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Abstract: The foundation of many approximations in time-dependent density functional theory
(TDDFT) lies in the theory of the homogeneous electron gas. However, unlike the ground-state DFT,
in which the exchange-correlation potential of the homogeneous electron gas is known exactly
via the quantum Monte Carlo calculation, the time-dependent or frequency-dependent dynamical
potential of the homogeneous electron gas has not been known exactly, due to the absence of a similar
variational principle for excited states. In this work, we present a simple geometric derivation of the
time-dependent dynamical exchange-correlation potential for the homogeneous system. With this
derivation, the dynamical potential can be expressed in terms of the stress tensor, offering an
alternative to calculate the bulk and shear moduli, two key input quantities in TDDFT.

Keywords: time-dependent DFT; dynamical exchange-correlation potential; homogeneous electron
gas; stress tensor; bulk modulus; shear modulus

1. Introduction

Time-dependent density functional theory (TDDFT) [1,2] is the most important extension of
Kohn–Sham [3] ground-state DFT to excited or time-dependent states. In this theory, only the
time-dependent dynamical exchange-correlation (xc) potential must be approximated. The simplest
construction of the time-dependent dynamical potential is the adiabatic approximation [4], which takes
the same form of the ground-state xc potential, but with the ground-state density n0(r) replaced by the
instantaneous time-dependent density n(r, t),

vad
xc ([n]; r, t) = δExc[n0]/δn0(r)|n0(r)=n(r,t). (1)

Because of its simplicity in both theoretical construction and numerical implementation, the adiabatic
TDDFT has been most widely used in the study of low-lying single-particle excitations [5]. Moreover, it has
been shown [6,7] that (at least for small systems) the largest source of error in the prediction of low-lying
excitation energies arises from the approximation for the ground-state xc potential, but not from the
frequency dependence of the dynamical xc potential. However, this approximation fails to describe
multi-particle [8,9] and high-lying excitations, because the retardation effect, which is important in
these situations, has been ignored. Since it disregards the frequency dependence and thus the history of
the system prior to time t, the adiabatic approximation is unable to describe energy dissipation [10–12].
To properly treat the retardation effect, one must go beyond the adiabatic approximation and construct
a frequency-dependent non-adiabatic correction for the dynamical potential.
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One way to develop the frequency-dependent part [13,14] of the dynamical xc potential is
through the time-dependent xc stress tensor [15,16] Pµν of quantum hydrodynamics. In this approach,
the exchange-correlation vector potential Axc(r, ω) (whose derivative with respect to time yields the
exchange-correlation electric field) is represented as the sum of two contributions [17,18]:

−iω
e
c

Axc,µ(r, ω) = ∂µVad
xc (r, ω) +

1
n0

∂ν∆Pxc
µν(r, ω), (2)

where e is the absolute value of the electron charge, c is the speed of light and µ, ν are Cartesian
indices with the convention that repeated indices are summed over. The first term Vad

xc is the adiabatic
xc potential, the gradient of which gives the vector xc potential, which only has implicit frequency
dependence via the time-dependent electron density. ∆Pµν is the dynamical part of the xc stress tensor,
the divergence of which defines the frequency-dependent part to the xc field. This is the core part of
TDDFT that allows explicit frequency dependence. The dynamical xc stress tensor is defined by:

∆Pxc
µν(r, ω) = Pxc

µν(r, ω)− Pxc,ad
µν (r, ω). (3)

Here, Pxc
µν(r, ω) is the full dynamical xc stress tensor, while Pxc,ad

µν (r, ω) is the adiabatic part constructed
from the equilibrium stress tensor, i.e.,

Pxc,ad
µν (r, t) = Pxc,eq

µν [n0]|n0=n(r,t), (4)

with n(r, t) being the instantaneous electron density. Numerical calculations [19,20] have shown that
the frequency-dependent part of the dynamical potential often leads to a good improvement over the
adiabatic approximation.

A time-dependent dynamical stress tensor consists of two contributions: the infinite-frequency
part and the finite-frequency part. Tokatly [15,16] presented a geometric formulation of TDDFT
based on a nonlinear coordinate transformation, the Lagrangian coordinate transformation, and
calculated the infinite-frequency part for the homogeneous system. The advantage of working in
a co-moving frame is that the particle density is time independent, and the expectation value of
current operator identically vanishes. As a result, the many-body dynamics looks more similar to a
static problem. The strong nonlocality of the stress tensor in the laboratory frame is hidden in the
space-time dependence of the deformation tensor in the Lagrangian frame (or co-moving frame).
We have extended [11,21] this geometric approach to the inhomogeneous system and calculated
the infinite-frequency part of the stress tensor ∆Pxc

µν(r, ω). In this paper, we present a detailed
geometric derivation of the whole spectra of the dynamical stress tensor for the homogeneous system,
aiming to provide a simpler way to construct the time-dependent dynamical xc potential [22–24]
for the homogeneous density and a better understanding of time-dependent processes beyond
the adiabatic TDDFT. Although we are giving a hydrodynamic representation of the xc field,
the treatment of time-dependent or excited processes is still within TDDFT, but not orbital-free
quantum hydrodynamics.

2. Results and Discussion

2.1. Homogeneous Electron Gas in a Uniform Metric Field

Making use of the equation of motion for the current, the dynamical stress tensor may be
calculated [24] from the current-current response function [2]. Here, we present a simpler approach for the
dynamical stress tensor of the system based on the geometric formulation of the many-body dynamics.

The dynamical properties of the stress tensor of the electron gas are connected to the deformation
of the ground-state density, which is measured by the covariant metric tensor or Green’s deformation
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tensor gµν (for brevity, the time argument is not displayed explicitly). The metric tensor is defined
by [15,16]:

gµν ≡
∂ra

∂ξµ
· ∂ra

∂ξν
, gµν ≡ ∂ξµ

∂ra ·
∂ξν

∂ra , (5)

where the new coordinate ξ is defined as the initial position of a fluid element. Because the
instantaneous position r of the fluid element is the vector sum of the initial position ξ and the elastic
displacement u of the fluid element, we have:

ξ = r− u(r). (6)

Note that gµνgνλ = gλ
µ ≡ δµλ and g = det(gµν) = [det(gµν)]−1. The linearization of the metric

tensor leads to:

gµν = δµν + δgµν, δgµν = ∂νuµ + ∂µuν, (7)

gµν = δµν + δgµν, δgµν = −δgµν. (8)

The combination ∂νuµ + ∂µuν is twice the strain tensor of elasticity theory, as defined by [25].
However, we find it more convenient to define:

uµν ≡ −δgµν, uµν ≡ δgµν. (9)

From Equations (5)–(9), we see that the assumption of gµν being homogeneous is equivalent to
the assumption of the strain field uµν being homogeneous. In other words, the displacement field is a
linear function of r.

