
computation

Article

An Information Technology Framework for the
Development of an Embedded Computer System for
the Remote and Non-Destructive Study of Sensitive
Archaeology Sites †

Iliya Georgiev 1,*,‡ and Ivo Georgiev 2,‡

1 Math and CS Department, Metro State University of Denver, Campus Box 38, P.O. Box 173362,
Denver, CO 80217, USA

2 Department of Computer Science and Engineering, University of Colorado of Denver, Campus Box 109,
P.O. Box 173364, Denver, CO 80204, USA; ivo.georgiev@ucdenver.edu

* Correspondence: gueorgil@msudenver.edu; Tel.: +1-303-819-2708
† This paper is an extended version of Georgiev, I.; Georgiev, I. Key-Value Method for eScience Data Based on

Global Key Space. In Proceedings of the International Conference ICAT’14, Antalya, Turkey, 12–15 August
2014 and Georgiev, I.; Georgiev, I. Prototyping Embedded System for Archaeological Objects of “No-Man”
Type—Some Design Problems. In Procedings of the International Conference EpsMO-15, Athens, Greece,
8–11 July 2015.

‡ The authors contributed equally to this work.

Academic Editor: Demos T. Tsahalis
Received: 16 December 2016; Accepted: 29 March 2017; Published: 5 April 2017

Abstract: The paper proposes an information technology framework for the development of an
embedded remote system for non-destructive observation and study of sensitive archaeological sites.
The overall concept and motivation are described. The general hardware layout and software
configuration are presented. The paper concentrates on the implementation of the following
informational technology components: (a) a geographically unique identification scheme supporting
a global key space for a key-value store; (b) a common method for octree modeling for spatial
geometrical models of the archaeological artifacts, and abstract object representation in the global key
space; (c) a broadcast of the archaeological information as an Extensible Markup Language (XML)
stream over the Web for worldwide availability; and (d) a set of testing methods increasing the fault
tolerance of the system. This framework can serve as a foundation for the development of a complete
system for remote archaeological exploration of enclosed archaeological sites like buried churches,
tombs, and caves. An archaeological site is opened once upon discovery, the embedded computer
system is installed inside upon a robotic platform, equipped with sensors, cameras, and actuators,
and the intact site is sealed again. Archaeological research is conducted on a multimedia data stream
which is sent remotely from the system and conforms to necessary standards for digital archaeology.

Keywords: information technology framework; embedded system; remote sensing; robotic
surveillance; geographically unique identification; global key space; octree modeling; self-testing;
Extensible Markup Language (XML) stream; non-destructive archaeology; digital archaeology

1. Introduction

Classical archaeology has two deleterious characteristics [1]. First, it is destructive. The originally
buried site and the artifacts inside in the ground are dismounted or destroyed by the excavation
process. Second, restricted access to the site and the obtained data limits the archaeological research to
the excavating team. When the privileged team publishes their findings, research, and analysis, the

Computation 2017, 5, 21; doi:10.3390/computation5020021 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://www.mdpi.com/journal/computation

Computation 2017, 5, 21 2 of 17

data and records are often not provided in full to the worldwide archaeological community due to
special interests or technical difficulties.

In this paper, we consider a non-destructive approach to making the site available for study,
continuous open access to the live observational data, as well as perpetual open access to the archived
data and research results. Non-destructive archeology is a methodology for the long-term study
of human evolution and history based on absolute preservation of the archaeological record ‘as is’.
The cases where our approach is applicable include tombs, sacrificial sites, underground churches,
and similar sites where general access would risk exposure to harmful environmental factors or
looting, or, in the cases of active holy places, where access is restricted to people of the faith. Some
examples are hidden cave churches and pyramids in the Middle East, unopened Thracian tombs in the
Balkans, and various sites buried under the sands in North Africa. In many cases, these sites have
been preserved for hundreds or thousands of years and present an increasingly rare opportunity for
long-term non-destructive study of the sites and the artifacts inside them.

We have designed several key components of an embedded computer system that can be used for
non-destructive archaeology. It publishes the live and archived archeological data on the Web for open
cooperative research. A worldwide community of loosely-connected archaeology groups can employ
a range of computational methods to the data and take their research in various directions.

In Section 2 we briefly cover the general architecture of the embedded system and the design
considerations that led to it. An account of the complete design and implementation process is
beyond the scope of this paper. In the rest of the sections we concentrate on the specific design
decisions we have made to address four foundational elements of non-destructive archaeology: (1) data
identification for worldwide distribution; (2) data repository structure; (3) mapping of global and local
data structures for distributed analysis; and (4) robust self-testing strategy for increased fault tolerance
of the physically inaccessible embedded system.

Data identification is addressed in Section 3, where we present a theoretically and practically
proven algorithm for the generation of identifiers unique in both space and time.

The data repository structure is described in Section 4. We claim that the key-value data structure
is the most useful model for archaeological data collections. The key is a generated unique identifier of
the value. The value can be arbitrary: various direct data points, references to remote data sources, etc.
The uniqueness of the keys implies a global virtual key space. We structure the keys in a hypercube
and use an octree topology to implement the abstract key-value store. Every scientific group can
generate unique keys and store data using a separate subspace of the global key space. Conveniently,
octree modeling is also used for spatial enumeration in a geometrical model of archaeological sites and
artifacts, achieving a seamless integration of abstract and geometrical representation for global open
archaeological analysis.

To enable each group to perform analysis in their own local workspace, global and local data
structures must be mapped. In Section 5, we describe a standardization of this mapping that allows
different groups to access the same data while they work on different tasks. All data pertaining to
the same artifact is encoded in Extensible Markup Language (XML) vocabulary which segregates the
original data (generated by the embedded system) and the various interpretations of the research
teams. The data is delivered as an XML stream.

In Section 6 we address the need for augmented self-testing capabilities necessitated by the
physical isolation of the embedded system. We upgrade a standard testing framework with specific
approaches, diversifying and refining the error models.

Section 7 briefly explains an experimental scenario where we apply our non-destructive
methodology to the exploring of Thracian tombs. A geometrical model is created for the tomb’s interior,
including artifacts. Every object is uniquely identified and presented in the global abstract octree.
The archaeologists merge collected data and their interpretations using the proposed XML vocabulary.

Computation 2017, 5, 21 3 of 17

2. Embedded System Configuration

While this paper focusses on our contributions to the design and implementation of key software
components of the system for non-destructive archaeology, we present here an overview of the full
system configuration, hardware and software, to provide clear context for the following sections.
We have strived to use only existing and readily available technology components in our design, and
we have met this goal in all but a few details which we expect will be resolved naturally by predictable
advances in modern technology such as autonomous electric vehicles, the Internet of Things (IoT), and
solar power. Our practical scenario, described more extensively in Section 8, is an excavated Thracian
tomb, which has remained sealed for tens of centuries, which is briefly opened to install the system,
and which is re-sealed promptly to minimize interior degradation due to exposure to the outside
environment. The system, the functions of which are implemented and fully tested before installation,
remains sealed inside the tomb and operational over a long period of time. The embedded system was
first presented in [2], and is designed to fit a wide range of archaeological sites which must remain
sealed to the outside world.

2.1. Hardware Configuration

The hardware of the system has four components. Two of them are inside the tomb: a platform for
archaeological observation and research, and a battery charging and swapping station close to the door.
Depending on the size of the tomb, the platform might be either stationary, for a small tomb, or mobile.
For a mobile platform, the battery charging station should have a mechanism for swap the barriers of
the platform. The other two components are outside the tomb: an external computer, connected to
the Internet, and a solar-cell power charging station for the batteries inside the tomb. If the tomb’s
door and walls cannot be drilled to pass cables through to the inside components, communication and
power transfer must be done via magnetic induction (MI). Our research shows that currently there
are no off-the-shelf components that can power match the robotic manipulators of the observational
platform, the batteries, two sides of the MI charging station, and the solar station, but we expect them
to appear on the market shortly.

