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Abstract: In the context of solar energy exploitation, dye-sensitized solar cells and dye-sensitized
photoelectrosynthetic cells offer the promise of low-cost sunlight conversion and storage, respectively.
In this perspective we discuss the main successes and limitations of modern computational
methodologies, ranging from hybrid and long-range corrected density functionals, GW approaches
and multi-reference perturbation theories, in describing the electronic and optical properties of
isolated components and complex interfaces relevant to these devices. While computational
modelling has had a crucial role in the development of the dye-sensitized solar cells technology,
the theoretical characterization of the interface structure and interfacial processes in water splitting
devices is still at its infancy, especially concerning the electron and hole transfer phenomena.
Quantitative analysis of interfacial charge separation and recombination reactions in multiple
metal-oxide/dye/catalyst heterointerfaces, thus, undoubtedly represents the compelling challenge in
the field of modern computational material science.

Keywords: DFT/TDDFT; excited states; NEVPT2; GW; dye-sensitized TiO2; photoanodes; water
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1. Introduction

Answering the request of globally-increasing energy consumption, while reducing the
environmental impact, undoubtedly represents one of the most compelling societal and technological
challenges [1–3]. Since 2002, the world energy consumption rate of 13.5 terawatts (TW) is predicted
to increase to at least two-fold by 2050, due to the growth of the world population and economic
developments [4]. On a global scale, about 85% of the energy source comes from fossil fuels, but their
costs and the serious concerns in terms of impact on environment and human health, as well as the
directly-related geo-political problems, call for a progressive increase in renewable energy exploitation.
As a matter of fact, all of the renewable energy areas are extending, with an estimated renewable
share of final energy consumption of about 19% (modern technologies and traditional biomass being
at 10% and 9%, respectively) [2]. Among renewable energy sources, the sun is our ultimate resource:
sunlight strikes the Earth’s surface at a continuous rate of 1.2 × 105 TW, largely exceeding our
current worldwide power demand; it is inexhaustible and rather well distributed over the planet.
To be exploitable, however, solar energy needs to be converted to heat, electricity, or chemical bonds
(fuels) [5–7], and while its conversion to heat is straightforward, an effective production of electricity
and fuels from sunlight poses severe issues. The first problem is related to the maximum efficiency that
can be achieved converting sunlight into electricity and fuels: considering the average solar spectral
distribution, the most favourable absorption region is about 885 nm (1.4 eV) which, in principle, would
allow for a 33% energy conversion efficiency [8]. Moreover, to achieve large-scale industrialization
and commercialization, the materials employed in solar devices should also be cheap and abundant
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in the Earth’s crust with a reduced environmental impact and possibly high long-term stability.
In the context of solar energy exploitation, dye-sensitized solar cells (DSCs) [9,10] and dye-sensitized
photoelectrosynthetic cells (DSPECs) [5,11,12] offer the promise of low-cost sunlight conversion and
storage, respectively. Since the seminal paper by O’Regan and Grätzel in 1991 [9], hybrid/organic
photovoltaic devices have attracted significant research interest, which has recently lead to the launch
of the first commercial product. The basic functioning mechanism of a DSC is depicted in Figure 1
along with a representation of the different competing forward (solid black lines) and back (dotted
red lines) electron transfer (ET) processes. The heart of the cell is represented by the photoanode,
which consists of a mesoporous oxide layer (7–10 µm), usually composed of TiO2 or ZnO nanoparticles
deposited onto a transparent conducting oxide on a glass or plastic substrate. The nanocrystalline
oxide is sensitized by a monolayer of dyes (D), chemically bound to the semiconductor nanoparticles.
Upon solar light absorption, the adsorbed sensitizers are able to inject the photo-excited electrons in the
manifold of the conduction band (CB) states of the semiconductor, typically at the femtosecond time
scale. Injected electrons travel through the mesoporous film and are collected by the conductive layer
of the photoanode electrode, while the oxidized dye (D+) is rapidly reduced by the electron mediator
donor in solution [13] or by the hole transporting material (HTM) in solid-state devices. The collected
electrons flow in the external circuit, producing a photocurrent, and reach the counter-electrode,
where the circuit is closed by the reduction of the electron mediator acceptor [14,15].
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Figure 1. (left) Illustrative diagram of the functioning mechanism of a typical n-type DSC. The different
competing forward (solid black lines) and back (dotted red lines) electron transfer reactions are also
indicated; (right) Physical composition of a DSC and SEM image of the dye-sensitized TiO2 film
(adapted from [15]).

The same idea of exploiting a molecular (or supramolecular) system (light absorber) grafted on
solid electrodes (n- and p-type semiconductors for the photoanode and photochatode, respectively) in
contact with an electrolytic solution can be also implemented in a photo-electrochemical cell (PEC)
to produce H2: such a configuration is schematically depicted in Figure 2. In this type of PEC, a dye
adsorbed on the surface of a wide band-gap semiconductor (typically TiO2) absorbs the solar radiation
to produce an electron and a hole, which are injected into the semiconductor and catalyst, respectively:
oxygen is produced at the dye-sensitized semiconductor photoanode, while hydrogen is produced, by
a catalyst at the cathode, where photogenerated electrons are collected.