A useful property [16] of the metric determinant g is:

δg
g

= δ lng = Tr(δ lng) = gµν δgµν = −gµν δgµν. (10)

The square root of the metric determinant
√

g is the ratio between the volume element in Euclidean
coordinates and the corresponding volume element in the curvilinear coordinates, as seen from
Equation (5). These relationships can be obtained with some simple algebra.

The Hamiltonian of the electron gas in a homogeneous metric field gµν can be written as:

ˆ̃H = ∑
k

gµν
kµkν

2m
˜̂a†

k
˜̂ak +

1
2V√g ∑

k,q
v(‖q‖) ˜̂a†

k
˜̂nq ˜̂ak−q . (11)

where V is the invariant d-dimensional volume of the system and ˜̂nq ≡ ∑′k ˜̂a†
k′−q

˜̂ak′ . The first term
is the kinetic contribution in the co-moving frame, while the second is the interaction potential term,
with v(q) being the Fourier transform of the electron-electron Coulomb interaction. The norm of
vectors is given by:

‖q‖ ≡
√

gµνqµqν, (12)

so the kinetic energy term is simply ‖k‖2/2 m. The factor g−1/2 in front of the potential term arises
from the matrix element of the interaction between “plane waves” in the curvilinear coordinates
(see Equation (19) below).

In the Hamiltonian of Equation (11), the operators ˜̂ak and ˜̂a†
k refer to plane wave states in

coordinates ξ: φk(ξ) = eikµξµ
/
√
V . This Hamiltonian has been constructed in the following
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manner. First, we start with the homogeneous electron gas in coordinates r on a 3D torus of size
L× L× L = V . The one-particle wave functions are plane waves φk(r) = eikr/

√
V with k satisfying

the usual quantization condition. The operator ˜̂a†
k creates a particle in this state. Second, we make a

coordinate transformation (6) from r to ξ. This transformation is implicitly linear if the metric gµν is
homogeneous. The transformed domain is still a torus. The normalized wave functions have the form:

ψ̃k(ξ) =
g1/4
√
V

eik·r(ξ), (13)

where we have used the fact that:

dξ = g−1/2dr, (14)

as indicated by Equation (5). For a linear transformation, this can also be written as:

ψ̃k(ξ) =
g1/4
√
V

eik̃µξµ
, (15)

where:
k̃µ =

∂ξµ

∂rν
kν, dk̃ = g−1/2dk .

The Hamiltonian (11) is simply the standard electron-gas Hamiltonian in which the operators âk
have been replaced by the operators g1/4 ˜̂ak̃, i.e.,

âk ← g1/4 ˜̂ak̃ , (16)

Thus, wherever we have a plane wave of wave vector k, we can have the transformed wave
function (15). This substitution gives:

ˆ̃H = g1/2 ∑̃
k

k2

2m
˜̂a†

k̃
˜̂ak̃ +

g
2V ∑

k̃,k̃′ ,q̃

v(q) ˜̂a†
k̃+q̃

˜̂a†
k̃′−q̃

˜̂ak̃′
˜̂ak̃ . (17)

To show that this is indeed equivalent to Equation (11), notice that k2 = gµν k̃µ k̃ν = gµν k̃µ k̃ν = ‖k̃‖
or, more compactly, |k| = ‖k̃‖. Therefore, we have,

ˆ̃H = g1/2 ∑k̃
gµν k̃µ k̃ν

2m
˜̂a†

k̃
˜̂ak̃

+ g
2V ∑k̃,k̃′ ,q̃ v(‖q̃‖) ˜̂a†

k̃+q̃
˜̂a†

k̃′−q̃
˜̂ak̃′

˜̂ak̃ .
(18)

Finally, recall that, in the thermodynamic limit,

∑̃
k

... =
V

(2π)d

∫
dk̃... =

V
(2π)d

∫ dk
g1/2 ... =

1
g1/2 ∑

k
... (19)

The integration variables k̃, k̃′, etc., are immaterial and can be renamed k, k′, etc. The factors g1/2

combine to produce the pre-factors observed in Equation (11).
To write the Hamiltonian in “first quantization”, we must keep in mind that the operators ˜̂a†

k
create electrons in plane wave states eikµξµ

/
√
V in the new coordinates with the original normalization.

The operator that has matrix elements kµkµ/2m in this basis is:

T̂ = − 1
2m ∑

i

∂

∂ξiµ

∂

∂ξ
µ
i

.
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This is the first quantized expression for the kinetic energy. Similarly, for the potential energy,
we can verify that the operator with matrix element v(‖q‖)/(Vg1/2) is:

Ŵ =
1
2 ∑

i 6=j

e2

‖ξi − ξ j‖
.

This is the first quantized expression for the potential energy.

3. Time-Dependent Transformation

The homogeneous coordinate transformation from r to ξ defined by Equation (6) is time
independent. Now, we ask what happens if we let our homogeneous coordinate transformation be
time-dependent. At first sight, we should simply replace gµν by gµν(t) and g by g(t) in Equation (11).
However, this is not the complete solution. The problem is that the operators ˜̂ak are explicitly
time-dependent, and this gives a contribution to the time evolution that is not taken into account by
the Hamiltonian of Equation (11). Equation (11) must therefore be amended if the Hamiltonian is to
generate the correct time evolution. Since ˜̂ak creates a particle in the state eik·ξ , we can write ˜̂ak = eik·ξ .
Performing time derivative on both sides of the state, we can deduce that:

i
∂ ˜̂a†

k
∂t

= −kµ ξ̇µ ˜̂a†
k (20)

where ξ̇ ≡ ∂ξ/∂t is the explicit derivative of the coordinate transformation ξ = ξ(r, t) with
respect to time.

This requires an additional single-particle term in the Hamiltonian. Taking into account the
anti-commutation relation [ ˆ̂̃ak, ˜̂a†

k]+ = 1, we see that the additional term must have the form:

ξ̇µ ∑
k

kµ ˜̂a†
k

˜̂ak . (21)

Therefore, the complete time-dependent Hamiltonian must include a vector-potential term [25]:

ˆ̃H(t) = ∑k

[
(kµ+mξ̇µ)(kµ+mξ̇µ)

2m − m
2 ξ̇µ ξ̇µ

]
˜̂a†

k
˜̂ak

+ 1
2V√g ∑k,q v(‖q‖) ˜̂a†

k
ˆ̃nq ˜̂ak−q.

(22)

In the homogeneous electron gas, the vector potential term is inconsequential (i.e., it gives only an
overall phase change), although it is significantly important [11] in the analysis of the inhomogeneous
electron gas.

