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Abstract: The lattice Boltzmann method is an efficient computational fluid dynamics technique
that can accurately model a broad range of complex systems. As well as single-phase fluids, it
can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also
gained attention as a means of simulating chemical phenomena, as interest in self-organization
processes increased. This paper will present a widely-used and versatile lattice Boltzmann model
that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection,
passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in
a physically accurate framework that is simple to code and readily parallelizable. As well as a
complete description of the model equations, several example systems will be presented in order to
demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect
of a reversible reaction on the transport properties of a convecting fluid, will also be described in
detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux.
The numerical method outlined in this paper can be readily deployed for a vast range of complex
flow problems, spanning a variety of scientific disciplines.

Keywords: lattice Boltzmann method; heat transfer; thermodynamics; convection; reaction-diffusion;
pattern formation; self-organization

1. Introduction

The lattice Boltzmann method (LBM) is a kinetic-based computational fluid dynamics (CFD)
technique that was traditionally viewed as a somewhat esoteric, alternative paradigm for the simulation
of hydrodynamic systems. It originated from the lattice gas cellular automata (LGCA) [1–3], which is a
discrete fluid model involving the movement and collision of particles on a lattice. The LGCA attracted
interest because it was based on a fictitious mode of molecular interactions, but was nonetheless shown
to reproduce the standard Navier–Stokes equations. However, due to its particulate nature, it suffered
from considerable stochastic noise and required coarse-graining and other modifications to be mapped
onto many systems of interest. It remains useful for exploring concepts of statistical mechanics and
dynamical systems theory [4,5], but is less popular for conventional CFD problems.

When the LGCA is coarse-grained, the propagation and collision of individual particles become
the propagation and modification of probability distribution functions for a discrete set of particle
velocities [2,3]. Fluid mass is encoded in these velocity distribution functions, which move under their
own characteristic velocity vectors and exchange mass at discrete grid points due to inter-particle
collisions [6–10]. Thus, the LBM is a kinetic-based model, which does not solve the equations of
motion for a fluid in the continuum limit, but instead solves for the evolution of velocity distribution
functions. With a discrete set of velocities and a suitably-discretized spatial and time domain, the LBM
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can accurately model a range of flow systems, and a suitable multi-scale analysis can be used to derive
the Navier–Stokes equations from the governing equations of the LBM [10,11].

Given its kinetic nature, the LBM can also be expanded to include the advection and diffusion
of internal energy [12–18], alongside the advection and diffusion of momentum. Heat is included
as a passively advected scalar quantity, with an extra set of distribution functions. By extension of
this logic, further passive scalars can be added. This allows multi-phase and multi-component fluids
to be simulated [19–22]. Versions in recent years have developed yet further and incorporated a
range of interactions between these additional components, advancing the LBM into the realm of
chemistry [23–27], including thermal chemical problems such as combustion [28–31].

There are two objectives of the present work: (1) to provide a pedagogical mini review of a general
LBM framework that has become a commonly-deployed model for thermal and chemical flow systems;
(2) to present new results from an investigation of the transport properties of a convective, reacting
fluid system. The key features and equations of the numerical method will be described, and several
example systems will be presented for the purpose of validating the method’s efficacy.

The first sections will present the single-phase LBM, followed by the two-population thermal
version, and example applications will be discussed. The introduction of additional components
and chemical reactions will then be described. A simple, analytically-tractable decay reaction will be
simulated, and it will be shown that the reactive LBM (RLBM) is second order accurate, in line with its
single-phase counterpart. A simple method for extending the RLBM to include thermal reaction rates
and enthalpy changes will then be outlined. The penultimate section explores a system that addresses
a simple question in the field of transport phenomena: to what extent can the presence of chemical
species and reactions alter the heat flux dynamics of a convecting fluid? The paper concludes with a
brief discussion, and suggestions are given for the many applications to which this form of LBM could
be amenable.

2. Chemical Lattice Boltzmann Algorithm

2.1. Single-Phase Fluid

For simulating the hydrodynamics of single-phase fluids, the most basic LBM is a relatively
simple CFD method. As a kinetic-based scheme, it can either be thought of as deriving directly from
the non-equilibrium Boltzmann equation:

∂ f̂
∂t

+ v∇ f̂ = Ω( f̂ ), (1)

or as the result of a coarse-grained averaging of the LGCA [1–3]. Equation (1) describes changes in the
velocity distribution function f̂ as a result of self-advection and particle collisions (represented by the
function Ω( f̂ )). The expression above can be recast into a system with a finite set of discrete velocities
(e.g., the D2Q9 system in two dimensions, see below), which can then be discretized in space and time.
The exact discretisation method depends on the type of LBM being used (see, e.g., Dellar [32]); in this
work, a hidden, semi-implicit scheme is employed.