The reactions taking place at the electrodes of a DSPEC are reported in the following,
where h+ and e− are, respectively, the photo-generated holes and electrons.

2H2O + 4h+ → O2 +4H+ E0 = 1.23 V vs. NHE

4H+ +4e− → 2H2 E0 = 0 V vs. NHE

The presence of multiple solid/liquid active interfaces makes DSCs and DSPECs inherently
complex systems, where the individual characteristics of catalysts, photosensitizers, and semiconductors,
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as well as the interfacial properties of the assembled photoelectrodes strongly interplay in determining
the overall device efficiencies [16]. General guidelines to optimally design and combine the interface
“players” (i.e., dyes [17–21]), metal oxides [22,23], electrolytes [24,25], and catalysts [26–29]) are
derived from simple considerations on the material’s structural, redox, and optical properties [30–33].
In addition to the optimization of standalone components, however, optimizing the energy level
matching, the morphology, and the optical properties of the functionalized interface is crucial to boost
the device efficiency [34–42].
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From a computational point of view, modern first principles computational methodologies,
essentially relying on density functional theory (DFT) and its time dependent extension (TDDFT),
are able to describe most of the target characteristics of the individual systems (dyes, catalysts,
semiconductors, etc.) [16,43–59] and of their active interfaces [16,41,43,47,60–79]. The information
extracted from these calculations serve as the basis for the explicit simulation of the photo-induced
electron transfer by means of quantum or non-adiabatic dynamics. Different combinations
of electronic structure/excited states and nuclear dynamics descriptions have been applied to
molecule-functionalized metal oxide interfaces [69,72,80–84]. In most cases these approaches
rely either on semi-empirical Hamiltonians [69,85] or on the time-dependent propagation of
single particle DFT orbitals [86,87], with the nuclear dynamics being described within mixed
quantum-classical [69,80,85,86] or fully-quantum mechanical approaches [87]. Real-time propagation
of the TDDFT excited states [88] has also emerged as a powerful tool to study photoinduced electron
transfer events, with applications to dye-sensitized interfaces based on mixed quantum-classical
dynamics [82,89].

In the last years, increased computing power along with efficient implementations of
highly-correlated post Hartree-Fock [90–93] and post DFT methodologies [94,95], has opened the
way to accurate benchmark studies on the isolated components [59,96–98], as well as on the hybrid
interfaces [74,99,100] relevant to dye-sensitized devices. While, however, computational modelling has
played a prominent role in the development of the DSC technology, the understanding of the interfacial
processes in DSPEC is still at its infancy, especially for what concerns the electron and hole transfer
phenomena, which are central to efficient device functioning. Most of the published computational
modeling works so far are, indeed, focused on the characterization of the water oxidation/proton
reduction reaction mechanisms, [57,101–104] with only a few studies reporting the interaction between
the catalysts, dyes, and semiconductors [67,68,71,72].

In this perspective, we shell review recent activity in the computational modelling of dyes and
dye-sensitized interfaces in DSCs and DSPECs, discussing at the same time the successes and the still
unsolved issues faced by modern quantum chemistry methodologies.
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2. Dye’s Optical Properties

2.1. Organic Dyes

Efficient sensitizers for DSCs have to be endowed with a strong absorption in the UV-VIS region
of the solar spectrum associated to long-lived, charge-separated, excited states with the correct
directionality (toward the metal-oxide surface). These requirements are, usually, fulfilled by using
a D-π-A structure (hereafter termed push-pull), where the donor group (D) is an electron-rich unit,
the electron-acceptor group (A) is covalently bound to the semiconductor surface and they are linked
through a conjugated bridge (π). Accurate prediction of excitation energies of push-pull dyes is
challenging for both TDDFT [43,44,96,105] and wave-function approaches due to the strong charge
transfer nature of the electronic transitions and associated orbital relaxation effects [106,107].

The inclusion of a fix percentage (from ≈20% to ≈50%) of non-local Hartree-Fock exchange
(HFexc) in the functional [108] and the use of range-separated hybrid functionals [109–113] are the
most commonly employed strategies to practically overcome these drawbacks. Within the latter
family, the so called ‘optimally tuned’ functionals, put forward by Baer, Kronik, and co-workers [114],
are grounded on a different idea: the range separation parameter is determined in a non-empirical way,
by minimizing the difference between the highest occupied molecular orbital (HOMO) energy (εHOMO)
and the vertical ionization potential (IP). Optimally-tuned RS approaches have been successfully
applied to different problematic test cases [54,62,115–118], where standard functionals are known
to dramatically fail. Considering, for instance, the two prototypical push-pull dyes, D102 and JK2,
featuring different donor and acceptor units (Figure 3a), the comparison between the calculated and
experimental excitation energies in Table 1 clearly show that the choice of, and the identification of,
the “best” functional is not straightforward.
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Table 1. TDDFT excitation energies (in eV) of the lowest excited state of JK2 and D102 in gas phase
and EtOH solution for the protonated (1H) and deprotonated (0H) form compared to the experimental
absorption maxima. Data from [43].