A specific example of coordinate transformation is the transformation to a Lagrangian
frame or co-moving frame, as first introduced by Tokatly [15,16] and later used by Vignale and
co-workers [11,21,26,27] to calculate the dynamical stress tensor of an inhomogeneous system in
the infinite-frequency limit. Let j(r) be the current density (expectation value of the current-density
operator) and v(r) = j(r)/n(r) the velocity field. Then, the transformation from r (laboratory frame)
to ξ (co-moving frame) is defined by the solution of the differential equation:

∂r(ξ, t)
∂t

= v(r(ξ, t)), r(0) = ξ. (23)

This defines r as a function of ξ and t and, upon inversion (assuming the latter to be possible)
ξ as a function of r and t. The explicit derivative ξ̇(r, t) tells us that we should modify the initial
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condition by dξ = ξ̇(r, t)dt in order that the trajectory defined by Equation (23) arrives at r at time
t + dt. Performing the variations in tand ξ at constant r gives:

∂rµ

∂xiν
dξν +

∂rµ

∂t
dt = 0, (24)

leading to:

ξ̇µ = −∂ξµ

∂rν
vν(ξ, t) ≡ −ṽµ. (25)

Therefore, the Hamiltonian of Equation (22) takes the form:

ˆ̃H(t) = ∑k

[
(kµ−mṽµ)(kµ−mṽµ)

2m − m
2 ṽµṽµ

]
˜̂a†

k
˜̂ak

+ 1
2V√g ∑k,q v(‖q‖) ˜̂a†

k
ˆ̃nq ˜̂ak−q.

(26)

4. Macroscopic Stress Tensor

We now define the macroscopic stress tensor operator:

P̂µν ≡
2
V√g

δ ˆ̃H
δgµν . (27)

Making use of the identity (10) and:

δ‖q‖
δgµν =

qµqν

2‖q‖ , (28)

we can easily obtain:

P̂µν = 1
V√g ∑k

kµkν

m â†
k âk + 1

2Vg ∑k,q

[
qµqν

‖q‖ v′(‖q‖)

+ gµνv(‖q‖)
]

â†
kn̂q âk−q,

(29)

where v′(q) = dv(q)/dq. For Coulomb interaction in d spatial dimensions (d = 2, 3), vq = Ad/qd−1

and qv
′
q = −(d− 1)vq. Thus, we have:

P̂µν = 1
V√g ∑k

kµkν

m â†
k âk + 1

2Vg ∑k,q v(‖q‖)

×
[

gµν − (d− 1) qµqν

‖q‖2

]
â†

kn̂q âk−q ,
(30)

The stress tensor P̃µν(t) in the curvilinear reference frame, not to be confused with the stress tensor
operator, is the expectation value of P̂µν in the state |ψ̃(t)〉 that evolves under the Hamiltonian ˆ̃H:

P̃µν(t) ≡ 〈ψ̃(t)|P̂µν|ψ̃(t)〉 . (31)

Notice that, by construction, this object is independent of position. In the flat space of the
laboratory frame, the stress tensor is obtained by transforming back to the laboratory frame, i.e.,

Pµν(t) =
∂ξα

∂rµ

∂ξβ

∂rν
P̃αβ(t) . (32)
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In the linearized theory, we can write:

P̃µν(t) = P̃eq
µν + P̃(1)

µν (t) , (33)

where P̃eq
µν is calculated in the equilibrium state of ˆ̃H (with Euclidean metrics) and is independent

of time:
P̃eq

µν = 1
V ∑k

kµkν

m nk + 1
2V ∑k,q

[
qµqν

q v′(q) + δµνv(q)
]

× ρ2(k, q) ,
(34)

where nk ≡ 〈â†
k âk〉eq is the momentum occupation number in the equilibrium state and:

ρ2(k, q) ≡
〈

â†
kn̂q âk−q

〉
eq

is a two-particle density matrix related to the equilibrium exchange-correlation hole. This can be
rewritten in terms of the static structure factor S(q) as follows:

P̃eq
µν = 1

V ∑k
kµkν

m nk + n
2 ∑q

[
qµqν

q v′(q) + δµνv(q)
]

× [S(q)− 1],
(35)

where n = N/V is the electron density of the homogeneous system, invariant in the curvilinear
reference frame. In the special case of the Coulomb interaction (v(q) ∝ 1/qd−1), it reduces to:

P̃eq
µν = 1

V ∑k
kµkν

m nk + n
2 ∑q v(q)

[
δµν − (d− 1) qµqν

q2

]
× [S(q)− 1] = 2T+W

dV δµν ,
(36)

where T = ∑k(k2/2m)nk is the kinetic energy, and W = (N/2)∑q v(q)[S(q) − 1] is the potential
energy of the homogeneous electron gas.

Then, we transform the stress tensor (Equation (36)) from the co-moving frame to the Laboratory
or static frame. This leads to the expression for the stress tensor in the laboratory frame,

Pµν(t) = P̃eq
µν − ∂γuµ P̃eq

γν − ∂γuν P̃eq
µγ + P̃(1)

µν (t)
= 2T+U

dV
[
δµν + uµν

]
+ P̃(1)

µν (t) .
(37)

Here, the first term is the adiabatic contribution to the stress tensor, while the second arises from
the non-adiabatic or frequency-dependent contribution. This completes our formal derivation of the
stress tensor. In the following, we will focus on the nonadiabatic part.

5. Tensor of Elasticity

A central concept in linear elasticity theory is the rank-four tensor of elasticity, Q̃µναβ, which
connects the stress tensor to the strain tensor. In the frequency domain, there is a simple relationship
between the stress tensor and the strain field,

P̃(1)
µν (ω) = Q̃µναβ(ω)uαβ(ω) , (38)

the real-time version of which being:

P̃(1)
µν (t) =

∫ t

−∞
Q̃µναβ(t− t′)uαβ(t′)dt′ . (39)

To understand the structure of the tensor of elasticity, let us go back to Equation (29), which gives
the explicit form of the stress tensor operator for arbitrary homogeneous metric fields. We see
that a change in metric δgαβ = uαβ is immediately reflected in a change in the form of P̂µν.
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This is a frequency-independent contribution to the tensor of elasticity. It is the analogue of the
“diamagnetic term”, which appears in the current response to a vector potential field. An additional
contribution to Q comes from the change of the wave function in response to the metric field. This is
a truly retarded (i.e., frequency-dependent) contribution, which can be expressed in terms of the
stress-stress response function. It is expected to vanish at high frequency. The tensor of elasticity is
thus the sum of the two parts,

Q̃µναβ(ω) = Q̃∞
µναβ + ∆Q̃µναβ(ω) , (40)

where:

Q̃∞
µναβ ≡

〈
δ ˆ̃Pµν

δgαβ

〉
g=1

, (41)

and:

∆Q̃µναβ(ω) ≡ V
2
〈〈P̂µν; P̂αβ〉〉ω . (42)

(P̂µν = ˆ̃Pµν|g=1.) Both the average and the response function are calculated in the equilibrium

state of ˆ̃H, with a Euclidean metric (g = 1). Notice that the tensor of elasticity in the frequency domain
has the same physical dimensions as the stress tensor in real time.

