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Abstract: The dual reciprocity method (DRM) is a highly efficient numerical method of transforming
domain integrals arising from the non-homogeneous term of the Poisson equation into equivalent
boundary integrals. In this paper, the velocity and temperature fields of laminar forced heat
convection in a concentric annular tube, with constant heat flux boundary conditions, have been
studied using numerical simulations. The DRM has been used to solve the governing equation, which
is expressed in the form of a Poisson equation. A test problem is employed to verify the DRM solutions
with different boundary element discretizations and numbers of internal points. The results of the
numerical simulations are discussed and compared with exact analytical solutions. Good agreement
between the numerical results and exact solutions is evident, as the maximum relative errors are
less than 5% to 6%, and the R2-values are greater than 0.999 in all cases. These results confirm the
effectiveness and accuracy of the proposed numerical model, which is based on the DRM.

Keywords: concentric annular tube; laminar flow; heat convection; heat flux; boundary condition;
dual reciprocity method; numerical model

1. Introduction

Modern computational techniques facilitate solving problems with imposed boundary conditions
using different numerical methods [1–9]. The numerical analysis of heat transfer [10–14] has been
independently, though not exclusively, developed in four main streams: the finite difference method
(FDM) [15,16], the finite volume method (FVM) [17], the finite element method (FEM) [18–20], and
the boundary element method (BEM) [21–23]. The FDM is based on using Taylor series expansion
to find approximation formulas for derivative operators. The basic concept of the FVM is derived
from physical conservation laws applied to control volumes. The FDM, FVM and FEM depend on the
mesh that discretizes the domain via a special scheme. The FEM and BEM are based on the integral
equation for heat conduction. This equation can be obtained from the differential equation using the
variational calculus.

The BEM uses a fundamental solution to convert a partial differential equation to an integral
equation. In the BEM, only the boundary is discretized and an internal point’s position can be freely
defined. This method has the immediate advantage of reducing the dimensionality of the problem by
one. Additionally, the BEM naturally handles the problems caused by dynamic geometry. Unlike the
FEM, which requires that the domain be meshed, the BEM only discretizes the boundary. Therefore,
the amount of data necessary for solving a problem can be greatly reduced [21–24]. A complete review
of the BEM’s domain integrals is presented in [25].

Computation 2017, 5, 25; doi:10.3390/computation5020025 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://dx.doi.org/10.3390/computation5020025
http://www.mdpi.com/journal/computation


Computation 2017, 5, 25 2 of 14

The BEM, an effective and promising numerical analysis tool due to its semi-analytical nature
and ability to reduce a problem’s dimension, has been successfully applied to the homogeneous
linear heat conduction problem [26]. In the context of BEM-based velocity-vorticity formulation, the
work of Žagar and Škerget [27] was one of the first attempts to solve 3D viscous laminar flow by
BEM. The BEM has also been used to solve direct and inverse heat conduction problems [22,28,29].
However, its extension to non-homogeneous and non-linear problems is not straightforward. Therefore,
applications of the BEM to heat convection problems have not been sufficiently studied, and are still in
the development stage. Because the effects of convection are of considerable importance in many heat
transfer phenomena, more research should focus on these effects. However, applying the BEM to such
problems has drawbacks—the required fundamental solution depends on the thermal conductivity,
and it is difficult to model heat generation rates (due to heat sources), because they introduce domain
integrals [30].

Several researchers have also worked on a combination of boundary element and finite element
methods. A combined BEM-FEM model for the velocity-vorticity formulation of the Navier-Stokes
equations was developed by Žunič et al. [31] to solve 3D laminar fluid flow. In the field of
viscous fluid flow numerical simulation, an important work was done by Young et al. [32] using
primitive variable formulation of Navier-Stokes equations. They computed pressure fields with
BEM and momentum equation with a three-steps FEM. In the field of viscous fluid flow numerical
simulation with velocity-vorticity formulation of Navier-Stokes equations, contributions were made
by Young et al. [33]. In their work, BEM was used to obtain boundary velocities and normal velocity
fluxes implicitly, and then explicitly the internal velocities and boundary vorticities were computed by
derivation of kinematical integral equations. Simulations, as well as experiments, of turbulent flow
have also been extensively investigated [34]. Hsieh and Lien [35] considered numerical modelling of
buoyancy-driven turbulent flows in enclosures, using the Reynolds-average Navier-Stokes approach.