Dye

B3LYP MPW1K CAM-B3LYP

Exp. (EtOH)1H 0H 1H 0H 1H 0H

Vac Solv Solv Vac Solv Solv Vac Solv Solv

JK2 1.99 1.82 2.26 2.60 2.45 2.81 2.78 2.62 2.94 2.84 [119]
D102 2.61 2.29 2.37 3.07 2.78 2.89 3.11 2.86 2.90 2.53 [120]
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These data demonstrate that different systems might require different functionals to be properly
treated and, thus, TDDFT fails in a priori prediction of the optical properties of push-pull organic
molecules. A careful method validation is, thus, mandatory, including solvent effects and a careful
analysis of the anchoring group acid-base chemistry. In fact, while bulk solvent effects (polar and
non-polar environments) are usually quantitatively captured by implicit models [121], a realistic
modeling of explicit solute-solvent interactions (i.e., specific hydrogen bonding) might be required in
protic solvents [41,96,122–125].

Similar difficulties are also encountered in the calculation of the oxidation potentials [44]
whose accuracy has been demonstrated to deteriorate as the conjugation length of the molecule
increases, even when long-range corrected, or hybrid functionals with a higher percentage of non-local
exchange, are employed. Many-body perturbation theory (MBPT), within the GW approximation [94],
although more computationally demanding, represents a solid framework to improve the DFT
description of the quasi-particle (QP) energy levels. GW [126,127] was used to calculate the ionization
potential and electron affinity (Table 2) of a series of triphenyl-based push-pull dyes with increasing
degree of electronic conjugation (L0, L2, L3, and L4 in Figure 3b). QP energy levels were computed
at the so-called G0W0 level [95] on top of DFT ground-state calculations, performed with the BLYP
functional. All of the DFT calculations discussed in the following were performed using the pw.x code
of the Quantum ESPRESSO software package [128] (see [74] for further details). As a matter of fact,
a dependence of the G0W0 results on the chosen starting exchange and correlation functional has been
widely reported [129–132]. In particular, hybrid exchange and correlation functionals appear as the
most promising in giving consistent G0W0 results. In the following calculations, however, we have
chosen as starting point a local exchange and correlation functional to keep a coherent description
with the calculations of the molecules adsorbed on the TiO2 surface (see [74]), for which calculations
with hybrid functionals could not be afforded.

Table 2. Vertical ionization potentials (IP) and electron affinities (EA) calculated with the GW method
for the L0, L2, L3, and L4 dyes.

Dye IP (eV) EA (eV)

L0 6.87 1.66
L2 6.48 2.31
L3 6.37 2.28
L4 6.21 2.21

Electron photoemission measurements [133] on related TPA-based dyes bearing the
rhodanine-3-acetic acid acceptor group give an IP of 6.75 eV for the dye corresponding to L0 and an IP
of 6.50 eV for the dye corresponding to L2. As shown from the calculated IPs in Table 2, an increase
in the length of the linker moiety corresponds to a decrease of the calculated IP, thus providing a
trend comparable to the experimental oxidation potentials, even though the measured quantities are
in solution and also account for the change in energy due to structural relaxations.