5.1. High-Frequency Limit

From Equation (29) and Identities (10) and (28) and noting that:

δgµν

δgαβ
= − δgµν

δgαβ
= −

gµαgνβ + gµβgνα

2
, (43)

we calculate Q̃∞
µναβ directly from its definition (41) and obtain:

Q̃∞
µναβ =

δαβ

2V ∑k
kµkν

m nk + n
2 ∑q

{
v(q)

[
δµνδαβ

− δµαδνβ+δµβδνα

2

]
+ v′(q)

[
δµν

qαqβ

2q

+ δαβ
qµqν

q

]
+

qµqνqαqβ

2q2

[
v′′(q)− v′(q)

q

]}
× [S(q)− 1] .

(44)

Specializing to the case of the Coulomb interaction and taking into account the additional terms
of Equation (37), we see that the complete tensor of elasticity at high frequency in the laboratory frame
is given by:

Q∞
µναβ =

2T + W
2dV (δµαδνβ + δµβδνα) + Q̃∞

µναβ, (45)

where Q̃∞
µναβ arises from the coordination transformation from the co-moving frame to the

laboratory frame. Due to the rotational symmetry, the tensor of elasticity can actually be expressed in
terms of just two constants, the bulk modulus K and the shear modulus µ, in the following manner:

Qµναβ =
K
2

δµνδαβ +
µ

2

(
δµαδνβ + δµβδνα −

2
d

δµνδαβ

)
, (46)
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where:

K =
2
d2 Qµµαα (47)

µ =
2

(d− 1)(d + 2)

[
Qµνµν −

1
d

Qµµαα

]
. (48)

Specializing to the high-frequency regime and substituting Equation (44) into Equation (45),
we obtain:

Q∞
µµαα = (d + 2)

T
V +

d + 1
2

W
V (49)

Q∞
µνµν = (d + 2)

T
V +

d− 3
2

W
V (50)

Therefore, the high-frequency elastic constants are:

K∞ =
2(d + 2)

d2
T
V +

d + 1
d2

W
V (51)

µ∞ =
2
d

T
V −

(d− 1)
d(d + 2)

W
V . (52)

Here, the kinetic (T) and potential (W) energies of the electron gas can be extracted via the
coupling constant integration from the correlation energy, which was calculated [28,29] from Monte
Carlo methods and accurately parametrized [30,31].

5.2. Finite-Frequency Spectra

Now, we turn to the finite-frequency dependent part of the elasticity tensor. In the following, we
will evaluate the response function (42). We recall that:

〈〈Â; B̂〉〉ω ≡ −i
∫ ∞

0
dt〈[Â; B̂]〉eiωt. (53)

For this purpose, we split the stress tensor as the sum of the kinetic and potential parts and write
the response function as:

〈〈P̂µν; P̂αβ〉〉ω = 〈〈T̂µν + Ŵµν; T̂αβ + Ŵαβ〉〉ω (54)

where:

T̂αβ =
1
V ∑

k

kαkβ

m
â†

k âk (55)

and:

Ŵαβ = ∑
k,q

( qαqβ

q
v′(q) + δαβ(q)

)
â†

kn̂q âk−q (56)

are the kinetic and potential parts of the macroscopic stress tensor operator (at g = 1). Generally,
the finite-frequency part of the tensor of elasticity, ∆Q̃µναβ(ω), like the viscoelastic constants ∆K(ω)

and ∆µ(ω), is a complex function of frequency. Because of the Kramers–Krönig dispersion relation [2],
we only need to consider the imaginary part of the response function 〈〈Pµν; Pαβ〉〉ω.
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Let us first evaluate the imaginary part, =m〈〈Pµν; Pαβ〉〉ω. Making use of the identity [2]:

〈〈Â; B̂〉〉ω =
i〈〈 ˙̂A; B̂〉〉ω + 〈[Â, B̂]〉

ω
(57)

=
−i〈〈Â; ˙̂B〉〉ω + 〈[Â, B̂]〉

ω
, (58)

where ˙̂A is the time derivative of Â, and noting that the expectation values of the commutator terms
are all real, we first write the imaginary part of the response function as:

=m〈〈P̂µν; P̂αβ〉〉ω

=
1

ω2=m〈〈 ˙̂Tµν; ˙̂Tαβ〉〉ω +
1
ω
<e[〈〈 ˙̂Tµν; Ŵαβ〉〉ω (59)

− 〈〈Ŵµν; ˙̂Tαβ〉〉ω ] +=m〈〈Ŵαβ; Ŵαβ〉〉ω.

Since 〈〈 ˙̂Tαβ; Ŵαβ〉〉ω = −〈〈Ŵαβ; ˙̂Tαβ〉〉ω, Equation (59) may be further simplified to:

=m〈〈P̂µν; P̂αβ〉〉ω

=
1

ω2=m〈〈 ˙̂Tµν; ˙̂Tαβ〉〉ω +
2
ω
<e〈〈 ˙̂Tµν; Ŵαβ〉〉ω (60)

+ =m〈〈Ŵαβ; Ŵαβ〉〉ω.

From the Heisenberg equation of motion for the field operator:

i ˙̂ak =
k2

2m
âk +

1
V ∑

q,k′
v(q)â†

k′ âk′+q âk−q (61)

we obtain:

˙̂Tαβ =
i
V ∑

q,k
v(q)

kαkβ

m
(â†

k+qn̂q âk − â†
kn̂q âk−q), (62)

which may be re-expressed in terms of the current operator as:

˙̂Tαβ = − i
V ∑

q
v(q)( ĵ−qα qβ + qα ĵ−qβ

)n̂q. (63)

Here, ĵ−qα is the α-component of the current operator defined by:

ĵ−qα ≡∑
k

kα

m
â†

k+ q
2

âk− q
2

. (64)

Because [n̂q, ak−q] = N̂, a constant of motion, the interaction part of the stress tensor of
Equation (56) may be simplified as:

Ŵαβ =
1

2V ∑
q

v(q)
[
δαβ − (d− 1)

qαqβ

q2

]
n̂†

qn̂q. (65)

Substituting Equations (63) and (65) into the response function of Equation (60), we obtain an
expression for the tensor of elasticity in terms of four-point functions. These four-point response
functions contain the interaction up to second order in the Coulomb interaction. We conclude
that dissipation and, hence, retardation are absent up to first order in the Coulomb interaction.



