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Abstract: Excitonic effects in solids can be calculated using the Bethe-Salpeter equation (BSE)
or the Casida equation of time-dependent density-functional theory (TDDFT). In both methods,
the Tamm-Dancoff approximation (TDA), which decouples excitations and de-excitations, is widely
used to reduce computational cost. Here, we study the effect of the TDA on exciton binding energies
of solids obtained from the Casida equation using long-range-corrected (LRC) exchange-correlation
kernels. We find that the TDA underestimates TDDFT-LRC exciton binding energies of semiconductors
slightly, but those of insulators significantly (i.e., by more than 100%), and thus it is essential to solve
the full Casida equation to describe strongly bound excitons. These findings are relevant in the
ongoing search for accurate and efficient TDDFT approaches for excitons.
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1. Introduction

Excitons are bound electron-hole pairs arising in optically excited finite and extended systems.
Understanding and predicting excitonic properties is important for the design of novel photovoltaic
materials. For example, low exciton binding energies in perovskite solar cells promote the electron-hole
separation and thereby enhance power conversion efficiencies [1].

Many-body perturbation theory is a standard method to calculate excitonic properties of solids:
one obtains accurate exciton binding energies Eb and optical absorption spectra of semiconductors
and insulators by solving the Bethe-Salpeter equation (BSE) [2]. However, the BSE is computationally
expensive and cannot be applied to large systems.

Time-dependent density-functional theory (TDDFT) is a computationally cheaper alternative
to the BSE [3], but its application to the study of excitonic effects in solids depends on finding
good approximations to the unknown exchange-correlation (xc) kernel fxc. The random-phase
approximation (RPA) (i.e., fxc = 0), the local-density approximation (LDA), as well as any standard
gradient-corrected semilocal approximation fail to capture excitonic properties of solids due to their
inadequate long-range behavior. A very accurate xc kernel can be derived by reverse-engineering
the BSE [2,4], but it is computationally as expensive. A drastic simplification, known as the
long-range-corrected (LRC) kernel,

f LRC
xc = − α

q2 , (1)

where q is a momentum transfer in the first Brillouin zone (BZ), accounts for bound excitons in solids,
but it requires a material-dependent parameter α, a positive scalar. Inspired by the simple form (1),
a whole family of LRC-type kernels have been proposed in the literature [5–9].

Computation 2017, 5, 9; doi:10.3390/computation5010009 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://www.mdpi.com/journal/computation


Computation 2017, 5, 9 2 of 11

The performance of LRC-type kernels is typically judged by how well they appear to reproduce
experimental optical absorption spectra. The quality of a spectrum is usually assessed by inspection,
and it depends strongly on the underlying band structure and on the numerical broadening. A better
quantitative measure are exciton binding energies, which are defined as the energetic separation
between the exciton and the band gap, and can hence be precisely quantified (to within experimental
and numerical error bars). Furthermore, there is no numerical broadening in our scheme (see below),
and the dependence on the choice of band structure is much weaker.

Experimentally, Eb can be directly extracted from the optical absorption spectra for the case of
strongly bound excitons in insulators; for semiconductors, Eb can be obtained from photoluminescence
data. The direct calculation of exciton binding energies can be achieved by solving the so-called
Casida equation of TDDFT [10–12]. This approach is sometimes referred to as “diagonalizing the
exciton Hamiltonian”, and is formally similar in BSE and TDDFT. Usually, this is done within the
Tamm-Dancoff approximation (TDA), which neglects the coupling between resonant and anti-resonant
excitations. There are some recent studies investigating the performance of the TDA for the BSE [13,14];
however, the extent to which the TDA affects the solution of the excitonic Casida equation has not
been studied in detail.

Let us remark here that the TDA is a popular method in computational chemistry, see e.g., [15].
Because it is formally simpler than the full Casida formalism, it can save computer time, and it has
been used in the literature for conceptual analysis of excitation processes (for instance, in the so-called
single-pole approximation [16]). Another benefit of the TDA is that there are situations where it is
better behaved than the full Casida formalism, for example for open-shell systems away from the
ground-state equilibrium geometry, where the TDA avoids so-called triplet instabilities [17].

In this paper, we assess the TDA for TDDFT-LRC exciton binding energies of solids. First,
we introduce the various LRC-type kernels to be used in this work and examine the effect of the LRC
kernel on excitonic properties of solids. Next, we compare LRC exciton binding energies ELRC

b of solids
obtained from the Casida equation within and beyond the TDA. We discover that the TDA makes very
little difference in semiconductors, but has a significant impact in insulators. We discuss the origins,
practical implications, and limitations of our findings.

