property of the system [29]; and a term I(r) that arises as a consequence of
the external magnetic field [27]. Hence, each electron experiences an internal field that encapsulates
all the basic properties of the system. As in classical physics, in summing over all the electrons,
the contribution of the internal field vanishes, leading thereby to Ehrenfest’s (first law) theorem:∫

ρ(r)F ext(r)dr = 0. (In fact, each component of the internal field is shown to separately vanish.).
(ii) The “Quantal Newtonian” first law Equation (4) affords a rigorous physical interpretation of the

external electrostatic potential v(r): it is the work done to move an electron from some reference point
at infinity to its position at r in the force of a conservative field F (r):

v(r) =
∫ r

∞
F (r′) · d`′, (30)

where F (r) = F int(r) − L(r) = Eee(r) −Z(r) −D(r) − I(r) − L(r). Since ∇×F (r) = 0,
this work done is path-independent. Thus, we now understand, in the rigorous classical sense of
a potential being the work done in a conservative field, that v(r) represents a potential energy
viz. that of an electron. Furthermore, that “classical” field is now explicitly defined. We reiterate
that Equation (30) (or the “Quantal Newtonian” first law) is valid for arbitrary state. In other
words, irrespective of whether the state is a ground, excited, or a degenerate state, the work done
in the corresponding field F (r) is always the same, viz. v(r).

(iii) What the physical interpretation of the potential v(r) further shows is that it can no longer be
thought of as an independent entity. It is intrinsically dependent upon all the properties of the system
via the various components of the internal field F int(r), and the Lorentz L(r) field through
the current density j(r). Hence, the potential energy function v(r) is comprised of the sum of
constituent functions each representative of a property of the system.

(iv) As each component of the internal field F int(r) (and the Lorentz field L(r)) are obtained
from quantal sources that are expectations of Hermitian operators taken with respect to the
wave function Ψ(X), we see that the field F (r) is a functional of Ψ(X), i.e., F (r) = F [Ψ(X)].
Thus, (from Equation (30)), v(r) is a functional of Ψ(X) : v(r) = v[Ψ(X)]. The functional v[Ψ(X)] is
exactly known [via Equation (30)].

(v) On substituting the functional v[Ψ(X)] into Equation (1), the Schrödinger equation may then be
written as [

1
2 ∑

i
(p̂i + A(ri))

2 +
1
2 ∑′

i,j

1
|ri − rj|

+ ∑
i

v[Ψ](ri)

]
Ψ(X) = EΨ(X), (31)

or, equivalently, as[
1
2 ∑

i
(p̂i + A(ri))

2 +
1
2 ∑′

i,j

1
|ri − rj|

+ ∑
i

∫ ri

∞
F [Ψ](r) · d`

]
Ψ(X) = EΨ(X). (32)

In general, with the Hamiltonian a functional of Ψ(X), the Schrödinger equation can be written
as Ĥ[Ψ(X)]Ψ(X) = EΨ(X). In this manner, the intrinsic self-consistent nature of the Schrödinger equation
becomes evident. (Recall that what is meant by the functional v[Ψ] is that for each different Ψ(X), one
obtains a different v[Ψ](r)). To solve the equation (see Figure 1), one begins with an approximation to
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Ψ(X). With this approximate Ψ(X), one determines the various quantal sources and the fields F int(r)
and L(r) (for an external B(r)), and the work done v(r) in the sum of these fields. One then solves
the integro-differential equation to determine a new approximate solution Ψ(X) and eigenenergy E.
This Ψ(X), in turn, will lead to a new v(r) (via Equation (30)), and by solution of the equation to a new
Ψ(X) and E. The process is continued until the input Ψ(X) to determine v[Ψ](r) leads to the same
output Ψ(X) on solution of the equation or, equivalently, until self-consistency is achieved. The exact
Ĥ[Ψ], Ψ(X), E are obtained in the final iteration of the self-consistency procedure.

Figure 1. Self-consistent procedure for the solution of the Schrödinger equation.

In any self-consistent procedure, different external potentials v(r) can be obtained based on the
choice of the initial approximate input wave function Ψ(X). In atoms, molecules or solids, the potential
v(r) obtained self-consistently would be Coulombic. In quantum dots, it would be harmonic, and so on.
This is irrespective of the state of the system. One must begin with an educated accurate guess apropos
to the physical system of interest for the initial input. Otherwise, one may not achieve self-consistency.
Thus, for example, in self-consistent quantal density functional theory calculations on atoms [3,20,21],
the initial input wave function for an atom is the solution of the prior atom of the Periodic Table.
In general, for any self-consistent calculation, it is only after self-consistency is achieved that one must
judge and test whether the solution is physically meaningful. (Note that in this manner, the external
potential v(r) and hence the Hamiltonian is determined self-consistently.).