Computation 2017, 5, 28 11 of 22

In particular, they are absent at the exact exchange level. We stress that this conclusion is only valid for
the homogeneous electron gas. In a non-uniform electronic system, the time derivative of the kinetic
energy is non-zero even in the absence of electron-electron interactions. As a result, one can have
retardation and dissipation even at the exchange-only level.

Calculation of the four-point response functions is difficult. As a first step, we resort to the
mode-coupling approximation. This approximation (at T = 0) has been previously discussed in the
literature [22,23] and can be stated as follows:

=m〈〈ÂB̂; ĈD̂〉〉ω ' − 1
π

∫ ω

0
dω′

[
=m〈〈Â; Ĉ〉〉ω′

=m〈〈B̂; D̂〉〉ω−ω′ (66)

+ =m〈〈Â; D̂〉〉ω′=m〈〈B̂; Ĉ〉〉ω−ω′

]
.

Thus, we reduce the calculation of a very complicated four-point response function to the
calculation of simpler two-point response functions.

Making use of the mode-decoupling approximation, together with various relations of response
functions [2]:

〈〈 ĵqα ; ĵ−q′β
〉〉ω = χJ

αβ(q, ω)δqq′ , (67)

〈〈n̂q; n̂−q′〉〉ω = (q2/ω2)χL(q, ω)δqq′ , (68)

〈〈n̂q; ĵ−q′α〉〉ω = (qα/ω)χL(q, ω)δqq′ , (69)

〈〈 ĵ−q′α
; n̂q〉〉ω = (qα/ω)χL(q, ω)δqq′ , (70)

where χJ
αβ = [χL(q, ω)qαqβ/q2 + χT(q, ω)(δαβ − qαqβ/q2)] is the current-current response, we express

〈〈 ˙̂Tαβ; ˙̂Tαβ〉〉 in terms of the longitudinal (L) and transverse (T) current-current response functions:

=m〈〈 ˙̂Tµν; ˙̂Tαβ〉〉ω

' − 1
πV2 ∑

q
v(q)2q4

∫ ω

0
dω′

{
4ω

ω′(ω−ω′)2

× =mχL
µν(q, ω′)=mχL

αβ(q, ω−ω′)

+
2(d− 1)
(ω−ω′)2=mχT

µν(q, ω′)=mχL
αβ(q, ω−ω′)

}
, (71)

with the help of the convolution rule [32],

f (ω−ω′)×g(ω) =
∫ ∞

0
dω′ f (ω−ω′)g(ω)

=
∫ ∞

0
dω′g(ω−ω′) f (ω)

= g(ω−ω′)× f (ω). (72)

Similarly, we obtain:

<e〈〈 ˙̂Tµν; Ŵαβ〉〉ω

' 1
πV2 ∑

q
v(q)2q4

∫ ω

0
dω′

2(2− d)
ω′2(ω−ω′)

× =mχL
µν(q, ω′)=mχL

αβ(q, ω−ω′). (73)
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and:

=m〈〈Ŵµν; Ŵαβ〉〉ω

' − 1
2πV2 ∑

q
v(q)2q4

∫ ω

0
dω′

d2 − 3d + 3
ω′2(ω−ω′)

× =mχL
µν(q, ω′)=mχL

αβ(q, ω−ω′). (74)

Next, we evaluate the imaginary part of the component, =m〈〈P̂αα; P̂αα〉〉ω. According to
Equations (54)–(56), we write:

=m〈〈P̂αα; P̂αα〉〉ω = =m〈〈2T̂ + Ŵ; 2T̂ + Ŵ〉〉ω. (75)

where T̂ = (1/2m)∑k k2 â†
k âk is the kinetic energy operator and Ŵ = (1/2)∑k,q vq â†

kn̂q âk−q the
potential operator. For the uniform electron gas, the equilibrium Hamiltonian can be written as
Ĥ = T̂ + Ŵ + Vb, where Vb is the external potential due to the background. Because Vb is a constant of
motion, Equation (75) can be simplified to:

=m〈〈P̂αα; P̂αα〉〉ω = =m〈〈Ŵ; Ŵ〉〉ω, (76)

where:

=m〈〈Ŵ; Ŵ〉〉ω =
1
4 ∑

q,q′
〈〈vqvq′=m〈〈n̂−qn̂q; n̂−q′ n̂q′〉〉ω. (77)

Employing the mode-decoupling approximation of Equation (66) and the relation of Equation (68),
we obtain:

=m〈〈Ŵµν; Ŵαβ〉〉ω ' − 1
2 ∑q v2

qq4
∫ ω

0
dω′

ω′2(ω−ω′)

× =mχL(q, ω′)=mχL(q, ω−ω′).
(78)

Finally, we can express the imaginary parts of the tensor of elasticity and the viscosity spectra in
terms of the longitudinal and transverse current-current response functions. The result is:

=mK̃(ω) = − 1
2d2 ∑q v(q)2

∫ ω
0

dω′
π

q2

ω′2
=mχL(q, ω′)

× q2

(ω−ω′)2=mχL(q, ω−ω′),
(79)

for d = 2 (i.e., 2D) or 3 (i.e., 3D),

=mµ̃(ω) = −∑
q

v(q)2
∫ ω

0

dω′

π

[ 8
15

q2

ω′2
=mχL(q, ω′)

+
2
5

q2

ω2=mχT(q, ω′)
] q2

(ω−ω′)2 (80)

× =mχL(q, ω−ω′),

for 3D systems, and:

=mµ̃(ω) = −∑
q

v(q)2
∫ ω

0

dω′

π

[ 9
16

q2

ω′2
=mχL(q, ω′)

+
1
2

q2

ω2=mχT(q, ω′)
] q2

(ω−ω′)2 (81)

× =mχL(q, ω−ω′),
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for 2D systems.
The xc kernel fxcL(T) can be immediately obtained from the relations:

=mK̃(ω) = n2
0

[
=m fxcL(ω)− 2(d− 1)

d
=m fxcT(ω)

]
. (82)

=mµ̃(ω) = n2
0=m fxcT(ω), (83)

with the help of Equation (19) and Equations (79)–(81). To reproduce the correct high-frequency
(ω → ∞) limit, Nifosì, Conti and Tosi (NCT) [22,23] introduced a frequency-dependent prefactor:

gx(ω) =
1 + (0.5ω/2εF)

1 + (ω/2εF)
, (84)

which has the property of gx → 1/2 as ω → ∞ and gx → 1 as ω → 0 (εF = k2
F h̄2/2 m is the

Fermi energy). The final expression for the xc kernel is given by:

=m fxcL(T)(ω)

= −gx(ω)
∫ ω

0

dω′

π

∫ ddq
(2π)dn2

0
v2(q)

[
aL(T)

q2

ω′2

× =mχL(q, ω′) + bL(T)
q2

ω2=mχT(q, ω′)

]
× q2

(ω−ω′)2=mχL(q, ω−ω′), (85)

where aL = 23/30, aT = 8/15, bL = 8/15, bT = 2/5 for 3D and aL = 11/16, aT = 9/16, bL = bT = 1/2
for 2D. Apart from the prefactor gx(ω), Equation (85) was derived by several authors [23,33,34] based
on different approaches.