2. Theoretical Background

2.1. Dyson Equation

In linear-response TDDFT, there are two ways of calculating optical absorption spectra of periodic
systems [3]. One way is to use the interacting response function χ(q, ω), which is obtained from the
Dyson equation (all quantities are matrices depending on reciprocal lattice vectors G, G′):

χ(q, ω) = χ0(q, ω) + χ0(q, ω){v(q) + fxc(q, ω)}χ(q, ω), (2)

where v = v0 + v̄ = 4πδGG′/|q+G|2 is the Coulomb interaction, and χ0 is the noninteracting response
function. v0 is the long-range (G = 0) part of the Coulomb interaction, and v̄ is the Coulomb interaction
without the long-range part. In the optical limit (q→ 0), the head (G = G′ = 0) of χ0 is given by [18]

χ0(q) = −
4q2

(2π)3 ∑
vc

∫
BZ

dk
|〈ck| p̂ + i[VNL, r̂]|vk〉|2

(Eck − Evk)3 , (3)

where v and c are valence and conduction band indices, respectively, Ec,vk denotes Kohn-Sham
single-particle energies, p̂ is the momentum operator, r̂ is the position operator, and VNL is the
non-local part of the pseudopotential. The optical spectrum is obtained from the macroscopic dielectric
function εM:
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εM(ω) = limq→0
1

ε−1
G=G′=0

(q,ω)

= limq→0
1

1+vG=0(q)χG=G′=0(q,ω)
,

(4)

where ε−1 is the inverse dielectric function. The Dyson-equation approach is computationally relatively
cheap, and thus it is the method of choice of most excitonic calculations. However, the method does
not allow the precise determination of exciton binding energies, especially if the excitons are weakly
bound. The reason is that, in practice, calculations are done with an artificial broadening of several
tens of meV, in order to produce spectra that can be compared to experiment. This broadening will
completely wash out any excitonic peaks that are on the order of a few tens of meV, which is the case
for semiconductors. On the other hand, for insulators, where exciton binding energies are of order
1 eV or more, the peaks are sharp enough to allow exciton binding energies to be read off.

2.2. Casida Equation

Alternatively, both optical spectra and exciton binding energies can be obtained from the Casida
equation [10]: (

A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(
−1 0
0 1

)(
Xn

Yn

)
, (5)

where A and B are excitation and de-excitation matrices, respectively, Xn and Yn are nth eigenvectors,
and ωn is the nth eigenvalue. The matrix elements of A and B are

Avck,v′c′k′ = (Eck − Evk)δvv′δcc′δkk′ + FHxc
vck,v′c′k′ (6)

Bvck,v′c′k′ = FHxc
vck,v′c′k′ (7)

where FHxc = FH + Fxc is the Hartree-exchange-correlation (Hxc) matrix. In the optical limit, the matrix
elements of FHxc using the LRC kernel are given by

FHxc
vck,v′c′k′ = 2

V

(
∑G 6=0

4π−ᾱ
|G|2 〈ck|eiG·r|vk〉〈v′k′|e−iG·r|c′k′〉

−α0
〈ck| p̂+i[VNL,r̂]|vk〉

Eck−Evk

〈c′k′ | p̂+i[VNL,r̂]|v′k′〉∗
Ec′k′−Ev′k′

)
.

(8)

Here, V is the crystal volume, α = α0 6= ᾱ = 0 for f LRC
xc = −(α/4π)v0 (head-only), and α = α0 = ᾱ 6= 0

for f LRC
xc = −(α/4π)v (diagonal).
Solving the Casida Equation (5) gives a continuous distribution of energy eigenvalues that lie

above the band gap (this is the renormalized single-particle spectrum), and an isolated eigenvalue
whose energy is less than the gap (note that this is because we are using a frequency-independent
xc kernel, which yields only a single bound exciton [19]). The exciton binding energy is obtained as
the difference between the band gap and the lowest, isolated eigenvalue.