Recently, the radial integration method (RIM) has been developed by Gao [36], which did not
require fundamental solutions to basis functions, and can remove various singularities appearing in
domain integrals. However, although the radial integration BEM is very flexible in treating the general
non-linear and non-homogeneous problems, the numerical evaluation of the radial integrals is very
time-consuming compared to other methods [37–39], especially for large 3D problems.

To approximate a solution to the heat conduction equation using boundary integrals, the dual
reciprocity method (DRM), introduced by Nardini and Brebbia [40], can be used. The DRM preserves
the advantages of the BEM: a shorter computational time than the FEM, and a reduced number of
boundary elements. Since its introduction, the DRM has been applied to engineering problems in
many fields [41–43]. In the DRM, an available fundamental solution is used for the complete governing
equation, and the domain integral arising from the heat source-like term is transferred to the boundary
using radial interpolation functions [44–46].

In this paper, the velocity and temperature fields of laminar forced heat convection in a concentric
annular tube with constant heat flux on the boundaries were studied using numerical simulations.
The DRM was used to solve the governing equation, which is expressed mathematically in the form of
a Poisson equation. A test problem was employed to verify the DRM solutions with different boundary
element discretizations and different numbers of internal points, and the results of the numerical
simulations are discussed and compared with exact analytical solutions to determine their convergence
and accuracy. A concentric annular tube was chosen because of its simplicity and ability to provide
an exact solution, allowing the basic nature of the proposed model for convection problems to be
analysed in detail [47,48]. Therefore, present research efforts aiming at the establishment of the DRM’s
applicability to heat convection are confirmed, and could eventually be extended to the study of other
heat transfer systems.



Computation 2017, 5, 25 3 of 14

2. Physical Problem and Its Mathematical Formulation

Consider an incompressible Newtonian fluid of density ρ, thermal conductivity λ, and specific
heat c contained between two stationary concentric cylinders (i.e., in a concentric annular tube).
The inner and outer cylinders have radii of Ri and Ro, respectively. Figure 1 shows a schematic of the
annular tube and co-ordinate system.
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where ∂T/∂z = dTm/dz is a constant derived from the given conditions. 
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Figure 1. Schematic of the concentric annulus and co-ordinate system.

In the system to be analysed, the z co-ordinate represents the axial direction and the x–y co-ordinate
plane is attached to the cross-sectional surface. To simplify the problem and its solution, the steady
laminar flow is assumed to be fully developed with constant transport properties and negligible
body forces. Under these conditions, the Navier-Stokes equation becomes the simple pressure-driven
Poiseuille flow equation. Because the flow is fully developed, the axial flow velocity is a function of
only the x and y co-ordinates, and the axial pressure gradient is constant. In the energy equation, the
viscous dissipation and axial heat conduction are neglected.

2.1. Governing Equations

The governing equations of the laminar fluid flow, expressed in the form of a Poisson equation,
are obtained from the momentum and energy conservation equations [49]:

∇2w =
∂2w
∂x2 +

∂2w
∂y2 =

1
η

dp
dz

(1)

∇2T =
∂2T
∂x2 +

∂2T
∂y2 =

w
a

dT
dz

(2)

where w is the axial velocity of the flow; η is the dynamic viscosity; p is the pressure; T is the
temperature; and a = λ/ρc is the thermal diffusivity.

For the fully developed thermal flow with constant heat flux on the boundaries and using the
mixed mean temperature Tm [48], Equation (2) becomes:

∇2T =
∂2T
∂x2 +

∂2T
∂y2 =

w
a

dTm

dz
(3)

where ∂T/∂z = dTm/dz is a constant derived from the given conditions.

2.2. Boundary Conditions

The boundary conditions associated with Equations (1) and (3) are:

w = 0 at r = Ri and r = Ro (4)

T = Ti at r = Ri; T = To at r = Ro (5)
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where Ri is the radius of the inner cylinder and Ro is the radius of the outer cylinder.
To solve for the temperature, the velocity is first obtained from Equation (1); then Equation (3)

can be solved, because the assumption of negligible buoyancy decouples the momentum and
energy equations.