Assuming a simplification of the collision term in the above equation, wherein the velocity
distribution functions relax towards their respective equilibria (given by a suitable discretization of the
Boltzmann distribution) at a single characteristic rate τν, we arrive at the governing equation for the
LBM [3,7,10,16,33]:

fi (x + ei∆t, t + ∆t)− fi(x, t) = − 1
τν
( fi − f eq

i ) (2)

where i indexes the discrete velocity set, fi is the velocity distribution for velocity i (a measure of the
fluid mass possessing velocity i at that point in space and time), ei is the velocity vector, ∆t is the time
step, τν is the relaxation time scale and f eq

i is the equilibrium distribution:
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f eq
i = ωiρ

[
1 + 3

ei · u
c2 +

9
2
(ei · u)2

c4 − 3
2

u2

c2

]
, (3)

where ωi is the lattice weight for velocity i, c = ∆x/∆t is the lattice speed and Cs =
√

RT = c/
√

3
is the speed of sound. The use of a single-time relaxation step is commonly known as the lattice
Bhatnagar, Gross and Krook (LBGK) method [34].

Fluid properties are calculated from the appropriate moments of the distribution function,
including density and velocity (higher order moments can also be used to calculate internal energy
density and viscous stresses, etc.),

ρ(x, t) = ∑
i

fi(x, t)

ρ(x, t)u(x, t) = ∑
i

ei fi(x, t). (4)

All modeling in the present work is carried out using the two-dimensional D2Q9 velocity set,
which utilizes a square lattice with eight velocities and rest particles. For this set, the velocity weights
are ω0 = 4/9, ωi = 1/9 for i = 1, 2, 3, 4 and ωi = 1/36 for i = 5, 6, 7, 8. The velocity vectors are thus:

e0 = (0, 0)

e1,3, e2,4 = (±c, 0), (0,±c)

e5,6,7,8 = (±c,±c) (5)

Using the Chapman–Enskog expansion, it can be shown that at the macro-level, a fluid obeying
the above equations satisfies the Navier–Stokes equations (see, e.g., Chen and Doolen [7], Succi [10])
with a kinematic viscosity given by

ν =
1
3

(
τν −

1
2

)
c2∆t. (6)

Many years of analysis have revealed that the above-described model can reproduce
incompressible flow dynamics to second order accuracy [6–10,35]. Furthermore, the LBM can be
applied to turbulent flows [6,10,36], and recent novel lattice schemes [37], entropic multi-speed
approaches [38] and cumulant methods [39] have further broadened the range of applications amenable
to simulation by the LBM.

2.2. Thermohydrodynamics

As the LBM developed further, researchers began probing its ability to simulate
thermohydrodynamic, multi-phase and multi-component systems. What emerged were two main
methods for simulating the internal energy density of a modeled fluid. Given the intrinsic connection
between local temperature and particle velocities, one can derive the temperature from the appropriate
moment of the velocity distribution function [14,16,40]:

DρRT
2

= ρε =
1
2

∫
f̂ (v− u)2dv (7)

=
∫

ĝdv, (8)

where D is the spatial dimension, R is the molar gas constant, f̂ is the distribution function before
discretisation, v is the particle velocity, u is the net fluid velocity and ĝ is the distribution function for
internal energy density. The integral is taken over the entire (continuous) velocity space.
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After discretisation, this integral becomes:

DρRT
2

= ∑
i

gi(x, t) (9)

It is possible to construct simulations in which only the evolution of the velocity distribution
function needs to be modeled. However, one must include more than one characteristic relaxation
time and the method suffered from various issues including instability and the presence of spurious
physical effects [41–43]. Note that this approach was more recently developed into a fully-consistent
method using the entropic lattice Boltzmann approach [13].

The alternative to multi-speed models is to track the internal energy distribution using an
additional set of distribution functions. He et al. [14] developed a thermal LBM wherein the function ĝ
is discretized in velocity space, physical space and time in the same way that f̂ is discretized in the
standard LBM. This method was then simplified by Peng et al. [18] into the following form.