Thus, the eigenvalues of the Casida equation yield exciton binding energies in principle with
arbitrary precision, in contrast with the Dyson-equation approach, which includes an artificial
broadening, as discussed above. In addition, from the eigenvectors of the Casida equations one can
obtain oscillator strengths, which can then be used to generate optical spectra. Therefore, the Dyson
and Casida approaches are in principle equivalent, but differ in their practical implementation.
Furthermore, the Casida approach is computationally significantly more expensive because it requires
building and diagonalizing a large matrix.
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2.3. Local-Field Effect

The local-field effect (LFE) has different meanings in Dyson and Casida equations. In the Dyson
equation, the LFE means that ε−1 6= 1/ε. The Dyson equation is used to calculate optical spectra and
Bootstrap-type kernels, which will be explained in Section 4.1. In the Dyson equation for optical spectra,
the LFE is not a matter of choice and should be included. However, in the definition of Bootstrap-type
kernels, we have the freedom of whether or not to include the LFE, because Bootstrap-type kernels are
not constrained by formal derivations. In the following, we chose to include the LFE when calculating
Bootstrap-type kernels to be consistent and focus on the TDA.

In the Casida equation, the LFE means that not only the head (i.e., G = G′ = 0) term, but also
other terms are included in the summation of FHxc matrix elements in Equation (8). In the Casida
equation, the LFE is not a matter of choice and should be included.

2.4. LRC Kernel: Head-Only vs. Diagonal

Head-only and diagonal LRC kernels, with f LRC
xc = −(α/4π)v0 and f LRC

xc = −(α/4π)v,
respectively, have been used interchangeably because (i) the form of the LRC kernel is not dictated
by a rigorous formal derivation, so the two LRC kernels are largely a matter of choice; (ii) the two
LRC kernels cause negligible differences in optical spectra of semiconductors such as Si (because
ᾱ ≈ 0.2� 4π in Equation (8)) [5]. However, as we will report elsewhere [20], we found that the two
kernels yield very different results for exciton binding energies of insulators, so it is important to state
clearly which version is used. We used the head-only LRC kernel in this work; however, our findings
concerning the performance of the TDA hold for both types of LRC kernels. Note that the head-only
LRC kernel can be viewed as the diagonal one without the LFE.

2.5. Tamm-Dancoff Approximation

The TDA decouples excitations and de-excitations by setting B to zero in Equation (5). The TDA is
widely used in the BSE and the Casida equation because it cuts the computational cost significantly by
reducing the size of the exciton Hamiltonian matrix by a factor of two and changing a non-Hermitian
eigenvalue problem to a Hermitian one. However, it turns out that the full Casida equation can
be solved at the same computational cost as the TDA one [13] using a transformation that is well
known from computational chemistry [10]. Making use of time-reversal symmetry, Equation (5) can be
transformed to a Hermitian eigenvalue equation:

CZn = ω2
nZn, (9)

where
C = (A− B)1/2(A + B)(A− B)1/2,

Zn = (A− B)1/2(Xn −Yn).
(10)

2.6. Band-Gap Corrections: LDA vs. Scissors Shift

A standard method of producing band structures with the correct band gap is to use so-called
scissors operators. There are many ways of applying the scissors shift to Dyson and Casida
equations in Equations (3) and (8) and LRC-type kernels. The scissors shift can be applied to only
conduction bands (i.e., replacing Eck by Eck + ∆) or to the momentum operator (i.e., replacing p̂ by
{(Eck + ∆− Evk)/(Eck − Evk)} p̂) as well [21], where ∆ is the difference between experimental (or
GW) and DFT bandgaps.

Due to the many choices involved and the high sensitivity of the LRC kernel, the scissors shift can
cause some ambiguities (we will address these issues elsewhere in more detail [20]). In this paper our
focus is on the performance of the TDA; we wish to avoid any unnecessary distractions and therefore
simply work with uncorrected LDA band structures in both Dyson and Casida equations and in the
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construction of all xc kernels. This impacts the exciton binding energies calculated with and without
TDA in the same way (both are calculated relative to the LDA gap), so a meaningful assessment of the
TDA is possible. On the other hand, to compare optical spectra with experiment, we simply shift them
rigidly by the difference between the LDA gap and the experimental band gap.

3. Computational Details

We used the Abinit code for norm-conserving pseudopotentials, Kohn-Sham eigenvectors and
eigenvalues, and GW bandgaps within the LDA [22]. We wrote our own TDDFT code for calculating
exciton binding energies, and used the dp code for optical spectra [23]. We used experimental lattice
parameters and align the optical spectra of GaAs and solid Ne with the experimental band gaps.