In principle, the above procedure is mathematically entirely akin to the fully-self-consistent
solution of the integro-differential equations of Hartree [14] and Hartree–Fock [15] theories,
the Optimized Potential method [18,19], Quantal density functional theory [3], etc. In each of these
cases, the corresponding integro-differential equations are of the form Ĥ[ζi]ζi(x) = λiζi(x), where Ĥ
is the corresponding Hamiltonian and ζi, λi the single particle orbitals and eigenvalues, respectively.
The Schrödinger equation written in self-consistent form—Ĥ[Ψ(X)]Ψ(X) = EΨ(X)—is of the same
form but with the generalization to the many-electron system wave function Ψ(X) and the corresponding
eigenvalue E. Thus, we now understand that the Schrödinger equation too can be thought of as being
a self-consistent equation. This perspective of Schrödinger theory is new.

We note that there exists a “Quantal Newtonian” first law for Hartree, Hartree–Fock, and local
effective potential theories [2,3]. Hence, the external potential v(r) of these theories can also
be expressed as the work done in a conservative field, and thus replaced in the corresponding
integro-differential equations by a known functional of the requisite Slater determinant. These theories
are thereby further generalized.

(vi) Observe that in writing the Schrödinger equation as in Equations (31) and (32), the magnetic field
B(r) now appears in the Hamiltonian explicitly via the Lorentz field L(r) (see Equation (30)). It is
the intrinsic self-consistent nature of the equation that demands the presence of B(r) in the
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Hamiltonian. In other words, since the Hamiltonian Ĥ[Ψ] is being determined self-consistently,
all the information of the physical system—electrons and fields—must be incorporated in it.
(Of course, equivalently, the field B(r) could be expressed in terms of the vector potential A(r).
This then shows that when written in self-consistent form, there exists another component of the
Hamiltonian involving the vector potential.)

(vii) The presence of a solely electrostatic external field E(r) = −∇v(r) is a special case of the
stationary state theory discussed above. This case then constitutes the description of matter as
defined in the Introduction.

4. Examples: Quantum Dots in a Ground and Excited State

To explicate the new physics of stationary-state Schrödinger theory, we consider two different
two-electron quantum dots or two-dimensional “artificial atoms” [30] in an external magnetostatic
field [31,32]. The first quantum dot is in a ground state while the second is in a singlet excited state.
The external scalar potential in the Hamiltonian of Equation (1) is then of the form v(r) = 1

2 ω2
0r2.

However, due to the presence of the magnetic field, (and in the symmetric gauge A(r) = 1
2B(r)× r),

the electrons experience an effective harmonic force constant keff = ω2
0 + ω2

L, with ωL = B/2 the
Larmor frequency. Following Taut [31], the wave function for the quantum dot in its ground state is
derived [27] to be

Ψ0(r1r2) = C0e−Ω(R2+ 1
4 r2)(1 + r), (33)

where R = (r1 + r2)/2, r = |r1 − r2|, C0 = Ω
3
2 /π[2 + Ω +

√
2πΩ]

1
2 , Ω =

√
keff, keff = 1, with energy

3.000000 a.u. The wave function for the dot in the singlet state is derived [33] as

Ψ1(r1r2) = C1e−Ω(R2+ 1
4 r2)

[
1 + r +

(
Ω
4
− 0.436815

)
r2

+

(
Ω
4
− 0.353786

)
r3
]

, (34)

where C1 = 0.108563, Ω =
√

keff, keff = 0.471716, with energy E1 = 3.434076 a.u. (The purpose of
employing two different quantum dots is because for the two different force constants keff,
the corresponding wave functions, and hence the majority of the properties, can be obtained in
closed analytical form.).

In Figures 2 and 3, we plot the corresponding electron-interaction Eee(r), kinetic Z(r),
and differential density D(r) components of the internal F int(r) field. Observe that −Eee(r) +Z(r) +
D(r) = −keffr. This then demonstrates the satisfaction of the “Quantal Newtonian” first law of
Equation (4) (for the details of these calculations, see [27,34]).