2.2. Transition Metal Complexes

Ru(II)-polypyridyl complexes have been primarily employed as dye sensitizers [52,122,134–137].
The unsurpassed performance of the [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] complex, the N3 dye [134]
(Figure 4), played a central role in significantly advancing the DSCs field, with solar to electric power
efficiencies exceeding 11% [52,137].
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investigated by comparing CAS_15/NEVPT2 and B3LYP excited state calculations within the 
Tamm-Dancoff approximation implemented in ORCA for hybrid functionals. As discussed in [51] 
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strongly modifies the energies and nature of the frontier molecular orbitals (MO) at this level of 
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From the computational point of view, the electronic, optical, and redox properties of N3, as well
as analogous ruthenium polypyridyl dyes, have been successfully characterized at the DFT/TDDFT
level of theory, employing functionals with a moderate fraction of HF exchange (e.g., B3LYP [138],
PBE0 [139], M06 [140]) and resorting to implicit solvation models [51,52,122,141–146]. The need
of including the surroundings in the calculations has been widely highlighted [142,144,147–152]:
solvent usually induces a sizeable shift (even larger than 1 eV) to higher energies of the otherwise
underestimated MLCT excitations, thus delivering calculated spectra in overall better agreement with
the experimental ones. It seems, however, that a similarly strong solvation effect does not apply to
metal-centred (MC) or inter-ligand (IL) transitions, which also behave differently with the increase
of the HF percentage in the functional [151]. On the other hand, the large size of the systems and the
presence of a large number of almost degenerate excited states of different nature [153] have clearly
limited the number of correlated wavefunction-based benchmark calculations in the gas phase reported
so far [97,151,154–157]. Recently, exploiting the efficient implementation of the second order n-electron
valence state perturbation theory (NEVPT2) method [90–92], in the ORCA program package [93],
we have reported state-of-the-art highly-correlated excited states calculations on the low-lying
transitions of the N3 dye both in vacuo and water solution, with the aim of shedding light onto
the solvation effects on the optical properties of N3. The detailed computational strategy can be found
in [59], here we only remark that, for the results reviewed here, the zero order wavefunctions were
defined by state average (SA)-CASSCF calculations including the ground and the lowest 14 excited
states (hereafter termed CAS_15). The 7 highest-occupied and the 5 lowest-unoccupied molecular
orbitals were included into the active space, resulting in a space of 14 active electrons into 12 active
orbitals. The effect of the solvent was investigated by comparing CAS_15/NEVPT2 and B3LYP
excited state calculations within the Tamm-Dancoff approximation implemented in ORCA for hybrid
functionals. As discussed in [51] and shown by the calculated TDA-B3LYP spectra in the top panel
of Figure 5, inclusion of solvent strongly modifies the energies and nature of the frontier molecular
orbitals (MO) at this level of theory, reshaping and blue-shifting the calculated absorption spectrum,
which in solution nicely reproduces the experimental one. At the B3LYP level in vacuo, the three highest
occupied almost degenerate molecular orbitals are basically localized on the NCS ligands with ca. 7%
of Ru t2g contribution, HOMO-3 is a pure NCS orbital and the inner set of quasi-degenerate HOMO-4,
HOMO-5, and HOMO-6 have a mixed NCS-Ru nature with a significant metal-d contribution, namely
58%, 67%, and 65%, respectively. The lowest-energy unoccupied molecular orbitals are π* orbitals
localized on the bipyridine ligands with sizable contribution from the carboxylic groups. Inclusion of
the solvent strongly stabilizes (by about 0.7 eV) the HOMO, HOMO-1, and HOMO-2 and markedly
modifies their character: the contribution from the ruthenium d orbitals increases from about 7% to
about 35%. The HOMO-3 is still an almost pure NCS orbital and is stabilized by 0.9 eV passing from
gas phase to water. The character and energy of the three almost degenerate HOMO-4, HOMO-5,
and HOMO-6 basically is unchanged when the solvent effects are considered. Finally, the lowest
unoccupied molecular orbitals (LUMOs) retain their bipyridine π* nature but are destabilized by about
0.3–0.4 eV. The calculated HOMO-LUMO energy gap thus increases by about 1 eV going from 1.36 eV
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in gas phase to 2.32 eV in water. According to this electronic rearrangement in solution, the two lowest
energy bands are originated by excited states with a mixed ligand-metal-to-ligand character, involving
a neat CT from mixed NCS-Ru orbitals to the π* orbitals localized on the bypyridines. This results
in a reduction of the dipole moment of the excited states compared to that of the ground states and,
thus, in a blue shift in the excitation energies going from gas phase to polar solvents [51]. The notably
improved agreement between the TDA spectrum in water and the experimental one is, however,
not simply due to this expected hypsochromic shift, as is apparent in Figure 5 (left panel). Indeed,
the change in the composition and energy of the ground state MOs gives rise to a marked rearrangement
of the energy and intensity of the states underlying the two lowest-energy bands. The low content
of Ru-d character in the three highest occupied Kohn–Sham molecular orbitals in gas phase,
which is clearly the cause of the unreliable TDA spectrum (red line in Figure 5) seems to be, in fact,
mainly related to orbital relaxation effects, which are instead, already taken into account at CASSCF
level in gas phase, where the HOMO, HOMO-1, and HOMO-2 are essentially Ru t2g orbitals [59].
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Figure 5. (top) Calculated TDA-B3LYP optical absorption spectra in gas phase (red line) and water 
solution (blue line) of the N3 complex compared with the experimental in water (black line), 
properly scaled to match the intensity of the first band of the spectrum in solution (blue line); 
(bottom) SA-CASSCF (red) and SC-NEVPT2 (blue) optical absorption spectra in gas phase (dotted 
lines) and water solution (full lines) of the N3 complex calculated by averaging over 15 states. 
Comparison with the experimental absorption spectrum is also reported. The spectra were simulated 
by a Gaussian broadening with σ = 0.17 eV. Vertical sticks correspond to the calculated excitation 
energies and oscillator strengths. Figure adapted from [59]. 

Figure 5. (top) Calculated TDA-B3LYP optical absorption spectra in gas phase (red line) and
water solution (blue line) of the N3 complex compared with the experimental in water (black line),
properly scaled to match the intensity of the first band of the spectrum in solution (blue line);
(bottom) SA-CASSCF (red) and SC-NEVPT2 (blue) optical absorption spectra in gas phase (dotted lines)
and water solution (full lines) of the N3 complex calculated by averaging over 15 states. Comparison
with the experimental absorption spectrum is also reported. The spectra were simulated by a Gaussian
broadening with σ = 0.17 eV. Vertical sticks correspond to the calculated excitation energies and
oscillator strengths. Figure adapted from [59].