In the Dyson equation for optical spectra, we used a 16 × 16 × 16 Monkhorst-Pack k-point
mesh, 4 valence bands, and 20 conduction bands for GaAs and solid Ne. In the Dyson equation for
Bootstrap-type kernels, we used a 20 × 20 × 20 (20 × 20 × 10) Γ-centered k-point mesh, 4 (8) valence
bands, 20 (20) conduction bands, and 59 (73) G vectors for GaAs, β-GaN, MgO, LiF, solid Ar, and solid
Ne (α-GaN and AlN). In the Casida equation, we used a 28 × 28 × 28 (16 × 16 × 16) {16 × 16 × 8}
[8 × 8 × 8] Γ-centered k-point mesh, 3 (3) {6} [3] valence bands, 2 (6) {9} [24] conduction bands, and 59
(59) {73} [59] G vectors for GaAs (β-GaN and MgO) {α-GaN and AlN} [LiF, solid Ar, and solid Ne].
Convergence was carefully tested throughout.

4. Results and Discussion

4.1. Overview of LRC-Type Kernels

We begin by listing five static LRC-type kernels (empirical LRC, Bootstrap, 0-Bootstrap,
RPA-Bootstrap, and JGM kernels) which were used in this work.

The empirical LRC kernel (α = 4.615ε−1
∞ − 0.213, where ε∞ is the high-frequency dielectric

constant) is the first LRC-type kernel for optical spectra of semiconductors [5]. Note that we used the
calculated ε−1

RPA instead of experimental ε−1
∞ ; further, ε−1

RPA is greater than ε−1
∞ by ∼10%.

The Bootstrap kernel f Boot
xc = ε−1/χ0, where ε−1 is the self-consistent (“bootstrapped”) inverse

dielectric function and Boot represents Bootstrap, is a parameter-free kernel for optical spectra of
semiconductors and insulators [6].

The 0-Bootstrap kernel ( f 0−Boot
xc = ε−1

RPA/χ0) is the Bootstrap kernel without bootstrapping
(i.e., only the first cycle of the self-consistent iteration is carried out). Note that α0−Boot is greater
than αBoot by ∼10% because ε−1

RPA is greater than ε−1 by ∼10%.
The RPA-Bootstrap kernel f RPA−Boot

xc = ε−1
RPA/χ̄RPA, where χ̄RPA is obtained from v̄, is a

parameter-free kernel for exciton binding energies of insulators [7]. Note that αRPA−Boot is greater than
α0−Boot by ∼10% because |χ̄RPA| is smaller than |χ0| by ∼10%.

Lastly, the jellium-with-gap-model (JGM) kernel, αJGM ≈ E2
g/n, where Eg is the band gap and n is

the electron density, is a parameter-free kernel for optical spectra of semiconductors and insulators [9].
Whereas other LRC-type kernels depend on dielectric constants, the JGM kernel depends on band gaps.

We point out again that we used LDA band gaps for all kernels instead of experimental (or GW)
band gaps, which affects exciton binding energies of insulators significantly, because our aim is not
to test the accuracy of kernels, but to study the effect of the TDA on LRC exciton binding energies.
Figure 1 shows the α values of all kernels for different materials. We see that the strength α varies from
∼0.1 (αRPA−Boot for GaAs) to ∼30 (αRPA−Boot for solid Ne).
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Figure 1. Long-range-corrected (LRC) kernel strengths α (see Equation (1)) of LRC-type kernels for
various materials.

4.2. Effect of the LRC Kernel on Optical Spectra

Next, we examine the effect of the LRC kernel on optical spectra of solids. Figure 2 shows
calculated optical spectra of GaAs and solid Ne obtained from the Dyson equation using f LRC

xc = −α/q2

(α = Aα0−Boot, where A is a scaling factor) and compares them with experimental ones. We chose
GaAs and solid Ne because they are extreme examples of semiconductors with weakly bound excitons
(Wannier-Mott type) and insulators with strongly bound excitons (Frenkel type), respectively.
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Figure 2. Experimental [24,25] and calculated optical absorption spectra of GaAs (top) and solid Ne
(bottom). For the LRC kernel, α = Aα0−Boot is used, where α0−Boot = 0.064 (25.3) for GaAs (solid Ne).
The spectra are shifted to align the LDA gap with the experimental gap Eexp

g ; the GW gap EGW
g is shown

only for comparison. A Lorentzian broadening of 0.15 eV (0.2 eV) is used for GaAs (solid Ne). Note that
A = 0.9 and 1.1 approximately correspond to Bootstrap and RPA-Bootstrap kernels, respectively.
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There are important differences between semiconductors and insulators. First, exciton binding
energies cannot be easily read off of the optical spectra of semiconductors since the exciton peaks are too
close to the gap, and the binding energies tend to be smaller than the spectral broadening; by contrast,
the binding energies can be quite accurately obtained from the spacings between experimental gaps
and excitonic peaks in the optical spectra of insulators.