3. Numerical Model

3.1. The DRM Formulation

To solve using the BEM, Equations (1) and (3) subject to Equations (4) and (5) can be generalized
as the following type of Poisson equation [43]:

∇2u(x, y) = b(x, y), (x, y) ∈ Ω (6)

with the boundary conditions:

u(x, y) = u, (x, y) ∈ Γ1 (7)

q(x, y) =
∂u(x, y)

∂n
= q, (x, y) ∈ Γ2 (8)

and the convective heat transfer problem is represented by:

u(x, y) = w, b(x, y) = 1
η

dp
dz = const.

u(x, y) = T, b(x, y) = w
a

dTm
dz

(9)

where: Γ1 + Γ2 = Γ is the total boundary of the domain Ω; n is normal to the boundary; and u and q are
the values specified at each boundary.

Applying the usual boundary element technique to Equation (6), an integral Equation can be
derived as described in [21]:

ciui +
∫

Γ
uq∗dΓ−

∫
Γ

qu∗dΓ =
∫

Ω
bu∗dΩ (10)

where the constant ci depends on the geometry at point i as follows:

ci =

{
1 for (xi, yi) ∈ Ω
θ

2π for (xi, yi) ∈ Γ
(11)

where θ is the internal angle at the source point.
The key part of the DRM is to calculate the domain integral term of Equation (10) on the boundary

and remove the need for a complicated domain discretization. To accomplish this, the source term
b(x, y) is expanded, using its values at each node j and a set of interpolating functions fj as in [41,42]:

b(x, y) ∼=
N+L

∑
j=1

αj f j (12)

where αj is a set of initially unknown coefficients; and N and L are the number of boundary nodes and
internal points, respectively.

Using Equation (12), the coefficients αj can be expressed in terms of the nodal values of the
function b(x, y) in matrix form as:

α = F−1b (13)

where F is a matrix with coefficients fj and b = {bi}.
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The radial basis functions fj are linked with the particular solutions ûj to the equation:

∇2ûj = f j (14)

Substituting Equation (14) into Equation (12) and applying integration by parts to the domain
integral term of Equation (10) twice leads to:

ciui +
∫

Γ
uq∗dΓ−

∫
Γ

qu∗dΓ =
N+L

∑
j=1

αj

(
ciûij +

∫
Γ

ûjq∗dΓ−
∫

Γ
q̂ju∗dΓ

)
(15)

On a two-dimensional domain, u∗, q∗ and û, q̂ can be derived as:

u∗ =
1

2π
ln(

1
r
); q∗ =

−1
2π r
∇r ·→n (16)

û =
r2

4
+

r3

9
; q̂ = (

r
2
+

r2

3
)∇r ·→n (17)

where r is the distance from a source point i, or a DRM collocation point j to a field point (x, y).
As for Equation (14), an interpolating function is chosen as a radial basis function (RBF). Two relevant
expressions for RBFs are frequently used for this purpose in the engineering community: f = 1 + r and
f = 1 + r + r2 [44,45].

In the numerical solution of the integral Equation (15), u, q, û and q̂ are modelled using the linear
interpolation functions as follows: ∫

Γk

uq∗dΓ = ukh1
ik + uk+1h2

ik (18)

∫
Γk

qu∗dΓ = qkg1
ik + qk+1g2

ik (19)

∫
Γk

ûjq∗dΓ = ûkjh1
ik + û(k+1)jh

2
ik (20)

∫
Γ

q̂ju∗dΓ = q̂kjg1
ik + q̂(k+1)jg

2
ik (21)

where:
h1

ik =
∫

Γk

Φ1q∗dΓ, h2
ik =

∫
Γk

Φ2q∗dΓ (22)

g1
ik =

∫
Γk

Φ1u∗dΓ, g2
ik =

∫
Γk

Φ2u∗dΓ (23)

The first subscript in Equations (22) and (23) refers to the specific position of the point where the
flow velocity or temperature is evaluated. The second subscript refers to the boundary element over
which the contour integration is performed. The superscripts 1 and 2 designate the linear interpolation
functions Φ1 and Φ2, respectively, with which the u∗ and q∗ functions are weighted in the integrals in
Equations (18) to (21).