To further clarify this picture, and possibly disentangle the solvatochromism from the orbital
polarization effects, we investigated the role of the solvent on the CASSCF wavefunction and NEVPT2
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excitation energies. The calculated excitation energies and oscillator strengths compared to those
obtained in gas phase, are plotted in the bottom panel of Figure 5, while band maxima and band
separation are listed in Table 3, along with the B3LYP-TDA ones. We found that the overall picture
obtained in gas phase still holds in water solution. At SA-CASSCF level, three intense states (excitations
from the set of three HOMOs, having ca. 80% of Ru t2g contribution, to the two lowest LUMOs,
localized on the bipyridines) at 1.80, 2.11, and 2.23 eV are considerably blue-shifted (ca. 0.8–0.9 eV)
by the pertubation correction at 2.79, 2.89, and 3.08 eV. At higher energies (between ca. 2.9 and
3.4 eV) four rather intense transitions appear, which still have pure metal to ligand charge transfer
nature with excitations from the three lowest HOMOs to the higher-energy LUMO+4 and LUMO+5.
These states, which give rise to the second band in the spectrum (bottom panel in Figure 5),
also undergo a destabilization (by about 0.5 eV) at NEVPT2 level, where they are calculated
at 3.34, 3.61, 3.82, and 3.92 eV, respectively. Then, state number 12, being sizably stabilized when
the perturbation correction is applied going from 4.49 eV (CASSCF) to 2.83 eV (NEVPT2), has a
strong multiconfiguration character. Finally, two weakly absorbing states (13 and 14) appear at
5.31/3.26 and 5.38/3.42 eV at the CASSCF/NEVPT2 level, respectively. As discussed for the gas
phase results, these states, which are dramatically down-shifted by the perturbation, have a mixed
ligand-metal-to-ligand nature, since they are mainly described by excitations from occupied orbitals
having a dominant NCS contribution to bypiridine-localized virtual orbitals. The cause of their sizably
overstabilization upon the perturbation correction has to be identified in core polarization effects.
The present CASSCF/NEVPT2 results, even though with the limitation of a state-averaged
optimization of the wavefunction (and, hence, of the solvent response) over states with rather different
charge distributions, predict the expected blue-shift of the absorption spectrum going from gas phase
to water solution, due to the over stabilization of the ground state in polar solvents. The effect of the
solvent, however, does not substantially change the picture delivered by the gas phase calculations:
the composition in terms of Ru-d and NCS contribution of the frontier occupied orbitals remains the
same, as well as the nature of the excited states giving rise to the two low-energy bands. In other
words, the NEVPT2 results in gas phase already provide a reliable description and assignation of the
electronic structure and low-lying excited states of N3, whereas these are achieved in a DFT/TDDFT
approach only by means of the solvent, which properly polarizes the ground state frontier MOs.

Table 3. Calculated and experimental (H2O, pH = 1) absorption maxima (Emax) of the three UV-VIS
absorption bands (I, II, and III) and the corresponding band separation (∆E) for N3. All energies are in
eV. Data are from [59].

Emax (I) Emax (II) E (III) ∆E (I-II) ∆E (II-III)

Experimental (H2O, pH = 1) 2.35 3.19 3.99 0.84 0.80

Calculated

15 states

SA-CASSCF solv 2.18 3.30 - 1.12 -
SC-NEVPT2 solv 3.24 4.13 - 0.89 -

TDA-B3LYP

Gas phase 1.72 2.70–3.20 4.17 - -
Water 2.27 a/2.39 b 2.99 a/2.95 b 4.14 a/3.98 b 0.72 a/0.56 b 1.15 a/1.03 b

a def2-SVP basis set; b def2-TZVP basis set.

Summarizing, at the CASSCF/NEVPT2 level, inclusion of the solvation effects leaves essentially
unchanged the ground state electronic structure as well as the excited states picture found in vacuo,
solely yielding the expected spectral shift to higher energies. In the light of these findings, the reason
of the unreliable TDDFT spectrum calculated in vacuo is traced back to an inadequate ground state
molecular orbital polarization, possibly coming from static correlation effects captured at the CASSCF
level of theory, which can be achieved in the TDDFT framework only by inclusion of the solvent
contribution. It is also worthwhile to stress here that our work also demonstrated that the main reason
of the appreciable blue shift of the NEVPT2 absorption spectra is the SA-CASSCF definition of the zero
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order wavefunctions, which, as a matter of fact, represents the main limitation in the application of
MRPT2 approaches to this kind of systems. In fact, to keep a satisfactory accuracy at perturbative level,
a limited number of states (15–20) has to be included in the average procedure. More importantly,
the states with a nature different to that of the majority of the states considered in the state-averaged
optimization, for instance, the ground state, are badly described and are then liable to be overcorrected
by the second-order perturbation.