Second, LRC spectra of semiconductors are insensitive to α (e.g., a 10% change in α has little effect
on the LRC spectrum of GaAs), whereas LRC spectra of insulators are highly sensitive to α (e.g., a 10%
change in α shifts excitonic peaks by ∼1 eV in the spectrum of solid Ne). These different effects of the
LRC kernel on optical spectra of semiconductors and insulators are important because they are related
to different effects of the TDA on LRC exciton binding energies of semiconductors and insulators,
which will be shown later. Note that we neglected the effect of the LRC kernel on oscillator strengths or
spectral weights (i.e., excitonic peak heights and widths) to focus on excitonic peak positions. We also
point out that, whereas we focus here on the two materials GaAs and solid Ne, we have confirmed
the generality of our conclusions for many other materials with various degrees of exciton binding
strength (see Table 1).

4.3. TDA and Exciton Binding Energies

Next, we explore the effect of the TDA on exciton binding energies. Table 1 shows exciton binding
energies of different materials obtained from the full and TDA Casida equation using LRC-type kernels.
The calculated binding energies are significantly below the experimental results. This is typical for the
performance of the different LRC kernels; in a forthcoming publication, we shall analyze this in detail
and propose a new LRC kernel which agrees well with experiment [20]. In the present study, our aim
is to reveal the differences between the TDA and the full calculation as clearly as possible, rather than
reproducing experimental data; therefore, we chose to limit our analysis to the existing unoptimized
LRC kernels, and to use LDA gaps instead of scissors corrected gaps.

Table 1. Calculated exciton binding energies (in meV) obtained from Tamm-Dancoff approximation
(TDA) and full Casida equations. Experimental exciton binding energies (in meV) are taken from
Refs. [26–33] and shown only for comparison.

Casida Equation GaAs α-GaN β-GaN AlN MgO LiF Ar Ne

Exp. 3.27 20.4 26.0 48.0 80.0 1600 1900 4080

RPA-Boot TDA 0.334 0.927 0.875 0.00 1.72 33.3 37.7 666
0-Boot TDA 0.285 0.811 0.720 0.00 1.43 22.4 10.8 128
Boot TDA 0.267 0.651 0.562 0.00 1.03 10.7 7.70 39.7
JGM TDA 0.137 0.387 0.226 0.00 0.348 9.12 12.9 5.30
LRC TDA 0.636 1.16 1.14 0.00 0.747 1.61 1.46 1.01

RPA-Boot Full 0.344 1.06 1.01 0.00 2.12 94.7 96.0 2400
0-Boot Full 0.293 0.919 0.829 0.00 1.72 43.2 13.7 612
Boot Full 0.278 0.735 0.649 0.00 1.20 14.8 9.14 101
JGM Full 0.141 0.438 0.279 0.00 0.397 12.1 17.1 5.96
LRC Full 0.670 1.33 1.32 0.00 0.855 1.89 1.54 1.06

We find that the TDA consistently underestimates the exciton binding energies compared to the
full calculation. This is consistent with the known fact that the TDA overestimates BSE eigenvalues [14].
Secondly, the magnitude of the Eb underestimation by the TDA is small for semiconductors, but large
for insulators. For instance, full and TDA ELRC

b for GaAS differ by 0.034 meV (a 5% decrease),
whereas full and TDA ERPA−Boot

b of solid Ne differ by 1734 meV (a 72% decrease).
There are two possible causes for the large Eb underestimation by the TDA for insulators:

(i) large band gaps (e.g., Eexp
g = 1.43 and 21.5 eV for GaAs and solid Ne, respectively) or (ii) large

α values (e.g., αRPA−Boot = 0.12 and 31 for GaAs and solid Ne, respectively). The large Eb