The observational platform must bear the weight of all other observational components: a camera
array, an environmental sensor array, one or two robotic arms, and the embedded computer with any
extra peripherals that are necessary for the particular archeological application. Whether the platform
is stationary or mobile, it must avoid damage to any artefacts that might be found on or below the
surface of the floor. A mobile platform can be either a rover or a walker, with dynamic load-balanced
wheels or legs, and navigational sensors to help avoid artefacts and obstacles.

The camera array must contain all necessary cameras (detecting frescos or writing beneath the
outer surface of the walls and ceiling requires special cameras) and lighting devices (including halogen
lamps and laser pointers). This array might need to rotate freely in all directions, especially for a small
tomb with a stationary platform, and might also need to extend away from the platform to create
composite images without occlusion from the platform or the other mounted components. Therefore,
the camera array might need to be mounted on its own robotic arm.

The manipulator robotic arms must be mounted close to the camera array without significantly
limiting its degrees of freedom. Each arm must have wide dynamic grip range so that it can pick
up a wide variety of artefacts for examination by the camera array. Optionally, the platform might
house an examination plate with additional optical (e.g., microscope) or mechanical (e.g., rotary brush)
components where the arms can place an artifact for closer study.

The environmental array can be mounted away from the moving components. Its main role is
to monitor the health of the interior of the tomb (e.g., detect an imperfect seal). Probably the most
important function is, however, the monitoring of the internal temperature. To avoid degrading frescos
and artefacts, the functioning of the inside components of the system should be limited to keep the
temperature constant or within a very narrow range above the original temperature of the tomb.

Computation 2017, 5, 21 4 of 17

The system’s arms, sensors, manipulators, and other peripherals are controlled by an embedded
system with a multi-core system on a chip, analog-to-digital converters, digital signal processors,
shared main memory, non-volatile secondary memory, and a network card. Depending on the
configuration of the internal portion of the battery station and the mobility of the observational
platform, the network card might need to be wireless. The internal platform is connected to the
external computer, shielded from electromagnetic interference and environmental exposure, which, in
turn, is connected to the Internet through a wired, optical, WiFi, mobile, or satellite link (e.g., Iridium,
Inmarsat), depending on the remoteness of the tomb. Figure 1 is a diagram of the overall hardware
architecture of the system.

Computation 2017, 5, 21 4 of 17

shared main memory, non-volatile secondary memory, and a network card. Depending on the
configuration of the internal portion of the battery station and the mobility of the observational
platform, the network card might need to be wireless. The internal platform is connected to the
external computer, shielded from electromagnetic interference and environmental exposure, which,
in turn, is connected to the Internet through a wired, optical, WiFi, mobile, or satellite link (e.g.,
Iridium, Inmarsat), depending on the remoteness of the tomb. Figure 1 is a diagram of the overall
hardware architecture of the system.

Figure 1. Configuration of the prototype system.

2.2. Software Configuration

The embedded system runs an embedded operating system. Because of the large number of
robotic components, and especially if the platform itself is mobile, the Robot Operating System (ROS)
might be the best choice. The latter should support all robotic component drivers, dynamic load-
balancing for the rover or walker, path navigation, obstacle avoidance, battery management, and
various other constrained mobility requirements specific to the tomb. It should also support the
camera array, especially with camera-calibration procedures, volumetric modeling, and proper
positioning to reduce distortion and occlusion during composite imaging. Finally, it should support
the full range of artifact manipulation, examination, study, and preservation.

The software configuration also supports a live network connection for reception of commands
and instructions and the uploading of data, long-term storage of accumulated data in case of network
connectivity loss, remote testing, verification, rebooting, updating (of ROS and software
components), and other control procedures.

3. Generating of Global Identifiers of the Artifacts

Each datum in our non-destructive methodology must be uniquely identified in space and time
for worldwide distribution. We have devised a method which generates each key by cryptographic
hashing based on the Advanced Encryption Standard (AES)—Rijndael [3]. We use double AES
hashing, ensuring that no two scientific facts will be assigned the same key regardless of location or
time. The method is described in [4] where the latest development results are presented. Here we
briefly review the main phases of the key generation.

The method starts with some scientist-assigned visible name which is padded with extra bits to
a chosen key length of 256 bits. AES cryptographic hashing is applied to the padded string using
cipher-block chaining but discarding intermediate cipher text blocks. In the initial step the padded
visible name serves as the cipher key used to encrypt a known text pattern, which is chosen to be all
0 s. This yields a one-way function of the cipher key. The last cipher text block is the hash value.

The next phase is to achieve absolute theoretical and practical uniqueness. A randomization
function applied to the visible name generates a string with very high degree of randomness. The
function combines static and dynamic attributes to produce unique values. The static attributes are

Figure 1. Configuration of the prototype system.

2.2. Software Configuration

The embedded system runs an embedded operating system. Because of the large number of
robotic components, and especially if the platform itself is mobile, the Robot Operating System
(ROS) might be the best choice. The latter should support all robotic component drivers, dynamic
load-balancing for the rover or walker, path navigation, obstacle avoidance, battery management, and
various other constrained mobility requirements specific to the tomb. It should also support the camera
array, especially with camera-calibration procedures, volumetric modeling, and proper positioning to
reduce distortion and occlusion during composite imaging. Finally, it should support the full range of
artifact manipulation, examination, study, and preservation.

The software configuration also supports a live network connection for reception of commands
and instructions and the uploading of data, long-term storage of accumulated data in case of network
connectivity loss, remote testing, verification, rebooting, updating (of ROS and software components),
and other control procedures.

3. Generating of Global Identifiers of the Artifacts

Each datum in our non-destructive methodology must be uniquely identified in space and time
for worldwide distribution. We have devised a method which generates each key by cryptographic
hashing based on the Advanced Encryption Standard (AES)—Rijndael [3]. We use double AES
hashing, ensuring that no two scientific facts will be assigned the same key regardless of location or
time. The method is described in [4] where the latest development results are presented. Here we
briefly review the main phases of the key generation.

The method starts with some scientist-assigned visible name which is padded with extra bits
to a chosen key length of 256 bits. AES cryptographic hashing is applied to the padded string using
cipher-block chaining but discarding intermediate cipher text blocks. In the initial step the padded

Computation 2017, 5, 21 5 of 17

visible name serves as the cipher key used to encrypt a known text pattern, which is chosen to be all
0 s. This yields a one-way function of the cipher key. The last cipher text block is the hash value.

The next phase is to achieve absolute theoretical and practical uniqueness. A randomization
function applied to the visible name generates a string with very high degree of randomness.
The function combines static and dynamic attributes to produce unique values. The static attributes are
selected from a snapshot of certain system parameters at the time of the first call of the randomizing
function, while the dynamic ones change every time the function is called. The resulting random string
is input to the AES hash function using the hash value obtained in the first phase. This time the cypher
text block produced by the last step is the unique datum key.

Using the theoretical analysis in [5] we estimated the collision degree, which depends on the
Hamming distance between the randomized strings. If the same visible name is used as input, the
collision degree is slightly more than 1 out of 2256 generated keys, which is enough reason to consider
the generated keys geographically and temporally unique. At the implementation level, we ran the key
generation with the same two-letter visible name 30 million times and there were no duplicate keys.