When the boundary Γ = Γ1 ∪ Γ2 is discretized into N elements, the integral terms in Equation (15)
can be rewritten as:

∫
Γ

uq∗dΓ =
N

∑
k=1

∫
Γk

uq∗dΓ =
N

∑
k=1

[
h2

i(k−1) + h1
ik

]
uk =

N

∑
k=1

Hikuk or =
Nn

∑
j=1

Hikûkj for ûj (24)

∫
Γ

qu∗dΓ =
N

∑
k=1

∫
Γk

qu∗dΓ =
N

∑
k=1

[
g2

i(k−1) + g1
ik

]
qk =

N

∑
k=1

Gikqk or =
Nn

∑
j=1

Gik q̂kj for q̂j (25)
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where h2
i0 = h2

iN and g2
i0 = g2

iN .
Substituting Equations (24) and (25) into Equation (15), after several manipulations, yields the

dual reciprocity boundary element Equation:

ciui +
N

∑
k=1

Hikuk −
N

∑
k=1

Gikqk =
N+L

∑
j=1

αj

(
ciûij +

N

∑
k=1

Hikûkj −
N

∑
k=1

Gik q̂kj

)
(26)

3.2. Numerical Solution

Equation (26) can now be written in a matrix-vector form as:

HU−GQ = (HÛ−GQ̂)α (27)

where H and G are matrices with elements Hik and Gik, with ci incorporated into the principal diagonal
element; and U, Q and their terms Û, Q̂ correspond to vectors with elements uk and qk, and matrices
with ûkj and q̂kj as the jth column vectors.

Substituting α from Equation (13) into the above equation yields:

HU−GQ = (HÛ−GQ̂)F−1b (28)

Introducing the boundary conditions into the nodes of the uk and qk vectors, and rearranging by
moving known quantities to the right-hand side and unknown quantities to the left-hand side, leads to
a system of linear equations of the form:

AX = B (29)

Using the DRM matrix equation, a numerical solution to the problem of laminar convective heat
transfer between two concentric cylinders can be readily obtained for the flow velocity w from the
momentum equation, and the temperature T from the energy equation or for their normal derivatives.

This numerical model has been implemented as a computer program in the FORTRAN
programming language for PC-compatible microsystems.

3.3. Testing the Model

The geometry illustrated in Figure 2 is used for testing purposes. To simplify the problem, the
surface temperatures of the two cylinders are assumed to be equal. Thus, the solution satisfies the
following boundary conditions:

w(x, y)|R=Ri
= w(x, y)|R=Ro

= 0
T ∗ (x, y)|R=Ri

= T ∗ (x, y)|R=Ro
= 0

T∗ = T − Tw, Tw = Ti = To

(30)

For the numerical test case, the following numerical values are introduced to Equations (1) and (3)
from [50], in which the spectral collocation method is used to analyse heat convection in an
eccentric annulus:

Ri = 0.030 m, Ro = 0.055 m
1
η

dp
dz = −836 m−1s−1

a = 1.3418× 10−9 m2/s
dTm
dz = 0.47 ◦C/m

(31)

To confirm the accuracy of the DRM for the actual heat convection problem, the boundaries of the
external and internal surfaces are discretized into 36, 48, 60, 72, or 84 elements. The nodes on every
boundary and at the internal points of the analysis domain are located as shown in Figure 2. Therefore,
the total number of internal points used in the analysis is 90, 120, 150, 180, and 210 in the 36, 48, 60, 72,
and 84 boundary element cases, respectively.
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Some statistical methods, such as the root mean square error (RMSE), the coefficient of variation
(cv), the coefficient of multiple determinations (R2), and the relative error (er) may be used to compare
simulated and analytical (exact) values of the flow’s velocity and temperature to validate the model.
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The error can be estimated using the RMSE, defined as [51]:

RMSE =

√
∑n

i=1(ysim,i − yanal,i)
2

n
(32)

In addition, the coefficient of variation cv, in percent, and the coefficient of multiple determinations
R2 are defined as follows:

cv =
RMSE∣∣∣yanal,i

∣∣∣100% (33)

R2 = 1− ∑n
i=1(ysim,i − yanal,i)

2

∑n
i=1 y2

anal,i
(34)

where n is the number of analytical data points in the independent data set; yanal,i is the analytical
value of one data point i; ysim,i represents the simulated value; and yanal,i is the mean value of all of the
analytical data points.

The relative error er is calculated using the following formula:

er =
|yanal,i − ysim,i|

ysim,i
100% (35)

where yanal,i is the analytical solution; and ysim,i is the potential value at point i obtained by the
numerical method.
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4. Simulation Results and Discussion

To obtain the axial flow velocity w (x, y), Equation (1) is solved first. The results for the boundary
and internal nodes are shown in Tables 1 and 2 for the RBFs f = 1 + r and f = 1 + r + r2, respectively.
In these tables, the normal derivative of the velocity w at the boundary is also listed, and all of the
numerical solutions are compared with the exact solutions [47], in order to determine their accuracy.
In addition, statistical values such as the RMSE, cv, and R2, which correspond to different numbers of
boundary elements in the analysed system, are given in Tables 1 and 2.