The infinite frequency limit of the elastic constants, combined with the viscosity spectra,
determines the frequency-dependent elastic constants by virtue of the dispersion relations and, thus,
the frequency-dependent dynamical xc potential. In the following, we will study these two kernels in
the low-frequency limit.

5.3. Low-Frequency Limit of =m fxcL(T)

As discussed in Section 5.2, in the high-frequency limit, the longitudinal part of the xc
kernel in the mode-coupling approximation is too small by a factor of two. To correct this error,
NCT phenomenologically introduced a prefactor gx(ω) in the expression (85). This prefactor tends
to one as ω → 0, leaving the low-frequency limit of the kernel unchanged. However, Qian and
Vignale [35] (QV) have shown that in the low-frequency limit, the xc kernel =m fxcL(ω) actually has
two contributions: the “direct” term (D) and the “exchange” term (EX). Precisely, we have:

=m fxcL(ω) = =m f D
xcL(ω) +=m f Ex

xcL(ω). (86)

The direct term is just the mode-coupling approximation (85) given by:

=m f D
xcL(ω) = −ωe4m2kF

45π3n3
0

(
− 3 +

3 + λ2

λ
tan−1λ

)
, (87)
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while the exchange term, which is missing in the mode-coupling approximation, is given by:

=m f Ex
xcL(ω)

= −ωe4m2kF

45π3n3
0

{
1− 1

λ
sin−1(λ

√
(1 + λ)− 1

λ
tan−1λ (88)

+
1

λ
√

2 + λ

[
π

2
− tan−1

(
1

λ
√

2 + λ

)]}
.

Here, λ = 2kF/ks, and ks =
√

4kF/πa0 is the Thomas–Fermi screening wave vector with
a0 = h̄2/me2 being the Bohr radius. Substituting Equations (87) and (88) into Equation (86) yields the
xc kernel in the low-frequency limit:

=m fxcL(ω)

= −ωe4m2kF

45π3n3
0

{
5−

(
λ +

5
λ

)
tan−1λ

− 2
λ

sin−1
(

λ√
1 + λ2

)
+

2

λ
√

2 + λ2

[
π

2

− tan−1
(

1

λ
√

2 + λ2

)]}
. (89)

Furthermore, QV have proven that as ω → 0,

=m fxcT(ω)/ω =
d

2(d− 1)
=m fxcL(ω)/ω. (90)

To recover both the low- and high-frequency limits, based on the relations (86)–(90), we propose a
new dimensionless prefactor:

gx(ω) =
1 + b

2 (ω/2εF)
2

R + b(ω/2εF)2 , (91)

where:

R = limω→
=m f D

xcL(T)(ω)

=m fxcL(T)(ω)

=

[
3−

(
λ + 3

λ

)
tan−1λ

]/{
5−

(
λ + 5

λ

)
tan−1λ

− 2
λ sin−1

(
λ√

1+λ2

)
+ 2

λ
√

2+λ2

×
[

π
2 − tan−1

(
1

λ
√

2+λ2

)]}
.

(92)

The parameter b is determined by a fit to the zero-frequency limit of the bulk modulus, which can
be calculated accurately from the xc energy per electron (see Equation (105)).

6. Exchange-Correlation Viscoelasticity Constants

The xc part of the stress tensor is defined as the difference between interacting and non-interacting
stress tensors, minus the Hartree part. According to [15–17], the pure dynamical xc stress tensor ∆Pµν

(see Equation (3)) can be expressed in terms of the viscoelastic constants Kxc(ω) and µxc(ω),

∆Pxc
µν = µxc(n0, ω)(uµν − δµνuαα/3)

+
δµν

2 [Kxc(n0, ω)− K0
xc(n0)]uαα,

(93)
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where uαα = −2∇ · u. Similarly, the xc contributions to the viscoelastic constants, Kxc(ω) and µxc(ω),
are defined as the difference between the viscoelastic constants of interacting and non-interacting
systems of the same electron density n0(r), minus the Hartree potential part,

Kxc(ω) = K(ω)− K0, K0 =
2(d + 2)

d2 T0, (94)

µxc(ω) = µ(ω)− µ0, µ0 =
2
d

T0, (95)

where K0 and µ0 are the viscoelastic constants of the non-interacting system, and:

T0 =
3

10
(3π2)2/3n5/3

0 (96)

is the non-interacting kinetic energy density for the 3D system.
Since the finite-frequency part arises from the second-order (Coulomb) interaction, it vanishes for

a non-interacting system. Thus, the spectra of the xc viscoelastic constants can be expressed as:

Kxc(ω) = ∆Kxc(ω) + K∞
xc, (97)

µxc(ω) = ∆µxc(ω) + µ∞
xc, (98)

where:

∆Kxc(ω) = P
∫ ∞

−∞

dω′

π

=mK̃(ω′)
ω′ −ω

, (99)

∆µxc(ω) = P
∫ ∞

−∞

dω′

π

=mµ̃(ω′)

ω′ −ω
. (100)

Here, “P” represents the Cauchy principal value. K∞
xc and µ∞

xc are the infinite-frequency parts,
which can be calculated from Equations (51) and (52) as:

K∞
xc =

2(d + 2)
d2

Tc

V +
d + 1

d2
Wxc

V , (101)

µ∞
xc =

2
d

Tc

V −
d− 1

d(d + 2)
Wxc

V , (102)

Here, Tc = T − T0 is the kinetic part of correlation with T being the kinetic energy density of
the interacting system. Wxc = W −UH is the potential part of correlation, and UH is the Hartree
potential energy. Tc and Wxc are related to the coupling-constant average of the xc energy density nεxc

via the coupling-constant integration formula [36], i.e.,

Tc([n0]; r) = −n0
∂

∂rs

[
rsεc(rs)

]
, (103)

Wxc(r) = n0εxc + n0
∂

∂rs

[
rsεc(rs)

]
, (104)

where rs(r) = a−1
0 (3/4πn0)

1/3 is the Seitz radius and a0 is the Bohr radius (notice that the coupling
constant λ controls the strength of the interaction λe2/|r− r′|).

Finally, the low-frequency limit of the bulk modulus K0
xc(n0) can be calculated from:

K0
xc(n0) = n2

0∂2(n0εxc)/∂n2
0, (105)
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where the correlation energy per electron εc(rs) can be obtained from the quantum Monte Carlo
calculation, as pointed out above. In the next section, we will study the xc kernels within the
random phase approximation (RPA).