4. Common Method for Key-Value Data Modeling and Geometric Modeling

Octree data structures are very well suited for modeling in 3D-space and so octree modeling is a
popular technology in design and manufacturing [6,7]. We have used octrees for several projects (e.g.,
airport grounds and runway modeling) prior to the non-destructive archaeology and accumulated
significant codebase and experience. This section describes our use of octree modeling for both the
spatial modeling of the archaeological sites and artifacts and for creating a global key space for the
archaeological data. The integration of the abstract key-value space and the physical space of the
objects of interest has led to a natural overall octree model for the non-destructive archaeology domain.

4.1. Octree Modeling

Octrees represent three-dimensional cubes divided into a hierarchy of spatial grids. The top-level
grid (aka level-1 grid) splits the cube into eight sub-cubes called octants. Every octant (parent) is
further subdivided into eight children, recursively forming a tree. Every octant has an index in its
parent cube, which is an ordered triple of its displacement (0 or 1) from the ZYX origin of the parent
(Figure 2). The highlighted octant has displacement of 1 in the X dimension, 1 in the Y dimension, and
0 in Z dimension, so its binary index is 0112 = 310.

Computation 2017, 5, 21 5 of 17

selected from a snapshot of certain system parameters at the time of the first call of the randomizing
function, while the dynamic ones change every time the function is called. The resulting random
string is input to the AES hash function using the hash value obtained in the first phase. This time
the cypher text block produced by the last step is the unique datum key.

Using the theoretical analysis in [5] we estimated the collision degree, which depends on the
Hamming distance between the randomized strings. If the same visible name is used as input, the
collision degree is slightly more than 1 out of 2256 generated keys, which is enough reason to consider
the generated keys geographically and temporally unique. At the implementation level, we ran the
key generation with the same two-letter visible name 30 million times and there were no duplicate
keys.

4. Common Method for Key-Value Data Modeling and Geometric Modeling

Octree data structures are very well suited for modeling in 3D-space and so octree modeling is
a popular technology in design and manufacturing [6,7]. We have used octrees for several projects
(e.g., airport grounds and runway modeling) prior to the non-destructive archaeology and
accumulated significant codebase and experience. This section describes our use of octree modeling
for both the spatial modeling of the archaeological sites and artifacts and for creating a global key
space for the archaeological data. The integration of the abstract key-value space and the physical
space of the objects of interest has led to a natural overall octree model for the non-destructive
archaeology domain.

4.1. Octree Modeling

Octrees represent three-dimensional cubes divided into a hierarchy of spatial grids.
The top-level grid (aka level-1 grid) splits the cube into eight sub-cubes called octants. Every octant
(parent) is further subdivided into eight children, recursively forming a tree. Every octant has an
index in its parent cube, which is an ordered triple of its displacement (0 or 1) from the ZYX origin
of the parent (Figure 2). The highlighted octant has displacement of 1 in the X dimension, 1 in the Y
dimension, and 0 in Z dimension, so its binary index is 0112 = 310.

(a) (b)

Figure 2. Identifiers of the octree octants. (a) Top-level grid split into 8 octants; (b) Octant with
displacement z = 0, y = 1, x = 1 and corresponding index 0112.

Following such numbering, every octant has a unique identifier that is a vector of triples. A triple
represents the cubes from all levels to which a given octant belongs. For example, if the modelling
resolution has 5 levels, the identifier has 5 binary triples:

Level 5 Level 4 Level 3 Level 2 Level 1
001 101 111 100 011

Figure 2. Identifiers of the octree octants. (a) Top-level grid split into 8 octants; (b) Octant with
displacement z = 0, y = 1, x = 1 and corresponding index 0112.

Computation 2017, 5, 21 6 of 17

Following such numbering, every octant has a unique identifier that is a vector of triples. A triple
represents the cubes from all levels to which a given octant belongs. For example, if the modelling
resolution has 5 levels, the identifier has 5 binary triples:

Level 5 Level 4 Level 3 Level 2 Level 1

001 101 111 100 011

The identifier 001 101 111 100 011, read from right to left, represents an octant that is a part of
cube 3 on level 1, cube 4 on level 2, cube 7 on level 3, cube 5 on level 4, and is itself cube 1 on level 5.
The octant identifiers have variable size that depends on the octree depth (chosen precision) at each
leaf. For example, the identifier 100 111 presents the 4-th child of the 7-th top-level parent.

4.2. Octree Key-Value Data Modeling

We use an octree to represent a data space with hypercube topology. Each datum is a key-value
pair. Keys are interpreted as direct octree node address. The entire key space can be covered by
straightforward octree traversal. A hypercube with 256-bit keys provides a global virtual address
space for the non-destructive archaeology domain.

The values in the key-value pairs are scientific data or data references. The type and interpretation
of a value depends on the archaeological application. Values are usually stored in the leaf nodes of
the octree. However, this results in an extremely sparse tree where intermediate nodes are only used
as paths to the leaves. We avoid such emptiness by implementing a simple feature allowing us to
store data in the intermediate nodes as well. We use keys with leading zeros (e.g., 000) as keys to
intermediate node by simply truncating the leading zeros. For example, a key 000 . . . 000 100 001 is not
considered a leaf key, but the key for the 4-th node on level 2, whose parent is the 1-st node on level 1.

The key with all 0s (000 ... 000) is the key for the root of the tree, where the value contains profile
information for the archaeological application (description, funding, scientist names, IP address, etc.).
Due to the global uniqueness of the keys, any two partial octrees are non-overlapping and can be
merged by straightforward mapping in the global address space. This allows a virtually infinite
number of separate archaeological projects to use the global space by simply being assigned a unique
sub-tree root key. The inherent sparseness of the full theoretical address space of 2256 key-value pairs
makes its reification both unfeasible and unnecessary. Our approach uses the benefits of the abstract
octree key space (global uniqueness, straightforward merging, etc.), but our implementation uses
conventional lookup tables to access the nodes. Each archaeology team can use the collections support
of the own choice of programming to manipulate their sub-space.

4.3. Clustering Algorithm

Scientific results and artefacts are highly interconnected. A researcher often needs to retrieve all
objects related to a given object, at once. We have implemented fast retrieval for objects clustered in
the octree sub-space, where a cluster is a linked list of object nodes.

Our algorithm for clustering (partly based on our previous work [8]) calculates the relative
interconnectivity of the data objects (values) in the nodes. The connections (references) between data
objects are represented as a list, containing n-tuples of connected data objects (nodes). The first array
member is some name of a reference (connection). The next members are the identifiers (unique keys)
of the connected nodes. The more references a node has to others and is referenced from others, the
higher its interconnectivity.

Several analytical representations of interconnectivity could be found as criteria for data clustering.
Our approach is based on the calculation of the weight Wj of each tuple j, represented as a reciprocal
value of the number of keys in the tuple. For example, if tuple j contains three keys, its weight
will be: Wj = 1/Nj = 1/3, where Nj is the number of members in the tuple j. Correspondingly,
the interconnectivity IC(Xi) is calculated by adding the weights of the references, in which the key

Computation 2017, 5, 21 7 of 17

participates. Then, the interconnectivity coefficient of a node i is the sum of the tuple weights, where
the key of the node participates:

IC(Xi) =
M

∑
j=1

Wi
j ,

where Wj
i is the weight of the tuple I, in which the key i participates, and M is the number of references

(connections) of the key i.
Without increasing the complexity, we use the next formula for the interconnectivity of data

object Xi:

IC(Xi) = (
M

∑
j=1

Kj/Nj)/(
P

∑
r=1

Kr/Nr)

where Xi signifies key i, M is the number of the references from key i, Nj is the number of members
in a tuple j, where i participates, P is the number of all tuples, and Kj is a regulatory coefficient for
heuristic parameterization of the node interconnectivity according to other criteria, allowing tuning of
this formula on a node-by-node basis.