The examples of the quantum dots above can be thought of as being the final iteration of the
self-consistent procedure in which the exact potential v(r), wave function Ψ(r1r2), and energy E are
obtained. To see this, consider the initial choice of solutions to be the following:

ψ0(r1r2) = C0e−Ω0(R2+ 1
4 r2)(1 + a0r), (35)

and
ψ1(r1r2) = C1e−Ω1(R2+ 1

4 r2)(1 + a1r + b1r2 + c1r3), (36)

where C0, C1, Ω0, Ω1, a0, a1, b1, c1 are constants. Let us next assume that, for some random iteration,
the values of these coefficients turn out to be C0 = 0.135646, Ω0 = 1.000000, a0 = 1.000000;
C1 = 0.108563, Ω1 = 0.686816, a1 = 1.000000, b1 = −0.265111, c1 = −0.182082. One then determines
the various fields from the corresponding solutions and plots them. On adding the fields D(r) and
Z(r), one obtains the dot-dash lines as shown in Figures 2 and 3 for (D(r) +Z(r)). Adding −Eee(r)
to these lines, one then obtains a straight (dashed) line −keffr in each case, i.e., the gradient of the
corresponding effective scalar potential. On substituting this 1

2 keffr2 back into the Schrödinger equation
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and solving, one obtains the same wave functions Ψ0, Ψ1 and energies E0, E1 as that of Equations (33)
and (34). Additionally, it becomes clear that the potential v(r) is harmonic. This then constitutes the
final iteration of the self-consistency procedure and shows the intrinsic self-consistent nature of the
Schrödinger equation.

Figure 2. The electron-interaction Eee(r), kinetic Z(r), and differential density D(r) components of the
internal field F int(r) for a quantum dot in a magnetic field in its ground state. The sums D(r) +Z(r),
and −Eee(r) +Z(r) +D(r) = −keffr with keff = 1 are also plotted.

Figure 3. Same as in Figure 2 but for a quantum dot in a magnetic field in its first excited singlet state
with keff = 0.471716.
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5. Time-Dependent Theory: “Quantal Newtonian” Second Law

The above conclusions are generalizable to the time-dependent Schrödinger equation. For simplicity,
let us first consider the external field to be F ext(rt) = E(rt) = −∇v(rt). In this case, the “Quantal
Newtonian” second law for each electron—the quantal equivalent to Newton’s second law of
Equation (2)—is [2,4,5].

F ext(rt) +F int(rt) = J (rt), (37)

where F int(rt) is given by the TD version of Equation (12) (without the I(rt) term) and the response of
the electron is described by the current density field J (rt) = (1/ρ(rt))∂j(rt)/∂t. The corresponding
external potential energy v[Ψ](rt) functional of the wave function Ψ(Xt) as obtained from Equation (37)
is then the work done at each instant of time in a conservative field:

v[Ψ](rt) =
∫ r

∞
F (r′t) · d`′, (38)

where F (rt) = F int(rt)−J (rt), with the TD self-consistent Schrödinger equation being[
1
2 ∑

i
p̂2

i +
1
2 ∑′

i,j

1
|ri − rj|

+ ∑
i

v[Ψ](rit)
]

Ψ(Xt) = i
∂Ψ(Xt)

∂t
. (39)

Since ∇×F (rt) = 0, the work done v(rt) at each instant of time is path-independent and thus
a potential energy. Again, on summing Equation (37) over all the electrons, the contribution of F int(rt)
vanishes, leading to Ehrenfest’s (second law) theorem

∫
ρ(rt)[F ext(rt)−J (rt)]dr = 0. The further

generalization of the “Quantal Newtonian” second law to the case of an external TD electromagnetic
field with E(r) = −∇v(r), E(rt) = −∇φ(rt) − ∂A(rt)/∂t, B(rt) = ∇ × A(rt), is given in [7].
The resulting self-consistent time-dependent Schrödinger equation then follows.

As an example of the insights for the time-dependent case, consider the two two-electron quantum
dots in an external magnetostatic field B(r) = ∇×A(r) perturbed by a time-dependent electric field
E(t). The wave function of this system [35], known as the Generalized Kohn Theorem [36–41],
is comprised of a phase factor times the unperturbed wave function in which the coordinates of each
electron are translated by a time-dependent function that satisfies the classical equation of motion.
Hence, if the unperturbed wave function is known, the time evolution of all properties is known.
As the wave functions for the unperturbed quantum dots in their ground and excited states are given
by Equations (33) and (34), the corresponding solutions of the time-dependent Schrödinger equation,
and therefore of all the various fields, is obtained. At the initial time, t = 0, the results are those of
Figures 2 and 3. The evolution of observables that are expectations of non-differential operators such as
the density ρ(rt), the electron-interaction field Eee(rt), etc., are simply the time-independent functions
shifted in time.