7. Exchange-Correlation Kernel fxcL(T) within RPA

In this section, we calculate the xc kernel of Equation (85) within the RPA (random phase
approximation). The frequency-dependent bulk and shear moduli obtained in this manner are exact in
the high density limit (rs → 0) and provide a reasonable estimate at finite density. The shear modulus in
the ω → 0 limit is a very important local ingredient [11,21,37,38] of the dynamical xc potential. We first
evaluate =mK̃(ω) and =mµ̃(ω) from Equations (82) and (83). Finally, the frequency-dependent bulk
and shear moduli are calculated by substituting =mK̃(ω) and =mµ̃(ω) into Equations (97) and (98).
We only focus on 3D systems. 2D systems can be treated in a similar manner.

7.1. Exchange-Correlation Kernel

The xc kernel can be calculated from RPA by replacing the response functions χL(T)(q, ω) in
Equation (85) with the RPA response functions χRPA

L(T)(q, ω). In RPA, the response functions of the

interacting system can be expressed in terms of the non-interacting response functions χ0
L(T)(q, ω) as:

1
χRPA

L(T)(q, ω) + n/m
=

1
χ0

L(T)(q, ω) + n/m
− q2

ω2 vL(T)
q , (106)

where for the Coulomb system, vL
q = 4πe2/q2 for 3D, vL

q = 2πe2/q for 2D, and vT
q = 0.

This immediately leads to:

=mχRPA
T (q, ω) = =mχ0

T(q, ω). (107)

The non-interacting transverse =mχ0
T(q, ω) is given by [23]:

=mχ0
T(q, ω) = N (0)πεF

8mq̃ [(1− ν2
+)

2θ(1− |ν+|)
− (1− ν2

−)
2θ(1− |ν−|),

(108)

where N (0) = ks/(4πe2) = mk f /π2h̄2, ν± = ω̄/q̄± q̄/2, with q̄ ≡ q/kF and ω̄ ≡ ω/(2εF).
The current-current response χL(q, ω) is related to the density-density response χ(q, ω) by:

χL(q, ω) +
n
m

=
ω2

q2 χ(q, ω), (109)

which is valid for both interacting and non-interacting systems. From Equations (106) and (109),
we obtain:

=mχRPA
L (q, ω) = (ω2/q2)=mχRPA(q, ω)

= =mχ0(q, ω)/|εRPA(q, ω)|2.
(110)

Here, χ0(q, ω) is the Lindhard function, which can be written as:

χ0(q, ω) = <eχ0(q, ω) + i=mχ0(q, ω). (111)

The real part of χ0(q, ω) is given by:

<eχ0(q, ω) = −N (0)
(

1
2 −

1−ν2
−

4q̄ lin
∣∣∣∣ ν−+1

ν−−1

∣∣∣∣
+

1−ν2
+

4q̄ lin
∣∣∣∣ ν++1

ν+−1

∣∣∣∣),
(112)
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while the imaginary part is given by:

=mχ0(q, ω) = N (0) π
4q̄ [(1− ν2

−)θ(1− ν2
−)

− (1− ν2
+)θ(1− ν2

+)].
(113)

Here, θ(x) is a step function having the property that θ(x) = 1 for x > 1 and 0 for x ≤ 0.
The dielectric function within the RPA is given by:

εRPA(q, ω) = 1− vL
q<eχ0(q, ω) + ivL

q=mχ0(q, ω). (114)

Now, we turn to the evaluation of the xc kernel =m fxcL(T)(ω). Substituting Equation (107) and
the first equality of Equation (110) into Equation (85) leads to:

=m fxcL(T)(ω) = gx(ω)4
∫ ω

0

∫ ω
0 dq q2v(q)2

(2π)3n2
0

×
[

aL=mχRPA(q, ω′) + bL(T)
q2

ω2

× =mχ0
T(q, ω′)

]
=mχRPA(q, ω′) .

(115)

We can see from Figure 5.6 of [2] that =χRPA
L (q, ω) terms make noticeable contributions to

=m fxcL(T)(ω) of Equation (115) only in a narrow range of ω for a given q. When we increase ω,
=mχ0

L(q, ω) vanishes identically. However, as ω is close to some value of frequency, say Ωp, the real
part of the dielectric function vanishes, i.e.,

εRPA
1 (q, Ωp) = 1− vL

q<eχ0(q, Ωp) = 0. (116)

From the second equality of Equation (110), we can see that when <eεRPA(q, Ωp) vanishes,
=mχRPA

L (q, ω) becomes a δ-function δ(ω−Ωp). Because the δ-function δ(ω−Ωp) is nonzero sharply at
Ωp, it cannot be properly treated numerically. Therefore, we need to treat it separately. According to [2],
we can write the RPA density-density response as the sum of two contributions:

=mχRPA
L (q, ω) =

=mχ0
L(q, ω)

|εRPA(q, ω)|2 − A(q)δ(ω−Ωp), (117)

where A(q) is defined by:

A(q) ≡ π

v(q)|∂Ωp εRPA
1 (q, Ωp)|

, (118)

with ∂Ωp = ∂/∂Ωp and εRPA
1 (q, Ωp) being the real part of εRPA(q, Ωp). Because this δ-function occurs

at small q̄ in the high-density region where RPA is valid (e.g, q̄ ≤ 0.5 for rs = 1), expanding [2] the
Lindhard function around q = 0, up to order of q2, and then substituting it into the condition for the
existence of δ-function (Equation (116)) yield:

Ω2
p ≈ ω2

p +
3
5

q2k2
F(h̄/m)2 , (119)

where ωp =
√

4πn0e2/m is the q = 0 plasmon frequency. Clearly, Ωp ≥ ωp. The exact Ωp-q relation
can be obtained by solving Equation (116) for Ωp at each q. Inserting Equation (117) into Equation (115)
leads to the final expression:
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=m fxcL(T)(ω) = −gx(ω)4
∫ ω

0
dω′

∫ ∞

0
dq

q2v(q)2

(2π)3n2
0

×
{

aL(T)
=mχ0(q, ω′)

|εRPA((q, ω′)|2 − aL(T)A(q)

× δ(ω′ −Ωp) + bL(T)
q2

ω2=mχ0
T(q, ω′)

}
(120)

×
[
=mχ0(q, ω−ω′)

|εRPA((q, ω−ω′)|2 − A(q)

× δ(ω−ω′ −Ωp)

]
We can separate the continuum electron-hole part from the plasmon contributions by neglecting

the plasmon density-density response in Equation (120). The result is:

=m f e−h
xcL(T)(ω) = −gx(ω)4

∫ ω

0
dω′

∫ ∞

0
dq

q2v(q)2

(2π)3n2
0

×
{

aL(T)
=mχ0(q, ω′)

|εRPA((q, ω′)|2 + bL(T)
q2

ω2 (121)