The denominator sum can be pre-computed and is a normalization factor. Such an approach
has two objectives. First, only integer arithmetic is used, which keeps the algorithm fast. Second,
it significantly simplifies the insertion of some regulatory coefficients Kj. Different normalization could
be used, for example, the sum of max and min interconnectivity.

The kernel of the separate clusters could be selected by the scientists manually according to
different preferences. However, here we propose automatic selection based again on the relative
interconnectivity. The main principle of kernels selection is to have minimal relative interconnectivity
between kernels. The first kernel will be the node with the greatest IC(Xi). After that, the relative
interconnectivity (RIC) of all other nodes with the first kernel is calculated. The second kernel chosen
will be the node with minimal RIC with the first kernel and maximal interconnectivity among all
currently non-clustered nodes.

Again, the relative interconnection is calculated regarding selected kernels and all other nodes in
order to choose the next kernel. This is repeated until some pre-defined number of kernels is reached.

The node with greatest relative interconnectivity with some cluster is partitioned to this cluster.
During the same step, some objects are assigned to every other cluster. After that, all RIC are
recalculated and again a node is partitioned to every cluster. This procedure can be repeated to
some degree of clustering.

More precise clustering could be achieved by calculating two relative interconnectivities for every
non-assigned node:

• First, the interconnectivity value to the nodes in cluster i;
• Second, the interconnectivity value to the nodes in all other clusters except the considered cluster i.

The node with the lowest RIC, calculated by the second rule, is assigned to cluster i. If the
calculated RIC by the second rule is the same for several nodes, the selection is made according to the
maximum RIC calculated by the first rule. After every selection of a node, the RIC coefficients should
be calculated again. This loop continues until clustering completion.

4.4. Octree Geometrical Modelling

We use octree spatial occupancy enumeration as a basis for the formal representation of
three-dimensional (3D) for (approximate) modelling of site volumes and artefacts in the physical
space. Every 3D object is defined fully in the modelling cube. Its description is a family of k + 1 ordered
pairs {P, Ei}, where 0 ≤ i ≤ k (k is the maximum octree depth), P is a finite set of properties, and Ei is
the set of the octants (E0 represents the outermost modelling cube). The properties P characterize the
modelled object and can be geometrical, physical, or any other kind. The octant occupancy parameter

Computation 2017, 5, 21 8 of 17

value set is {Empty (E), Partly Occupied (PO), Fully Occupied (O)}. The octants in Ei are octree nodes
with the following characteristics:

• the root of the octree is on level 0 and represents the whole modelling cube;
• all other nodes can have 8 children which are an ordered sequence indexed from 0 to 7;
• the edges of the tree denote a parent–child relationship;
• every octant has only one edge to its parent;
• all nodes with the occupancy parameter Empty or Fully Occupied are leaves of the tree;
• all nodes with occupancy parameter Partly Occupied are internal nodes and have 8 children.

Figure 3 illustrates an octree for the spatial approximation of a simple 3D object up to level 2.
More levels can be added for more precise (granular) approximation.

Computation 2017, 5, 21 8 of 17

• all nodes with occupancy parameter Partly Occupied are internal nodes and have 8 children.

Figure 3 illustrates an octree for the spatial approximation of a simple 3D object up to level 2.
More levels can be added for more precise (granular) approximation.

The octree implementation requires fast algorithms for manipulation of the tree, calculations of
distances, and recognition of surfaces. The basic data structure for these algorithms is a matrix of
octant identifiers and properties. If there is only one identifier in a matrix row, it represents an octant
on level 1, if there are two identifiers the octant is from level 2, and so on. The empty octants are not
presented in the matrix. Distances are calculated using integer arithmetic without multiplication or
division. The matrix for the octree in Figure 3 is given in the table to the right.

Figure 3. Spatial approximation of an object by a two-level octree. (left) Spacial approximation of 3D
object; (right) Matrix of octant identifiers and properties for the approximated object.

Every octant has an origin point that is x = 0, y = 0, z = 0 in the octant’s local coordinate system.
Only the origin point of the modelling cube (the root) has world coordinates. For all geometrical
calculations in the octree, we need the world coordinates of the origin point and the length of the side
of the outermost cube.

5. XML Distribution of Archaeological Information

5.1. Core XML Vocabulary

XML provides a tree-like data structure and search ability for global data distribution that allows
different teams to retrieve and maintain sub-trees according to different interests and application
goals. Archaeological information is both various and dynamic. Over time, the data for a single object
accumulates continuously with new reports, carbon dating, laboratory analyses, and geophysical
measurements.

The embedded system formats the data it collects as XML documents in a XML steam, which
are easy to parse, validate, and transform into various end-user formats. By filtering the markup, the
software client of different archaeological teams or even individual team members can access only
the data of interest, sliced along physical, temporal, and abstract informational dimensions. For
example, a sedimentological specialist may retrieve and extract only the sub-trees that deal with
specific soil probes and analyses by colleagues.

Our design decision to generate and distribute non-destructive archaeology data as XML
documents is motivated by several considerations:

• analysis of the discussion on structuring XML for archaeological surveys and reports contained
in [1,9];

• emerging consensus from private consultations with domain experts on the infeasibility of
creating and maintaining a universal archaeological XML vocabulary, and strong preference for
largely independent XML vocabularies per site, team, and research goal;

• recurrent difficulty in distinguishing original archaeological data from (sometimes commercially
manipulated) interpretive analysis;

• strong criticism of the practise of publishing only interpreted data as the sole format of
dissemination of archaeological knowledge.

These factors boiled down to two concrete requirements for our XML documents:

Figure 3. Spatial approximation of an object by a two-level octree. (left) Spacial approximation of 3D
object; (right) Matrix of octant identifiers and properties for the approximated object.

The octree implementation requires fast algorithms for manipulation of the tree, calculations of
distances, and recognition of surfaces. The basic data structure for these algorithms is a matrix of
octant identifiers and properties. If there is only one identifier in a matrix row, it represents an octant
on level 1, if there are two identifiers the octant is from level 2, and so on. The empty octants are not
presented in the matrix. Distances are calculated using integer arithmetic without multiplication or
division. The matrix for the octree in Figure 3 is given in the table to the right.

Every octant has an origin point that is x = 0, y = 0, z = 0 in the octant’s local coordinate system.
Only the origin point of the modelling cube (the root) has world coordinates. For all geometrical
calculations in the octree, we need the world coordinates of the origin point and the length of the side
of the outermost cube.

5. XML Distribution of Archaeological Information

5.1. Core XML Vocabulary

XML provides a tree-like data structure and search ability for global data distribution that
allows different teams to retrieve and maintain sub-trees according to different interests and
application goals. Archaeological information is both various and dynamic. Over time, the data
for a single object accumulates continuously with new reports, carbon dating, laboratory analyses, and
geophysical measurements.

The embedded system formats the data it collects as XML documents in a XML steam, which
are easy to parse, validate, and transform into various end-user formats. By filtering the markup, the
software client of different archaeological teams or even individual team members can access only the
data of interest, sliced along physical, temporal, and abstract informational dimensions. For example,
a sedimentological specialist may retrieve and extract only the sub-trees that deal with specific soil
probes and analyses by colleagues.