Table 1. Dual reciprocity method (DRM) results and analytical solution for the boundary and internal
points in flow velocity simulation (f = 1 + r).

Variable
Radial Location

r [m]

DRM Solution
Analytical
SolutionNumber of Boundary Elements

36 48 60 72 84

∂w/∂n 0.055 −9.570611 −9.614363 −9.632446 −9.646733 −9.649446 −9.667904
∂w/∂n 0.030 −11.961390 −11.931682 −11.910987 −11.902295 −11.900702 −11.883840

w 0.0342 0.040336 0.039937 0.039755 0.039656 0.039614 0.039413
w 0.0383 0.061518 0.061112 0.060926 0.060825 0.060760 0.060591
w 0.0425 0.066727 0.066320 0.066133 0.066030 0.065973 0.065803
w 0.0466 0.057611 0.057196 0.057006 0.056908 0.056853 0.056682
w 0.0508 0.035084 0.034883 0.034733 0.034638 0.034606 0.034439

RMSE 0.000741 0.000427 0.000275 0.000191 0.000149 −
cv% 2.018 1.162 0.749 0.521 0.405 −
R2 0.999724 0.999908 0.999962 0.999981 0.999988 −

Table 2. DRM results and analytical solution for the boundary and internal points in flow velocity
simulation (f = 1 + r + r2).

Variable
Radial Location

r [m]

DRM Solution
Analytical
SolutionNumber of Boundary Elements

36 48 60 72 84

∂w/∂n 0.055 −9.570477 −9.615427 −9.632632 −9.647164 −9.651780 −9.667904
∂w/∂n 0.030 −11.960900 −11.929878 −11.906732 −11.899952 −11.898130 −11.883840

w 0.0342 0.040334 0.039938 0.039754 0.039654 0.039601 0.039413
w 0.0383 0.061519 0.061112 0.060927 0.060820 0.060761 0.060591
w 0.0425 0.066725 0.066321 0.066136 0.066031 0.065974 0.065803
w 0.0466 0.057609 0.057193 0.057012 0.056906 0.056850 0.056682
w 0.0508 0.035080 0.034880 0.034726 0.034635 0.034604 0.034439

RMSE 0.000740 0.000426 0.000276 0.000189 0.000146 −
cv% 2.015 1.160 0.750 0.516 0.397 −
R2 0.999725 0.9999087 0.999961 0.999982 0.999989 −

Figures 3 and 4 shows the convergence of the DRM’s solutions for the velocity and its normal
derivative, as the numbers of boundary elements and internal points increase. The DRM solutions
agree well with the exact solutions, and the relative errors are within 2.3% when the number of
elements is greater than 36. The values of the RMSE and cv are between 0.00014% and 0.00074%, and
0.40% and 2.01%, respectively, for the two radial basis functions. The R2-value for any number of
boundary elements is approximately 0.9997% for both of the radial basis functions, a result that is very
satisfactory. Thus, the simulation model is analytically validated.
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Figure 4. Magnitude of the error in the solution for the normal derivative of the velocity at the
boundaries: (a) Radial basis function f = 1 + r; (b) Radial basis function f = 1 + r + r2.

As noted in Figure 3, the velocities calculated at r = 0.0508 m and r = 0.0342 m are less accurate
than the others, and the solution at r = 0.0342 is less accurate than it is at r = 0.0508. The solutions
for the normal derivative of the velocity on the boundary at r = 0.055 m is less accurate than it is
at r = 0.030 m, as shown in Figure 4. This is because the outer boundary elements are larger than
the inner boundary elements, and the distribution of internal points becomes sparse in the outward
direction, whereas a rapid change in the velocity occurs at the inner and outer boundaries, as shown in
Figures 2 and 5.
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Therefore, the magnitude of the solution’s error in the radial direction is closely related to the
physical and the mathematical aspects of the problem; hence, the overall accuracy of the solution is
fairly acceptable. Therefore, when 36 elements are used, the solution has a maximum error of 2.34%
at radial position r = 0.0342 m, and the next step results in an accurate solution for the temperature.
The DRM solutions for the velocity are, in turn, used in the energy equation (Equation (3)) to solve for
the temperature distribution. Tables 3 and 4 show the simulation results for temperature and statistical
values such as the RMSE, cv, and R2. The DRM solutions are in excellent agreement with the exact
solutions and the relative errors er are within 5% when 36 elements are used (Figures 6–8). The cv

values are in the range of 0.3%–5.0%, and the R2-value is approximately 0.999 for the two radial basis
functions with any of the tested numbers of boundary elements. This is a very acceptable result, and
thus, the simulation model is validated by the analytical solutions.