× =mχ0
T(q, ω′)} =mχ0(q, ω−ω′)

|εRPA((q, ω−ω′)|2

In the following, we will calculate all other terms involving the plasmon contribution. Since the
plasmon contribution vanishes when the plasmon enters the electron-hole continuum, the cutoff radius
qc is determined by the condition [2] A(qc) = 0. By inserting Equation (114) into Equation (118) and
taking the q→ qc limit, an explicit kF − qc relation is obtained as:

k2
s

k2
F q̄2

c

[
1
2
+ (2 + qc)ln

(
2 + q̄c

q̄c

)]
= 1, (122)

where q̄c = qc/kF. For a given wavevector, we can find a corresponding cutoff radius qc by solving
this equation. Define the largest q that satisfies εRPA

1 (Ωp, q) = 0 (Equation (116)) as qp and the largest q
that satisfies εRPA

2 (Ωp, q) = 0 as qm. Then, we have qm < qp < qc.
The simplest term is the plasmon-plasmon contribution:

=m f p−p
xcL(T)(ω) = −gx(ω)4

∫ ω
0 dω′

∫ ∞
0 dq q2v(q)2

(2π)3n2
0
aL(T)

× A2(q)δ(ω′ −Ωp)δ(ω−ω′ −Ωp).
(123)

Performing integration over ω′ yields:

=m f p−p
xcL(T)(ω) = −gx(ω)4

∫ ω
0 dω′

∫ ∞
0 dq q2v(q)2

(2π)3n2
0
aL(T)

× A2(q)θ(ω−Ωp)δ(ω− 2Ωp).
(124)

which, through the change of variable q→ Ωp, can be written as:

=m f p−p
xcL(T)(ω) = −gx(ω)4

∫ Ωp(qm)
ω

dΩ
Ω′p

q2v(q)2

(2π)3n2
0
aL(T)

× A2(q)θ(ω−Ωp)δ(ω/2−Ωp)/2.
(125)

where Ω′p(q) = dΩp(q)/dq and q = q(Ωp). Note that since qp < qc and Ωp(q) = 0 for qp < q ≤ qc,
the upper limit of the q-integral should be Ωp(qp), instead of Ωp(qc). Furthermore, for q > qm,
εRPA

2 (Ωp, q) increases rapidly from zero. In this region, the δ-function is broadened, because



Computation 2017, 5, 28 19 of 22

εRPA
2 (Ωp, q) > 0, while εRPA

1 (Ωp, q) remains zero in this region. Unlike the sharp δ-function,
the broadened δ-function can be captured by numerical integration. Therefore, the contribution
in the range of qm < q < qp has been already included in the electron-hole part (Equation (121)). Thus,
the upper limit of the q-integral actually is qm.

=m f p−p
xcL(T)(ω) = −2gx

1
Ω′p

q2v(q)2

(2π)3n2
0
aL(T)A2(q)

× θ(ω− 2ωp)θ(2Ωp −ω)

∣∣∣∣
Ωp=ω/2

.
(126)

Note that the θ-function in Equation (125) has been dropped, because it is replaced by a more
strict constraint imposed by the two θ-functions in Equation (126).

The electron-plasmon contribution is:

=m f e−p
xcL(T)(ω) = gx(ω)4

∫ ω

0
dω′

∫ qc

0
dq

q2v(q)2

(2π)3n2
0

A(q)

×
{

aL(T)
=mχ0(q, ω′)

|εRPA((q, ω′)|2 + bL(T)
q2

ω2 (127)

× =mχ0
T(q, ω′)}δ(ω−ω′ −Ωp)

leading to:

=m f e−p
xcL(T)(ω) = gx(ω)4

∫ qc

0
dq

q2v(q)2

(2π)3n2
0

A(q)

×
{

aL(T)
=mχ0(q, ω−Ωp)

|εRPA((q, ω−Ωp)|2
+ bL(T)

q2

ω2 (128)

× =mχ0
T(q, ω−Ωp)

}
δ(ω−Ωp)

The plasmon-electron contribution is:

=m f p−e
xcL(T)(ω) = gx(ω)4

∫ ω
0 dω′

∫ qc
0 dq q2v(q)2

(2π)3n2
0

A(q)

× aL(T)δ(ω
′ −Ωp)

=mχ0(q,ω−ω′)
|εRPA((q,ω−ω′)|2 ,

(129)

which, upon the integration over ω′, leads to:

=m f p−e
xcL(T)(ω) = gx(ω)4

∫ qc
0 dq q2v(q)2

(2π)3n2
0

A(q)aL(T)

× =mχ0(q,ω−Ωp)

|εRPA((q,ω−Ωp)|2
θ(ω−Ωp).

(130)

The imaginary part of the xc kernel is the sum of four contributions:

=m fxcL(T)(ω) = =m f e−h
xcL(T)(ω) +=m f p−p

xcL(T)(ω)

+ =m f e−p
xcL(T)(ω) +=m f p−e

xcL(T)(ω).
(131)

This completes our study of the xc kernel in the low-density limit within the RPA. Our formulation
within the RPA should be accurate in the high-density regime. In the low-density regime, the RPA is
not valid any more [39]. The correlation in the low-density regime presents a big challenge in TDDFT
and even the ground-state DFT [40–42].
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8. Conclusions

In conclusion, we have presented a derivation of the stress tensor of the uniform electron gas
based on the geometric formulation of TDDFT. The derivation is based on the geometric reformulation
of TDDFT proposed by Tokatly [11,15,16]. In this new formulation, we treated a dynamical problem as
a static one by performing Lagrangian nonlinear coordination transformation of the system from the
time-dependent laboratory frame to the co-moving frame. In this way, we can calculate the dynamical
potential with the knowledge of the ground-state DFT. This offers a simpler way to calculate the
dynamical xc potential.

Our derivation leads to an alternative form of the time-dependent dynamical xc potential for
the homogeneous system and thus sheds light on a better treatment of the difficult problem for
inhomogeneous systems. To better understand the properties, we have also studied the xc kernel in
the high- and low-frequency limit and proposed a new interpolation formula to correct the exchange
part of the kernel in the high-frequency limit (91). Our new kernel should be more accurate than that
previously proposed by Nifosì, Conti and Tosi [22,23], because our new formula has been designed
not only to recover the correct high-frequency limit, but also to recover the RPA low-frequency limit
derived by Qian and Vignale [35], as well. Although in this work we limit ourselves to the linear
response regime, this geometric approach can be extended to the nonlinear regime [43]. Because this
work involves the ground-state DFT via infinite-frequency or high-frequency limits, it should be of
broad interest to developers and users of TDDFT and DFT.
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