Our design decision to generate and distribute non-destructive archaeology data as XML
documents is motivated by several considerations:

Computation 2017, 5, 21 9 of 17

• analysis of the discussion on structuring XML for archaeological surveys and reports contained
in [1,9];

• emerging consensus from private consultations with domain experts on the infeasibility of creating
and maintaining a universal archaeological XML vocabulary, and strong preference for largely
independent XML vocabularies per site, team, and research goal;

• recurrent difficulty in distinguishing original archaeological data from (sometimes commercially
manipulated) interpretive analysis;

• strong criticism of the practise of publishing only interpreted data as the sole format of
dissemination of archaeological knowledge.

These factors boiled down to two concrete requirements for our XML documents:

• a basic schema consists of a minimal core XML vocabulary open to the community for iteration
and extension through specialized in-depth vocabularies;

• each embedded system disseminates only original data in the XML core vocabulary while different
teams attach their own research, analysis, interpretations, and conclusions.

The XML core vocabulary (Figure 4) has a root that describes the data of the whole site (buried
church, tomb, or other). The children of the root (first-level nodes of the XML tree) are the discovered
artefacts or other important materials.

Computation 2017, 5, 21 9 of 17

• a basic schema consists of a minimal core XML vocabulary open to the community for iteration
and extension through specialized in-depth vocabularies;

• each embedded system disseminates only original data in the XML core vocabulary while
different teams attach their own research, analysis, interpretations, and conclusions.

The XML core vocabulary (Figure 4) has a root that describes the data of the whole site (buried
church, tomb, or other). The children of the root (first-level nodes of the XML tree) are the discovered
artefacts or other important materials.

Figure 4. Extensible Markup Language (XML) core tree example.

Every first-level node has a name and a globally unique identifier. It contains a description and
references. Every first-level node has two children:

• Data, which is a collection of the primary original information that is selected by the embedded
system (images, probes, etc.).

• Interpretation, which could be a subtree containing the results of the archaeological research.
Every interpretation subtree can be written in some specific XML vocabulary.

The markup of the tree presented on the figure is the following:

 <Thracian Tomb>
 <Fresco ID1>
 <Data> …
 </Data>
 <Interpretation> …
 </Interpretation>
 </Fresco ID1>
 <Ceramic IDx>
 <Data> …
 </Data>
 <Interpretation>….
 </Interpretation>
 </Ceramic IDx>
 …….
 </Thracian Tomb>

Figure 4. Extensible Markup Language (XML) core tree example.

Every first-level node has a name and a globally unique identifier. It contains a description and
references. Every first-level node has two children:

• Data, which is a collection of the primary original information that is selected by the embedded
system (images, probes, etc.).

• Interpretation, which could be a subtree containing the results of the archaeological research.
Every interpretation subtree can be written in some specific XML vocabulary.

The markup of the tree presented on the figure is the following:

� <Thracian Tomb>
� <Fresco ID1>
� <Data> . . .
� </Data>

Computation 2017, 5, 21 10 of 17

� <Interpretation> . . .
� </Interpretation>
� </Fresco ID1>
� <Ceramic IDx>
� <Data> . . .
� </Data>
� <Interpretation>
� </Interpretation>
� </Ceramic IDx>
�
� </Thracian Tomb>

5.2. XML Streaming

Our research proposes an abstract view of archaeological data and their interpretation as an
XML stream. Different Web applications use policies to extract from the stream the information that
they need. Archaeological XML documents are distributed openly throughout the archaeological
community but they are consumed primarily by those teams and individuals who are researching a
site under real-time observation by an embedded system. Subscription models and access policies
may be put in place depending on the funding and authority of the observed site.

We model the set of archaeological documents as an abstract XML stream. The stream provides
access control and references a document database. Metadata fully annotate the data contents of
each part of the stream, including access rights and encryption status. Some XML documents may
be individually encrypted. Every client application can use web services to get the stream but can
decrypt only the parts that are accessible to an assigned role (archaeologists, museum administrator,
etc.). After authentication and proof of permissions, the client opens the metadata and makes available
the needed versions of the required documents. The client has continuous open access for the duration
of the session.

The stream model provides three system-architectural advantages. First, since the stream
exists independently from the local archaeologist’s systems, it facilitates the storage and processing
requirements on them. Second, since the stream contains the minimum sufficient data and control for
every role in the research group, it enables complete modularization and distribution of the provided
services. Third, based on the above two requirements mentioned in the previous section, it allows the
continuous in-vivo evolution of the research process and eliminates step-wise system upgrades.

5.3. Replication with Local Databases

Access control to the information in the XML stream must provide availability and security.
Availability for every scientist is organized by a standard username-password pair and access

rights. Every scientist can read all the information of interest. The scope of the reading access is
only restricted by a policy that depends on a special interest group. The scientists make Web service
request to the local server and receive the stream. The stream is converted to XML text and further to a
Document Object Modelling (DOM) tree that could be stored in the local database. The theoretical
foundations of such conversion, validation, and streaming of XML documents can be found in [10].
It is implemented in XML repositories and retrieval methods, and is supported by most development
environments [11].

Writing access can be given to anyone in a special interest group but only to the interpretation
section of the XML stream. The data generated by the embedded system is read-only and cannot be
changed. We have successfully experimented with the editing policy of Wikipedia.

The abstract data stream is designed to minimize technical constraints. The success of the
non-destructive archaeology methodology which adopts it for data distribution depends to a high

Computation 2017, 5, 21 11 of 17

degree on the quality design of the specific archaeological XML vocabularies for the interpretation
subtrees and the sensibility of the access policies.

6. Increasing the Fault Tolerance of the System

Our non-destructive archaeology methodology puts a high demand on the fault tolerance and
reliability of the embedded system sealed within a site. The system must be dry-run tested before
installation until the initial error burst finishes and the system reaches steady-state error density. After
installation, the system performs periodic tests, error analysis, and monitoring to maintain this density.

Our test suite, though based on traditional methods, has refined error models and increased
diversity. A good error model must be simple and represent a high percentage of system defects. Our
error models cover (a) systematic and intermittent hardware (cores and memory) errors; (b) software
errors (bugs); and (c) parametric errors (e.g., out-of-range data from a sensor or actuator). An error
model divides the set of all possible errors into covered errors, that is, errors represented by the model,
and non-covered errors, that is, errors that the model is too simple to represent. For example, a simple
error model for digital logic covers only the following error cases: stuck-at-0, stuck-at-1, and bridge; all
other errors are non-covered.

For non-covered error in such noisy environment we strongly rely on the software for
error-correcting codes, which is plugged-in the operating system.

6.1. Hardware Testing

The hardware tests are mostly standard so we just enumerate them.

• The processor test consists of a functional test for every ARM core and a test of core
interconnects. The core test generates stimulus test patterns. An in-circuit emulator runs in
the core and the responses are compared with the expected values. The core test also includes
boundary-scan testing.

• The main memory is tested by dynamic test sequences like running 0-and-1, galloping 0-and-1,
chess, ping-pong, etc.

• The hard disk periodically runs a degradation test for some of tracks and performs a runtime
procedure to replace bad track with reserve ones.

6.2. Software Testing by Signatures

Analysis with signatures is used for dynamic hardware testing, message integrity in computer
security, virus discovery, and software testing.

Software is treated as a binary data sequence. A prototype software digest (signature) is calculated
and stored as a reference. Periodically, the software signature is calculated and compared to the
prototype. If they are not equal, software integrity has been violated by a software bug, data
degradation, or tampering. We use AES cryptographic hashing to calculate the signature.

Signature testing can also check runtime instruction flow although the implementation is difficult
and the overhead significant. We have limited our use of signature testing only to those parts of the
system software where non-covered errors are most likely, such as the routines that handle sensors
and actuators. We have implemented two simple approaches.