Table 3. DRM results and analytical solution for boundary and internal points in temperature (f = 1 + r).

Variable
Radial Location

r [m]

DRM Solution
Analytical
SolutionNumber of Boundary Elements

36 48 60 72 84

∂T*/∂n 0.055 172056.38 170824.22 171362.75 171600.75 171628.56 170484.20
∂T*/∂n 0.030 233420.45 229217.02 230340.65 230698.70 230771.22 229506.90

T* 0.0342 804.26 828.59 847.40 853.78 855.04 858.72
T* 0.0383 1268.86 1298.52 1311.65 1315.86 1317.26 1320.13
T* 0.0425 1383.48 1413.28 1426.46 1429.68 1431.26 1433.69
T* 0.0466 1180.68 1209.26 1224.48 1230.46 1231.92 1234.96
T* 0.0508 711.52 730.65 741.78 746.86 747.90 750.34

RMSE 42.3739 20.1408 7.8869 3.6070 2.4750 −
cv% 5.298 2.518 0.986 0.451 0.309 −
R2 0.998102 0.999571 0.99934 0.999986 0.999993 −
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Table 4. DRM results and analytical solution for the boundary and internal points in temperature (f = 1 + r + r2).

Variable
Radial Location

r [m]

DRM Solution
Analytical
SolutionNumber of Boundary Elements

36 48 60 72 84

∂T*/∂n 0.055 171989.88 170768.08 171293.14 171535.45 171598.75 170484.20
∂T*/∂n 0.030 233300.36 229286.02 230294.05 230618.22 230708.55 229506.90

T* 0.0342 805.85 829.69 848.14 854.14 855.78 858.72
T* 0.0383 1271.14 1299.86 1312.24 1316.04 1317.68 1320.13
T* 0.0425 1385.24 1414.58 1427.24 1430.02 1431.76 1433.69
T* 0.0466 1182.72 1210.64 1225.78 1230.98 1232.04 1234.96
T* 0.0508 713.38 731.68 742.87 747.12 748.03 750.34

RMSE 40.7741 19.1179 7.1300 3.3248 2.1458 −
cv% 5.098 2.390 0.891 0.415 0.268 −
R2 0.998243 0.999613 0.999946 0.999988 0.999995 −
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Although the convergence trend shown in Figure 7 is not monotonic and the radial location’s
effect on the magnitude of the error does not exactly follow the trend shown in the previous case, the
solution trends can be considered indistinguishable within 1% relative error.

These test results validate the power of the dual reciprocity boundary element method and the
accuracy of its solutions. This is because the numerical solution for the velocity was used as an input
in Equation (3), and the source-like function b(x, y) of Equation (12) in Equation (3) was approximated
using interpolating functions and the nodal values of internal points.

As a final note, all of the numbers of elements tested are adequate for solving this problem.
The amount of error in the solutions for the velocity and temperature is acceptable. Using the
fourth-order RBFs, the accuracy of the DRM is increased insignificantly, so that only minor differences
are observed between errors (0.2%). The errors can be decreased using only a higher adequate number
of boundary elements and internal points limited by computational capacity.

5. Conclusions

A numerical simulation model based on the dual reciprocity boundary element method has been
developed for the solution of the laminar heat convection problem between two concentric cylinders
with a constant imposed heat flux.

The DRM is different than the standard implementation, as was proposed for Poisson-type
equations due the use of RBFs. The DRM matrix was formulated to perform numerical computation,
and five boundary element discretizations were tested with corresponding numbers of internal points.
Five radial locations were selected, at which solution for the velocity and temperature was obtained.
The numerical results were shown to be in excellent agreement with exact solutions for the 36-element
case, and the simulation model was analytically validated.

This numerical model was successfully used to solve the laminar convective heat transfer problem
in a concentric annular tube. This study also shows that the DRM has strong potential for further
applications. Although this method has been applied to 2D problems, an extension of the approach to
3D problems is straightforward.
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