6. Conclusions

In conclusion, we have provided a new perspective on the Schrödinger theory of electrons
in electromagnetic fields. This perspective, together with new insights, is arrived at via the
“Quantal Newtonian” first and second laws for each electron. These laws are valid, respectively,
for stationary-state and time-dependent Schrödinger theory. A principal understanding is that
the scalar potential energy of an electron {v(r)/v(rt)} is a known functional of the wave function
{Ψ(X)/Ψ(Xt)}. As such, the Hamiltonian {Ĥ/Ĥ(t)} is a functional of the wave function:
{Ĥ[Ψ(X)]/Ĥ[Ψ(Xt)]}. Hence, the time-independent Schrödinger equation can be written as
Ĥ[Ψ(X)]Ψ(X) = EΨ(X) and the time-dependent equation as Ĥ[Ψ(Xt)]Ψ(Xt) = i∂Ψ(Xt)/∂t.
Thus, the Schrödinger equation can now be thought of as one whose solution can be obtained
self-consistently. The concept of the Schrödinger equation as being a self-consistent one is new.
A path for the determination of the exact wave function is thus formulated. Such a path is feasible
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given the advent of present-day high computing power. The self-consistent nature of the Schrödinger
equation is, however, demonstrated for the examples of a two-electron quantum dot in a magnetic field,
one in a ground state and the other in an excited state. What this perspective on Schrödinger theory
also shows is that when the scalar potential {v(r)/v(rt)} is a known function, then the corresponding
Schrödinger equations ĤΨ(X) = EΨ(X) and Ĥ(t)Ψ(Xt) = i∂Ψ(Xt)/∂t constitute a special case of the
self-consistent form.

A second understanding achieved is that it is now possible to write the scalar potential
{v(r)/v(rt)} as the sum of component functions each of which is representative of a specific
property of the system such as the correlations due to the Pauli exclusion principle and Coulomb
repulsion, kinetic and magnetic effects, and the electron density. Although the component
functions will differ depending upon the state, the scalar potential {v(r)/v(rt)} remains the same.
Such a property-related division of the scalar potential is also shown by the two examples of the
quantum dots in a magnetostatic field given in the text.

Finally, an interesting observation is that, in its self-consistent form, in addition to the vector
potential, which appears in the Schrödinger equation as a consequence of the correspondence principle,
the magnetic field now appears too in the equation because of the “Quantal Newtonian” laws.
Ex post facto, we now understand that this must be the case as the Hamiltonian itself is being
determined self-consistently.

It is interesting to compare the self-consistent method for the determination of the wave function
in the stationary ground state case to that of the variational method [23]. The latter is associated
principally with the property of the total energy. An approximate parametrized variational wave
function correct to O(δ) leads to an upper bound for the energy that is correct to O(δ2). Such a wave
function is accurate in the region where the principal contribution to the energy arises. However,
all other observables obtained as the expectation of Hermitian single- and two-particle operators
are correct only to the same order as that of the wave function, viz. to O(δ). A better approximate
variational wave function is one that leads to a lower value of the energy. There is no guarantee
that other observables representative of different regions of configuration space are thereby more
accurate. On the other hand, in the self-consistent procedure, achieved say to a desired accuracy of
five decimal places, all the properties are correct to the same degree of accuracy. An improved wave
function would be one correct to a greater decimal accuracy. As a point of note, the constrained-search
variational method [24–26] expands the variational space of approximate parametrized wave functions
by considering the wave function Ψ to be a functional of a function χ, i.e., Ψ = Ψ[χ]. One searches
over all functions χ such that the wave function Ψ[χ] is normalized, gives the exact (theoretical
or experimental) value of an observable, while leading to a rigorous upper bound to the energy.
In this manner, the wave function functional Ψ[χ] is accurate not only in the region contributing to
the energy, but also that of the observable. The wave function Ψ[χ] is, however, still approximate.
The self-consistent solution of the Schrödinger equation, on the other hand, is exact to the degree
required, throughout configuration space.

We do not address here the broader numerical procedural aspects of the self-consistency, nor the
implications of the explicit presence of the magnetic field in it. These issues constitute current and
future research.
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