• A signature test monitors whether each tested routine has been modified since it was loaded
and initialized.

• Background routines periodically execute the functions of each sensor or actuator interface and
record the data. A signature is calculated for the data and compared its prototype signature.

6.3. Micro-Rebooting for Software Recovery

In most embedded systems, the non-covered errors are difficult to define, discover, and reproduce.
They are often nondeterministic and are triggered by the noisy environment and unpredictable

Computation 2017, 5, 21 12 of 17

behaviour of the sensors and actuators. In isolated systems, the only way to recover from a non-covered
error is by rebooting. Rebooting clears accumulated deadlocks, releases blocked threads, and returns
the system to a stable ready state. For example, satellites are such isolated systems and their necessary
high error tolerance is often achieved by periodic rebooting, either of the whole system, or of
independent subsystems.

Rebootability is not supported in modern general-purpose operating systems, runtime
environments, or commercial systems due to their high level of abstraction with respect to the
underlying hardware. For this reason, we have had to provide our own. We have achieved partial
rebootability by utilizing specific features of the Java development environment, applying them only
to the user threads that manipulate the external devices. Our design follows best practices in the
design of mission-critical embedded systems.

• User threads are functionally loosely connected. They run independently and perform inter-thread
communications by non-blocking mechanisms. One thread cannot call another. If the service from
a thread is not available, the client thread must either wait or restart the communication. Such an
approach is implemented in Java, where the threads can send a signal (known as thread interrupt)
to another thread inviting, but not forcing, it to do something.

• When some unusual conditions occur, loose (coarse) monitoring of each individual thread takes
place and prompts restarts.

• Threads that work with sensors and actuators implement an interface that allows rebooting of
the external devices into a well-known state. The interfaces implement the policy that a thread is
unavailable unless it replies gracefully.

• Exceptions are always processed, never ignored. Sophisticated exception handling and logging
happens in custom handler blocks at the highest level of the caller hierarchy. Handlers analyse
each exception and, depending on the severity of the error, may cause the system to ignore it or
reboot. This simplifies the design and implementation of the system the same way an event-driven
system does not have implement polling and preemptive intervention.

6.4. Checking Data Ranges

The sensor and actuator control algorithms must monitor the readings from external devices
and maintain their operation within defined ranges. We use an approach utilizing two algorithms
with different resolution, in which the coarse algorithm defines a range in which the fine algorithm
result should fall. If the fine-control algorithm shows an out-of-range reading, the system invokes a
coarse-control routine to reproduce the erroneous result in a higher-tolerance range. If the data are
both in the larger range, a recalibration procedure is initialized. If the data are not in the same range, a
reboot takes place.

The robotized camera and sensor assembly is the most critical peripheral device of the
non-destructive archaeology system. Here we illustrate our approach in testing the positioning
of the camera. The embedded system receives an external request for an image of some artefact.
The request carries the identifier (key) of the artefact, which the system uses to consult the geometrical
model and generate the necessary instructions to the positioning circuitry of the camera. We use two
algorithms in parallel for range testing of the positioning software and circuitry: one based on control
theory and the other on image processing. Figure 5 is an illustration of both approaches.

The first algorithm generates the movement of the assembly as a sequence of (∆x, ∆y, ∆z)
micro-servo control steps causing the camera to locate the artefact. As discussed above, we use
a fine and course algorithm component.

The second algorithm emulates Moving Pictures Expert Group (MPEG) video processing, which
is part of the embedded system software. MPEG video compression calculates the difference between
frames in the camera motion. It employs motion compensation to estimate the motion vector and
predict the motion. Each image of the artefact is divided into macroblocks. The current image is the

Computation 2017, 5, 21 13 of 17

target frame. The future or previous frame is the reference frame. Macroblocks from both target and
reference frames are compared pixel-by-pixel. The offset of the reference macroblock to the target
macroblock is the motion vector. The difference between the pixel values of both macroblocks is the
motion prediction, which is stored in the resulting frame (P or B frame).

Computation 2017, 5, 21 12 of 17

communication. Such an approach is implemented in Java, where the threads can send a signal
(known as thread interrupt) to another thread inviting, but not forcing, it to do something.

• When some unusual conditions occur, loose (coarse) monitoring of each individual thread takes
place and prompts restarts.

• Threads that work with sensors and actuators implement an interface that allows rebooting of
the external devices into a well-known state. The interfaces implement the policy that a thread
is unavailable unless it replies gracefully.

• Exceptions are always processed, never ignored. Sophisticated exception handling and logging
happens in custom handler blocks at the highest level of the caller hierarchy. Handlers analyse
each exception and, depending on the severity of the error, may cause the system to ignore it or
reboot. This simplifies the design and implementation of the system the same way an event-
driven system does not have implement polling and preemptive intervention.

6.4. Checking Data Ranges

The sensor and actuator control algorithms must monitor the readings from external devices and
maintain their operation within defined ranges. We use an approach utilizing two algorithms with
different resolution, in which the coarse algorithm defines a range in which the fine algorithm result
should fall. If the fine-control algorithm shows an out-of-range reading, the system invokes a coarse-
control routine to reproduce the erroneous result in a higher-tolerance range. If the data are both in
the larger range, a recalibration procedure is initialized. If the data are not in the same range, a reboot
takes place.

The robotized camera and sensor assembly is the most critical peripheral device of the non-
destructive archaeology system. Here we illustrate our approach in testing the positioning of the
camera. The embedded system receives an external request for an image of some artefact. The request
carries the identifier (key) of the artefact, which the system uses to consult the geometrical model and
generate the necessary instructions to the positioning circuitry of the camera. We use two algorithms
in parallel for range testing of the positioning software and circuitry: one based on control theory and
the other on image processing. Figure 5 is an illustration of both approaches.

Figure 5. Example of testing of the robotized camera by different positing algorithm.

The first algorithm generates the movement of the assembly as a sequence of (∆x, ∆y, ∆z) micro-
servo control steps causing the camera to locate the artefact. As discussed above, we use a fine and
course algorithm component.

The second algorithm emulates Moving Pictures Expert Group (MPEG) video processing, which
is part of the embedded system software. MPEG video compression calculates the difference between
frames in the camera motion. It employs motion compensation to estimate the motion vector and

Figure 5. Example of testing of the robotized camera by different positing algorithm.

6.5. Some Formalization

The probability P(F) for passing a test is calculated by the equation:

P(F) =
Mc

∑
j−1

pjqj +
Mn

∑
k−1

pkqk

where pj is the probability of covered error occurring, mj is the probability the test will not detect
the error, pk is the probability of a no-covered error occurrence and mk is the probability the test
will not detect not-covered errors. Mc is the number of covered errors; and Mn is the number of
no-covered defects.

For simplicity we consider hardware errors as covered errors, that means with some
approximation qj = 0. For not-covered errors, qk can take value from 0.05 to 0.5.

The probability pk could be extracted from the formula:

TestSuccess = (1 − pk) n × 100,

where TestSuccess shows the percentage how many errors are detected, and n is the number of possible
errors. The number of uncovered errors depends on system configurations and the reliability of the
external devices.

Without considering of the presented specific approaches, the number of uncovered errors
(calculated by benchmark and expert estimation) is 450 per million possible errors. The TestSuccess
was 95%. Then p = 1.14 × 10−3, where p = pk is the probability of not covered errors. The probability
P(F) that the system will pass a test is:

P(F) = 5 × 10−2 × 1.14 × 10−3

The formalization predicts that the error level would be about sixty errors per million. Performing
the presented additional approaches, we could reduce the number of uncovered errors by 60%–70%,
i.e., 15 per million. The effect by most of them could be recovered by rebooting.