The discretized internal energy distribution function evolves analogously to the velocity
distribution function:

gi (x + ei∆t, t + ∆t)− gi(x, t) = − 1
τc
(gi − geq

i ), (10)

where τc is the characteristic relaxation time for internal energy. This parameter controls the
thermal diffusivity:

χ =
2
3

(
τc −

1
2

)
c2∆t. (11)

The equilibrium distribution functions for the internal energy in the D2Q9 velocity system are
given by [18]:

geq
i=0 = −2

3
ρε

u2

c2

geq
i=1,2,3,4 =

1
9

ρε

[
3
2
+

3
2

ei · u
c2 +

9
2
(ei · u)2

c4 − 3
2

u2

c2

]
geq

i=5,6,7,8 =
1

36
ρε

[
3 + 6

ei · u
c2 +

9
2
(ei · u)2

c4 − 3
2

u2

c2

]
(12)

Many thermohydrodynamic problems are related to natural convection, in which buoyancy forces
produce fluid accelerations due to temperature (and hence density) differences. Such an effect can
easily be incorporated into the LBM framework using the Boussinesq approximation, in which it is
assumed that density differences are negligible except with regard to the generation of buoyancy
forces. The body force is represented by an additional term in the evolution equation for the velocity
distribution function, which subsequently becomes:

fi (x + ei∆t, t + ∆t)− fi(x, t) = − 1
τν
( fi − f eq

i ) + Fi. (13)

The body force term is given by:

Fi =
G · (ei − u)

RT0
f eq
i , (14)

where T0 is the mean temperature, G = βg0(T− T0) ĵ is the vector representing the buoyancy force, β is
the thermal expansion coefficient and g0 is gravitational acceleration [14,18]. As with the single-phase
system, this model has been validated over many years by repeated analyses and comparisons with
analytical and experimental results [14,16,18,44,45]. It has been successfully applied to a variety of
thermal flow problems including natural convection [14,18,44,46–50], turbulent convection [51–54],
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thermal channel flows [14,40,55,56] and more complex systems involving multiple phases and phase
change [57–65].

There have also been efforts to understand the relationship between natural convection and the
principle of maximum entropy production (MEP) [66–68] (see Dyke and Kleidon [69], Martyushev and
Seleznev [70] and references therein for details of the MEP principle). It was found that while previous
authors proposed that natural convection was a prime example of MEP [71,72], in fact, this is not the
case. The MEP prediction does not take proper account of the physical properties of the system in
question (hence its generality), but convective heat flux is a strong function of the parameters of the
system and is far more constrained than atmospheric flows (in which MEP predictions can be quite
accurate [73–75]). A variety of counter examples, generated using LBM simulations, showed that MEP
does not in fact predict the steady states of a convective fluid [66,67,76].

2.3. Dissolved Chemical Species

As well as internal energy, the LBM can readily include further additional components
(see, e.g., [19,21]) (note that the original work in this direction was carried out by Gunstensen et al. [20]).
There are a variety of approaches to this problem of multi-component fluids [22,23,25,29,30,77–79], but
arguably the simplest and most commonly-used involves a simple addition of distribution functions
corresponding to each extra component in the fluid. The physical assumption underlying this approach
is that the additional components are low in concentration such that they do not explicitly influence
the fluid flow. They are classed as passive scalars and are advected by any net fluid velocity. Under
this assumption, any number of extra species can be added, and they follow analogous evolution
equations to the internal energy:

hσ
i (x + ei∆t, t + ∆t)− hσ

i (x, t) = − 1
τσ

(hσ
i − heq,σ

i ), (15)

where σ is the component index and τσ is the relaxation time. The equilibrium distributions take on
the following form:

heq,σ
i = ωiρψσ

[
1 + 3

ei · u
c2

]
(16)

where ψσ represents the concentration of species σ. Note that unlike Equation (3), higher order
terms can be neglected from these distributions, since they were shown to be unnecessary by
Ayodele et al. [24] (assuming the Mach number is kept low). Those authors found that both the
linear and quadratic forms of the equilibrium distributions were second order accurate. The diffusivity
of species σ is given by:

Dσ =
1
3

(
τσ −

1
2

)
c2∆t. (17)

and the concentration by:
ρ(x, t)ψσ(x, t) = ∑

i
hσ

i (x, t). (18)