3. Dye/TiO2 Interfaces in DSCs

The interaction between the dye and the TiO2 nanoparticles results into hybridization of their
molecular orbitals with the consequent change in their relative energy level alignment. To account
for this effect, the combined dye/TiO2 system has to be treated as a whole. The first crucial step
in this regard is the determination of the most favored adsorption geometry, which has a key role
in the electronic coupling between the dye and the semiconductor and, thus, in the overall electron
injection [61,158,159]. Additionally, the collective orientation of adsorbed dyes on the semiconductor
surface strictly depends on the anchoring motif, possibly affecting the rate and effectiveness of
parasitic recombination reactions [160–162]. Finally, the sensitizer’s grafting group should establish
a stable binding of the dye onto the metal oxide surface, thus ensuring long-term stability of the
cell [163–165]. Investigation of the adsorption of organic dyes onto TiO2 cluster models [161,162,166],
has largely shown that the bidentate bridging adsorption mechanism with proton transfer to a
nearby surface oxygen is the energetically favored one (Figure 6), while the monodentate anchoring
is usually predicted to be less stable, although some dependency on the employed methodology
can be outlined [166], For Ru(II) sensitizers different adsorption modes onto the TiO2 surface
can be found: while homoleptic dyes, such as N3 or N719, can adsorb on TiO2 using carboxylic
anchoring groups residing on different bipyridine ligands and hence using up to three carboxylic
groups (Figure 6c) [159,167], heteroleptic dyes, e.g., N621, C106, or Z907, necessarily adsorb via
carboxylic groups residing on the same bipyridine (two carboxylic groups, Figure 6d) [168,169].
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Figure 6. (left) Adsorption geometries of two differently-anchored organic dyes: a cyanoacrylic (a) and
a 3-acetic rhodanine (b) acids anchored dyes; (right) adsorption of two prototypical Ru(II)-complexes
with three points anchoring (c) and two monodentate points anchoring (d).

From an electronic structure point of view, when a dye is anchored to a semiconductor surface, two
effects might interplay: (i) the electrostatic (EL) effect, due to the dye dipole moment; and (ii) the effect
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of the CT between the dye and the semiconductor, which may accompany the dye/semiconductor
bond formation. It has been shown [170] that in the dye-TiO2 interaction, ground state CT effects
induce a conduction band shift which for the bidentate anchored systems is much larger than the one
calculated for the monodentate ones: this, as well as the electrostatic effect, contributes to their larger
upward conduction band shift (ca. 0.2 eV compared to 0.02 eV, respectively). It, thus, turns out that the
CT component of the CB shift may, in fact, be the dominant one (60%–70% of the total), with a relative
variability comparable to that exhibited by the electrostatic component.

Moreover, a part from the position of the TiO2 CB, having an accurate estimation of the relative
energy levels alignment is crucial when the efficiency of the dye’s excited state electron injection has to
be evaluated. The position of the dye’s LUMO with respect to the CB states determines, in fact, both
the probability (dictated by the number of acceptor semiconductor states) and the electronic coupling
for the electron transfer rate (see Equation (1) below). Here we report the calculation of the level
alignment for a prototypical organic dye (L0) adsorbed onto the TiO2 surface. As illustrated above,
the GW method correctly describes the all-organic dyes in the gas-phase, and the accurate band gap of
bulk anatase TiO2 has also been calculated (in the range 3.6–3.7 eV) [171–173]. The measured [174]
experimental optical band gap (3.25 eV) is, however, a somewhat smaller value than the GW gap that
does not contain the electron-hole interaction [58]. The calculated electronic band gap for the slab in
the dye/TiO2 system is 4.9 eV, which is 0.6 eV larger than that calculated for the bare slab. Such an
increase is due to hybridization effects, which are important when the size of the slab is comparable to
that of the dye. In Figure 7 (right panel), we report the positions with respect to the vacuum level of
the energy levels of the HOMO and LUMO of the dye and of the valence band maximum (VBM) and
conduction band minimum (CBM) of the TiO2 slab, as calculated with DFT-BLYP and with the GW
method. We report these values in the cases of the isolated dye, of the sole slab, and of the adsorbed
dye/slab system. The relative order of the levels is the same, except for the CBM of the sole slab and
the L0 HOMO of the isolated molecule, which turns out to be almost degenerate within DFT-BLYP.
For the case of the adsorbed L0 dye, the relative position of the L0 HOMO with respect to the VBM
and CBM of the TiO2 is quite different: closer to the VBM in the GW case and closer to the CBM in
the DFT-BLYP case. When the L0 dye is adsorbed on the slab, the energy levels of the VBM of the
TiO2 remains almost unchanged while the level of the molecular HOMO (which is almost unchanged
from the HOMO of the isolated molecule) is slightly pushed towards higher energies of 0.4 eV.
As the HOMO is localized on the L0 dye such effect should be ascribed to the interaction with the
image charge [175]. In this case, we register a similar shift of 0.4 eV towards lower energies. Hence,
the HOMO-LUMO molecular gap is smaller by 0.8 eV after adsorption. In addition to the energy level
alignment, it is also interesting to examine how GW and BLYP describe the hybridization between the
adsorbate and substrate states, which is another key factor determining the rate of electron injection.
In fact, according to the Newns and Anderson model [176,177], assuming that a single dye state
(LUMO) couples with the semiconductor CB, one can get an estimate of the injection rate by simply
analysing the broadening of the PDOS relative to the LUMO of the sensitizer [74]. The calculated PDOS
broadening,
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Γ (described by a Lorentzian distribution), gives an effective measure of the strength of
the electronic coupling between the sensitizer and the TiO2 substrate and can be directly translated
into electron-transfer time [176,177] by using the relation:

τ(fs) = 658/Γ(meV)