Computation 2017, 5, 21 14 of 17

7. Experimental Implementation Scenario

Our original motivation to develop the concept and methodology for non-destructive archaeology
was two-fold. On one hand, we were appalled by the recent fate of several Thracian tombs, preserved
intact for two millennia to the present day, only to be excavated with a bulldozer in a mad rush for
first dibs and grievously damaged in the process. On the other, we wanted to bridge the efficiency gap
in the current ad-hoc discovery process plagued by incompatible research styles and a whole host of
indexing, recording, and documentation techniques varying from paper notebooks to smart phones.
A hands-off methodology with unified data management and open dissemination evolved naturally.
We briefly present our alternate scenario of non-destructive excavation and study of Thracian tombs in
the Kazanlak Valley—aka Valley of the (Thracian) Kings—in present-day Bulgaria.

Using our system, we create a geometrical model, first of the entire valley, and then separately for
each individual tomb. The model is based on the octree for spatial enumeration modelling.

We generate unique keys from the names given by archaeologists to every tomb and artefact
thereof (frescos, ceramic pieces, antique jewellery, etc.), often including xyz coordinates for higher
resolution. Each tomb and its attendant artefacts forms a sub-tree in the global key space.
The randomization in our key-generation method prevents duplicates in the global key space
despite duplicate names, and the sub-trees do not overlap in either physical coordinates or temporal
relationships of archaeological projects. Sub-trees for different tombs can therefore be merged into the
global octree without modification. Figure 6 illustrates the process of merging the separate work of
different archaeological teams into the common octree data structure.

Computation 2017, 5, 21 14 of 17

duplicate names, and the sub-trees do not overlap in either physical coordinates or temporal
relationships of archaeological projects. Sub-trees for different tombs can therefore be merged into
the global octree without modification. Figure 6 illustrates the process of merging the separate work
of different archaeological teams into the common octree data structure.

Figure 6. Merging two archaeological projects using global key-value abstract store.

In contrast to the tomb sub-trees, the global octree is not a geometrical (spatial) model but an
abstract key space. The values in the global octree have two required fields: the given visible name of
the object and the xyz coordinates in the geometrical model of its containing tomb. The rest of the
information depends on the needs of the archaeologist and could be anything: a reference to a
document, a catalogue number, textual description, field notes, a hypothesis, etc.

The 256-bit keys of the global data structure became a performance bottleneck. Using a 256-bit
key for search is computationally expensive and unnecessary for the scope of our project. To
overcome this problem, we came up with a 4-byte digest of the key we called search key. A 32-bit
digest ensures fast lookup in any data structure that implements the octree topology. The search key
was also generated by AES hashing. The search key, when used with 256-bit keys, is fully collision-
free if the Hamming distance between the keys is 1, 2, or 3 bits. For 4 or more bits, we used the formula !! !, where r is the distance in bits. On average, the collision degree is slightly above 1 in 232
generated search keys. The search tree is used as the input to a lookup table. The lookup result is a
reference (pointer) to the value of the selected node.

8. Some Publications Which Have Influenced Our Work

The presented methods are a result of several years’ worth of relevant development experience.
Here we review several milestone approaches of other authors that have influenced our
implementation.

Key-value implementation. Our implementation of key-value lookup is based on a group of
publications that have had a significant impact on fast and efficient network routing lookup. The
method in [12] provides scalable and fast lookup processing and is the foundation of our
implementation. The approach in [13] has influenced our plans for future work.

Octree modelling. The octree is a standard approach in 3D geometric modelling. The authors of
[14] describe well the spatial enumeration approach we have used for representation of solid objects
in a 3D environment, while the authors of [15] present a method for merging geometrical octrees in
databases. In contrast, our method uses an octree as a global data structure model. Here we can
mention [16], where stratigraphic modelling of archaeological excavations is combined with octree
decomposition.

Figure 6. Merging two archaeological projects using global key-value abstract store.

In contrast to the tomb sub-trees, the global octree is not a geometrical (spatial) model but an
abstract key space. The values in the global octree have two required fields: the given visible name
of the object and the xyz coordinates in the geometrical model of its containing tomb. The rest of
the information depends on the needs of the archaeologist and could be anything: a reference to a
document, a catalogue number, textual description, field notes, a hypothesis, etc.

The 256-bit keys of the global data structure became a performance bottleneck. Using a 256-bit key
for search is computationally expensive and unnecessary for the scope of our project. To overcome this
problem, we came up with a 4-byte digest of the key we called search key. A 32-bit digest ensures fast
lookup in any data structure that implements the octree topology. The search key was also generated
by AES hashing. The search key, when used with 256-bit keys, is fully collision-free if the Hamming
distance between the keys is 1, 2, or 3 bits. For 4 or more bits, we used the formula 256!

r!(256−r)! , where r is

the distance in bits. On average, the collision degree is slightly above 1 in 232 generated search keys.

Computation 2017, 5, 21 15 of 17

The search tree is used as the input to a lookup table. The lookup result is a reference (pointer) to the
value of the selected node.

8. Some Publications Which Have Influenced Our Work

The presented methods are a result of several years’ worth of relevant development experience.
Here we review several milestone approaches of other authors that have influenced our implementation.

Key-value implementation. Our implementation of key-value lookup is based on a group of
publications that have had a significant impact on fast and efficient network routing lookup.
The method in [12] provides scalable and fast lookup processing and is the foundation of our
implementation. The approach in [13] has influenced our plans for future work.

Octree modelling. The octree is a standard approach in 3D geometric modelling. The authors of [14]
describe well the spatial enumeration approach we have used for representation of solid objects in a 3D
environment, while the authors of [15] present a method for merging geometrical octrees in databases.
In contrast, our method uses an octree as a global data structure model. Here we can mention [16],
where stratigraphic modelling of archaeological excavations is combined with octree decomposition.

Signature testing. The Hewlett Packard dynamic testing [17] started a revolution in the usage
of signatures. A great source for software analysis by signatures is presented by authors of [18].
The patent shown in [19] provides practical methods for testing software integrity and virus discovery.

Recovery by rebooting. Authors of [20,21] make a compelling case for the importance of rebooting
in different modes operation.

Cultural heritage XML data sharing. Computer vision, networking, and multimedia technology
have become popular approaches of exposing and exploring the history human civilization [22].
In the literature there are many papers and projects that use XML to prepare archaeological digital
documents for dissemination. Such publications are beyond the scope of this paper. As an example,
we mention the Open Context project [23] that discusses the problem of presenting the primary data
using ArchaeoML. ArchaeoML can be used as a concrete vocabulary for building a subtree in our
core XML.

9. Discussion

We have shared our concept for non-destructive archaeology in the form of a brief sketch of the
overall system and in-depth research of several important software components. Our system sketch
focuses on archaeological sites with restricted access—like buried or cave churches, tombs, and active
religious shrines—but the methodology is equally well suited to archaeological and cultural sites in
general. Our main goal has been to enable unconstrained sharing of results among archaeological
teams within a common information space and the unrestricted worldwide distribution of the raw
data, findings, records, analyses, hypotheses, and conclusions. Ideally, the archaeological record could
be dynamically updated and re-evaluated with the latest discoveries and newest schools of thought.

In a series of publications, we have shared our development methods for creating a prototype
of an embedded system for non-destructive archaeology. Some of the approaches are classical and
based on our professional experience; others are new and are taken from proof-of-concept to reference
implementation. In this paper, we have focused on the following contributions:

• Our main achievement is that by prototyping the embedded system we have convinced some
archaeological research teams that computer surveillance provides efficient non-destructive
archaeology for a special type of sites like buried churches and tombs.