Computation 2017, 5, 9 8 of 11

underestimation by the TDA for insulators vanishes when small α values are used. For example,
full and TDA ELRC

b of solid Ne differ by 0.05 meV (a 5% decrease) because αLRC = 3.3 for solid Ne.
This indicates that the large Eb underestimation by the TDA for insulators is solely due to large α

values. The large Eb underestimation by the TDA (i.e., a ∼50% decrease) starts to appear when α ≈ 10.
The general trend is thus that the TDA performs well as long as Eb is small compared to the

gap (as is the case for semiconductors), but fails when Eb becomes comparable to the gap (as is the
case for insulators). (Interestingly, this argument can also be used to rationalize the failure of the
TDA to describe plasmons in simple metals, where the gap is zero.) These findings are consistent
with the original formulation of TDDFT for excitation energies by Petersilka et al. [16], where the
dynamical TDDFT correction to the Kohn-Sham single-particle excitation energies is expressed as
a Laurent expansion around individual poles in the response function; as long as the correction to
the single-particle spectrum is small, the lowest term in this expansion (which is the TDA) will be
appropriate.

4.4. Comparison of Dyson and Full Casida Equations

Next, we verify our finding above from the Casida equation using the Dyson equation. In principle,
Dyson and Casida equations are equivalent, so they should result in the same exciton binding energy
when they use the same kernel. Figure 3 shows exciton binding energies of solid Ne from the Dyson
equation (i.e., from Figure 2) and the full and TDA Casida equation as a function of scaling factor A.

 0

 1

 2

 3

 4

 5

 0.9  1  1.1  1.2  1.3  1.4

Ne

E
b 

[e
V

]

A

Dyson equation

Full Casida equation

TDA Casida equation

Figure 3. Calculated exciton binding energies Eb of solid Ne as a function of scaling factor A. For the
LRC kernel, α = Aα0−Boot is used, where α0−Boot = 25.3.

We find at all A values considered that the Dyson and full Casida equations indeed produce
almost identical exciton binding energies, and that the TDA underestimates ELRC

b of solid Ne by a
factor of ∼3. This indicates that it is essential to solve the full Casida equation instead of the TDA
one when testing whether LRC-type kernels designed for Dyson-equation optical spectra can produce
correct and accurate exciton binding energies of insulators.

4.5. Limitations of Our Findings

Finally, we discuss the limitations of our findings. First, our conclusions hold only for LRC-type
kernels designed for solids. We did not check the effect of the TDA on other types of methods that
account for bound excitons in solids (such as the reverse-engineered BSE kernel [2,4], meta-generalized
gradient approximations (meta-GGAs) [34] or hybrid xc kernels [12,35–38]) or are designed for
atoms and molecules (some discussion of the TDA in the latter case can be found in Ref. [39]).
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The large Eb underestimation by the TDA for insulators is partly due to the high sensitivity of the
LRC kernel, which is a unique property of the LRC kernel. Hence, it may not be as pronounced in
non-LRC-type kernels.

Secondly, we studied only eigenvalues (i.e., exciton energies), not eigenvectors (i.e., exciton states).
The impact of the TDA on oscillator strengths in optical spectra and exciton wavefunctions in real
space, which are obtained from eigenvectors, remains to be investigated. Third, we studied only
the optical limit (q → 0); the effect of the TDA on finite q values remains to be tested [13]. Lastly,
we studied the TDA only for excitons in the optical spectra of bulk materials; in nanoscale systems,
additional complications for the TDA can arise [40].

5. Conclusions

In summary, we investigated the effect of the TDA on TDDFT-LRC exciton binding energies
of solids. We found that the TDA overestimates LRC eigenvalues and thereby underestimates LRC
exciton binding energies. This is consistent with the effect of TDA on EBSE

b . We also found that the
magnitude of the ELRC

b underestimation by the TDA depends on the material: it is negligible for
semiconductors with small α values, but significant for insulators with large α values. This behavior of
the ELRC

b underestimation by the TDA is similar to that of the f LRC
xc sensitivity: LRC excitonic properties

of semiconductors are rather insensitive to α, whereas those of insulators are highly sensitive to α.
We quantitatively verified that Dyson and full Casida equations produce identical exciton binding

energies. This indicates that it is crucial to solve the full Casida equation instead of the TDA one when
studying excitonic properties of insulators using LRC-type kernels.

For now, our conclusions hold only for LRC exciton binding energies of semiconductors and
insulators. It will be of interest to study the effect of the TDA for non-LRC-type kernels, and on spectral
properties such as oscillator strengths and exciton momentum dispersions.
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