Figure 7b (left panel) displays the PDOSs calculated at the GW and BLYP levels and the
corresponding Lorentzian distributions of the L0 LUMO. Apart from the ~1 eV shift of the energy
levels discussed previously, GW and BLYP give a similar extent of LUMO broadening, GW predicting,
however, a slightly more coupled system. The calculated Lorentzian broadening values are 0.246 eV
and 0.231 eV for GW and BLYP, respectively, with corresponding estimated injection times of 2.67 fs
and 2.85 fs, respectively, in agreement with the previously-reported ultrafast injection rates [49,178].
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unoccupied states [43]. While the standard B3LYP provides the correct alignment of the 
dye/semiconductor energy levels, along with a wrong dye’s excitation energy, stronger hybrids or 
long-range corrected hybrids deliver the accurate prediction of the optical properties, but an 
unphysical picture of the interfacial energetics. These results are the consequence of a different and 
unbalanced description of the dye and semiconductor excited (or unoccupied) states, whereby 
highly conjugated dyes require a substantial amount of dynamic correlation to correct the 
inadequacy of the Kohn-Sham orbitals and deliver the correct excited state energy, while for TiO2 the 
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Concerning the simulation of excited state properties, standard TDDFT approaches (B3LYP
and PBE0) can accurately describe the optical properties and the system energy level alignment
of Ru(II)-complexes grafted on the TiO2 surfaces [43,68,179]. On the other hand, available TDDFT
methods are not capable of delivering, at the same time, a balanced description of the dye/TiO2 excited
states and of the alignment of the dye excited states with the semiconductor manifold of unoccupied
states [43]. While the standard B3LYP provides the correct alignment of the dye/semiconductor energy
levels, along with a wrong dye’s excitation energy, stronger hybrids or long-range corrected hybrids
deliver the accurate prediction of the optical properties, but an unphysical picture of the interfacial
energetics. These results are the consequence of a different and unbalanced description of the dye and
semiconductor excited (or unoccupied) states, whereby highly conjugated dyes require a substantial
amount of dynamic correlation to correct the inadequacy of the Kohn-Sham orbitals and deliver the
correct excited state energy, while for TiO2 the Kohn–Sham orbitals already represent an adequate
description of the system’s excited states.

4. TiO2/Dye/Catalyst Multiple Interfaces in DSPECs

TiO2-dye-catalyst interactions turn out to be crucial in a photoanode for water oxidation, where
grafting of the catalyst on the metal oxide surface in proximity of the sensitizer promotes a more
efficient electronic communication between the catalyst and the oxidized chromophore. Immobilization
of the catalyst may also prevent oxidation of one catalyst by a neighboring catalyst in a highly oxidized
form that could lead to decomposition of the active catalyst. In order to have fast electron transfer,
an explored alternative is also the covalent binding of the metal catalyst center and the chromophore;
the resulting dye/catalyst assembly is then grafted (through the chromophore anchoring) to the metal
oxide surface [5]. As a matter of fact, despite substantial research efforts, the effective integration of
dyes, catalysts, and semiconductors into efficient devices is still a challenge and only few complete
systems have been reported so far [180]. The first assembled molecular photoanode was reported
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in 2009 by Mollouk and co-workers [181], employing a bifunctional heteroleptic Ru(II) sensitizer
(hereafter termed dye1), showing phosphonate groups for TiO2 anchoring, and a malonate group
to bind to hydrated iridium oxide (IrO2·nH2O) nanoparticle. Under light irradiation, this type of
DSPEC produced both oxygen and hydrogen, even if poor internal quantum yield and coulombic
efficiency (about 0.9% and 20%, respectively) were reported [181]. The low performances were mainly
attributed to a slow hole transfer from the oxidized dye to the catalyst which, in turn, favored a
high back recombination from TiO2 to the oxidized dye. A fast dye’s excited state quenching by
IrO2·nH2O has also been envisioned [182] as a possible additional deactivation channel. Here we
review the recent modeling study [68] of the interfacial energetics and charge separation properties
of the TiO2/dye1/IrO2 Mallouk’s photoanode (Figure 8 top panel). The electronic structure of the
TiO2/dye1 interface (Figure 8 bottom panel) presents three almost degenerate HOMOs mainly localized
on the dye. A significant broadening of the dye LUMO is calculated, which extends ~0.5 eV above the
energy of the TiO2 CB bottom over a range of ~2 eV. This picture is suggestive of strongly coupled
electronic states, inducing fast electron injection. When dye1 is bound to the IrO2 nanoparticle,
three almost pure dye HOMOs are recognizable ~0.6–0.7 eV below the IrO2 VB edge. This energy
difference represents the maximum driving force for hole injection into IrO2. The reduced interaction
between the dye1 HOMOs and the IrO2 VB, as inferred by the negligible HOMOs broadening in the
dye-IrO2 assembly, is an indication of the weak electronic coupling associated to the dye→ IrO2 hole
transfer process [181]. The dye LUMO broadening upon interaction with the IrO2 CB states, even if
considerably weaker than that observed in the TiO2-dye assembly, is still appreciable. This latter data
is in line with the measured efficient excited state quenching observed for IrO2-bound sensitizers [182].
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Figure 8. (top) Optimized molecular structure of the dye/TiO2 (a); dye/IrO2 (b); and TiO2/dye/IrO2