• Use of an octree data structure to model a global key space is our original approach. Based on
global identification, scientific results are presented in a global virtual data store. Every scientist
can build their own local data structure and merge it with the results of others in the global store
without naming and merge conflicts.

Computation 2017, 5, 21 16 of 17

• We have created a geometrical model of the archaeological object using octree spatial enumeration.
The geometrical model provides a virtual hierarchical space for traversal referencing of
archaeological discoveries.

• The octree has allowed the elegant and seamless merging of the global abstract key-value space
and the individual geometrical models of archaeological objects in physical space and time.

• The embedded computer system generates an XML stream that is accessible to archaeologists
worldwide. We offer a basic XML vocabulary with separate elements for original data and
interpretations. For different discoveries, separate vocabulary extensions and sub-namespaces
are created.

• The fault tolerance of the system is improved by specific test methods: testing by signature,
micro-rebooting of the software controlling sensors and actuators, and checking parameter data
ranges by parallel algorithms.

We hope that with the continued advances in novel technologies like robotics, machine
learning, autonomous vehicles, IoT, and solar energy, our non-destructive archaeological methodology
can materialize into fully-autonomous robotic archaeological exploration, excavation, observation,
modelling, and data dissemination.

Author Contributions: Iliya Georgiev conceived the concept of non-destructive archaeology and designed the
octree modeling and testing components. Ivo Georgiev designed the embedded system and the open XML
data sharing. Iliya Georgiev and Ivo Georgiev implemented the system. Iliya Georgiev wrote the first draft.
Ivo Georgiev corrected and reorganized the manuscript into its final form.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Richards, J.D. Archaeology, e-publication and the Semantic Web. Antiquity 2006, 80, 970–979. [CrossRef]
2. Georgiev, I.; Georgiev, I. Key-Value Method for eScience Data Based on Global Key Space. In Proceedings of

the International Conference ICAT’14, Antalya, Turkey, 12–15 August 2014.
3. Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard; Springer:

Berlin/Heidelberg, Germany, 2002.
4. Georgiev, I.; Georgiev, I. Prototyping embedded system for archaeological objects of “no-man” type—Some

design problems. In Procedings of the International Conference EpsMO-15, Athens, Greece, 8–11 July 2015.
5. Menezes, A.; van Oorshot, S.; Vanstone, S. Handbook of Applied Cryptography; CRC Press: New York, NY,

USA, 1997.
6. Daum, S. Octree-Generierung: Visual Debugging Mit Blender. Technical University München, 2012. Available

online: http://www.cms.bgu.tum.de/publications/2012_daum_fbi.pdf (accessed on 30 March 2017).
7. Scholz, M. Optimierung einer 3D-Umgebungsmodellierung mittels Octree am Beispiel von Laserdaten.

Ph.D. Thesis, Deutschen Zentrum für Luft-und Raumfahrt, Institut für Flugsystemtechnik, Braunschweig,
Germany, 2013.

8. Georgiev, I.; Georgiev, I. An Information-Interconnectivity-Based Retrieval Method for Network Attached
Storage. In Proceedings of the ACM International Conference Computer Frontiers 2004, Ischia, Italy,
14–16 April 2004.

9. Meckseper, C.; Warwick, C. The publication of archaeological excavation reports using XML. Lit. Linguist.
Comput. 2003, 18, 63–75. [CrossRef]

10. Konrad, C.; Magniez, F. Validating XML documents in the streaming model with external memory.
ACM Trans. Data Base 2013, 38, 1–27. [CrossRef]

11. Chaudhri, A.; Zicari, R.; Rashid, A. XML Data Management: Native XML and XML Enabled Database Systems;
Addison Wesley: Boston, MA, USA, 2003.

12. Wang, C.P.; Chan, C.T.; Chen, Y.C. High-performance IP routing table lookup. Comput. Commun. 2002, 25,
303–312. [CrossRef]

13. Basescu, C.; Cachin, C.; Eyal, I.; Haas, R.; Sorniotti, A.; Vukolic, M.; Zachevsky, I. Robust data sharing with
key-value stores. In Proceedings of the 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Boston, MA, USA, 25–28 June 2012; pp. 1–12.

http://dx.doi.org/10.1017/S0003598X00094552
http://www.cms.bgu.tum.de/publications/2012_daum_fbi.pdf
http://dx.doi.org/10.1093/llc/18.1.63
http://dx.doi.org/10.1145/2504590
http://dx.doi.org/10.1016/S0140-3664(01)00360-7

Computation 2017, 5, 21 17 of 17

14. Zachmann, G.; Langetepe, E. Geometric Data Structures for Computer Graphics. In Proceedings of the
SIGRAPH 2003, San Diego, CA, USA, 27–31 July 2003.

15. Tiankai, T.; O’Hallaron, D.R.; López, J.C. Etree: A database-oriented method for generating large octree
meshes. Eng. Comput. 2004, 2, 117–128.

16. Tschauner, H.; Salinas, V.S. Stratigraphic Modeling and 3D Spatial-analysis using photogrammetry and
Octree Spatial Decomposition. In Digital Discovery. Exploring New Frontiers in Human Heritage. Computer
Applications and Quantitative Methods in Archaeology; Clark, J.T., Hagemeister, E.M., Eds.; Archaeolingua:
Budapest, Hungary, 2006.

17. Frohwerk, R. Signature Analysis: A New Digital Field Service Method. Hewlett Packard J. 1977, 28, 2–8.
18. Newsome, J.; Song, D. Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation

of Exploits on Commodity Software. In Proceedings of the 12th Annual Network and Distributed System
Security Symposium (NDSS’05), San Diego, CA, USA, 3–4 February 2005.

19. Van der Made, P.A.J. Computer Immune System and Method for Detecting Unwanted Code in a Computer
System. U.S. Patent 7,093,239, 15 August 2006.

20. Candea, G.; Fox, A. Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel. In Proceedings
of the Eighth IEEE Workshop on Hot Topics in Operating Systems, Elmau, Germany, 20–22 May 2001.

21. Candea, G.; Kawamoto, S.; Fujiki, Y.; Friedman, F.; Fox, A. Microreboot—A technique for cheap
recovery. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI),
San Francisco, CA, USA, 6–8 December 2004; pp. 31–44.

22. Cucchiara, R.; Bimbo, A.D. Vision for Augmented Cultural Heritage Experience. IEEE Multimedia. 2014, 21,
74–82. [CrossRef]

23. Kansa, E.C.; Kansa, S.W.; Burton, M.M.; Stankowski, C. Googling the grey: Open data, web services, and
semantics. Archaeologies 2010, 6, 301–326. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MMUL.2014.19
http://dx.doi.org/10.1007/s11759-010-9146-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Embedded System Configuration
	Hardware Configuration
	Software Configuration

	Generating of Global Identifiers of the Artifacts
	Common Method for Key-Value Data Modeling and Geometric Modeling
	Octree Modeling
	Octree Key-Value Data Modeling
	Clustering Algorithm
	Octree Geometrical Modelling

	XML Distribution of Archaeological Information
	Core XML Vocabulary
	XML Streaming
	Replication with Local Databases

	Increasing the Fault Tolerance of the System
	Hardware Testing
	Software Testing by Signatures
	Micro-Rebooting for Software Recovery
	Checking Data Ranges
	Some Formalization

	Experimental Implementation Scenario
	Some Publications Which Have Influenced Our Work
	Discussion