(c) assemblies; (bottom) alignment of energy levels for dye1 at TiO2/dye and dye/IrO2 interfaces
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The calculated rates of the relevant interfacial electron and holes transfer processes are reported
in Table 4 Here, we briefly point out that under the weak coupling assumption, the rate constant (kinj)
for the electron transfer from a single sensitizer’s d state to the acceptor states k of the semiconductor
can be expressed using the Fermi Golden Rule through the relation:

Kinj =
2π
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∑ k|Vdk|
2
ρ(εk) (1)

where ρ(εk) is the density of semiconductor acceptor states (DOS) at the energy εk, Vdk is the electronic
coupling matrix element between the diabatic donor d state and the kth acceptor state in TiO2 and
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is Planck’s constant. The |Vdk|2ρ(εk) product is the probability distribution Γ(εk). The inverse of kinj
is the injection time τ. To calculate the electronic coupling elements, here use is made of the model
recently developed by Thoss et al. [81] and based on a full diabatization of the problem by means of
the localization of the molecular orbitals of the complex on the donor (chromophore) and acceptor
(semiconductor) moieties. This provide the diabatic semiconductor DOS and the diabatic dye’s LUMO,
as well as the explicit coupling between the dye’s LUMO and the manifold of the semiconductor
empty states. Table 4 compiles the Γ(ε), DOS and electron injection rates, τ (fs), and values extracted
at the diabatic dye HOMO/LUMO values. As is apparent, the fastest process (highest k) is the
electron injection from the dye LUMO to the TiO2 CB, which is predicted to occur on the fs time scale,
in agreement with the experimental <100 fs dynamics observed for this process [183] The hole injection
from the dye HOMO to the IrO2 VB is about three orders of magnitude less efficient. The rate of the
parasitic oxidative dye excited state quenching to IrO2 is comparable to that of hole injection. Notably,
in agreement with the ms experimental time scale reported [181] recombination to the oxidized dye is
calculated to be an extremely slow process, due to the negligible energetic overlap between the dye
HOMO and the TiO2 CB (poor DOS of acceptor states). Therefore, the quantitative picture extracted
from our calculations clearly highlights the problems associated with the functioning of the DSPEC
reported by Mollouk and co-workers [181], i.e., despite a typically fast electron injection into TiO2,
a slow hole injection into IrO2 and a comparable rate of IrO2 reduction by the photoexcited dye are
indeed predicted.

Table 4. Probability distributions, Γ(ε) (eV), and DOS (number of states/eV) calculated at the diabatic
HOMO and LUMO energies, and associated injection rates, kinj (s−1).

System Γ (eV) DOS (States/eV) kinj (s−1)

Dye* + TiO2→ Dye+ + TiO2 (e−)

dye1-TiO2 0.1128 106 1.6 × 1014

Dye* + IrO2→ Dye+ + IrO2 (e−)

dye1-IrO2 2.5 × 10−4 37 3.3 × 1011

IrO2 + Dye (h+)→ IrO2 (h+) + Dye

dye1-IrO2 4.5 × 10−4 48 1.0 × 1012

TiO2-dye1-IrO2 2.7 × 10−4 45 0.5 × 1011

TiO2 (e−) + Dye (h+)→ TiO2 + Dye

dye1-TiO2 6.3 × 10−11 1.5 × 10−9 1.0 × 104

5. Conclusions

Computational modelling of complex systems, such as dye-sensitized metal oxides surfaces, has
seen a tremendous expansion in the last few years thanks to the excellent compromise between accuracy
and computational cost reached by modern DFT and TDDFT methodologies. The calculation of redox
and optical properties of standalone sensitizers is nowadays ordinary at DFT/TDDFT level and it is
becoming affordable also for correlated ab initio methodologies, which however present the problem
of properly dealing with a high number of excited states of different charge separation character.
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Concerning the interface, the limitations of DFT/TDDFT for the description of organic dye/sensitized
metal oxides come for the well-known difficulties of TDDFT in describing charge-transfer excited
states. The use of GW and GW-BSE methods offer solutions to these shortcomings, delivering accurate
results for isolated dyes and reliable description of the dye/TiO2 interfacial energetics and optical
properties, respectively. The computational overhead for GW-based calculations is at the moment the
main limitation in its extensive application to realistic complex interfaces. We have also discussed how
the computational modelling framework developed in the last years for the DSCs can be successfully
extended to describe multiple metal oxide/dye/catalyst interfaces for water oxidation. Quantitative
analysis of the electron and hole transfer rates based on extended photoanode models, has been
shown to unveil the electronic features underlying the device functioning, opening, de facto, the way
to a computationally-driven design of more efficient materials. Full atomistic understanding of the
DSPECs is, however, still a challenge. The necessity of developing reliable models able to account for
dynamical and environmental effects, charge separation dynamics, and redox properties along the
reaction pathways is, nowadays, the most compelling challenge in this research area.
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