2.4. Isothermal Reactive LBM

The RLBM described above requires further modifications to allow interactions between the
components. The simplest way to introduce chemical reactions is to add extra terms to Equation (15).
It will be assumed that the chemical kinetics can be described using a standard mass action rate law.
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2.4.1. Single Reaction Benchmark Test

As an example test case, the irreversible decay of a reactant A → B in a closed system with
no fluid motion is particularly favorable. Such a system can be described by a pair of coupled
differential equations:

∂ψA
∂t

= DA∇2ψA − kψA (19)

∂ψB
∂t

= DB∇2ψB + kψA, (20)

which can be solved analytically using Fourier transforms. This yields an expression for the
concentration field of species A:

ψA(x, y, t) =
1

4πt
e−

(x−x0)
2+(y−y0)

2

4t e−φ2t, (21)

where it has been assumed that the mass of species A is initially concentrated at the point (x0, y0),
thus ψA(x, y, 0) = δ(x− x0)δ(y− y0). Note that φ2 = L2k/DA is the Thiele modulus, a dimensionless
parameter that measures the ratio of the characteristic reaction time to that of mass diffusion.
For systems that are very large, have a high rate constant or a low mass diffusivity, φ2 � 1, and
the reaction will be the dominant process. If φ2 � 1, because of a combination of small characteristic
length, low reaction rate and/or high diffusivity, the dynamics of the system are dominated by the
process of diffusion, and reaction plays only a minor role. In this work, φ2 = 2× 104.

It is straightforward to construct the RLBM equations for modeling this system. The two passive
scalar species are governed by the following equations:

hA
i (x + ei∆t, t + ∆t)− hA

i (x, t) = − 1
τA

(hA
i − heq,A

i )−ωikψA (22)

hB
i (x + ei∆t, t + ∆t)− hB

i (x, t) = − 1
τB

(hB
i − heq,B

i ) + ωikψA, (23)

where k is the rate constant. The equilibria for this system are simplified due to the lack of fluid motion
(u = 0 and ρ = 1 everywhere):

heq,σ
i = ωiψσ (24)

The RLBM results can now be compared to the exact solution of Equation (21), as was done by
Ayodele et al. [23]. The present assessment differs slightly in that all simulations were initialized
at dimensionless time t0 = 1× 10−4 and run through to t = 2× 10−4. This was motivated by the
desire to avoid initial conditions with large discontinuities. Such discontinuities are inevitable if the
simulation is initiated simply with unit concentration of the reactant at the central grid node, i.e., when
ψA(x, y, 0) = δ(x− x0)δ(y− y0). The numerical error is calculated using:

E =

√√√√∑x,y [ψA,exact(x, y)− ψA,sim(x, y)]2

∑x,y ψA,exact(x, y)2 , (25)

and is plotted for a range of relaxation parameters τA and rate constants k in Figure 1.
Note that in order to compare the same problem for different parameter combinations, the

dimensionless group φ2 and the dimensionless end time t must be kept constant. Thus, the
characteristic length L (grid size) was appropriately adjusted for each [τA, k] pair.

As one might expect, smaller reaction rates and larger diffusivities produce lower errors.
The errors are very similar in magnitude to those found by Ayodele et al. [23]; however, there are no
minima in the error curves here. Using a third-order Chapman–Enskog expansion, Ayodele et al. [23]
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derived an expression for E as a function of various system parameters and found crucially that it is a
quadratic function of the relaxation parameter τA, but also contains several derivatives of the density
ψA. They concluded that since their error curves were not parabolic, errors were clearly entering into
the system due to derivatives of the density. The different shapes of the curves in Figure 1 compared
to those of Ayodele et al. [23] are probably related to the different initial conditions used in the present
work. However, in agreement with Ayodele et al. [23], it was found that there is a linear dependence
between the error and the rate constant k.

0.5 0.6 0.7 0.8 0.9 1 1.1
10

−3

10
−2

10
−1

τ
A

E

 

 

k=0.01

k=0.02

k=0.03

k=0.04

Figure 1. Numerical error of reaction diffusion simulations as a function of relaxation parameter τA for
several reaction rates k.

In conclusion, it is clear that the RLBM is capable of simulating simple reactive systems.
The appropriate Chapman–Enskog expansions have been shown to recover the relevant
reaction-diffusion equations, and the method is second order accurate, in line with the single-phase
version [23,77]. Variants of this RLBM have been used to model a range of chemical flow systems
including the velocity and chemical species distribution around a reacting block in a channel flow [80],
reactive dissolution and precipitation of solid and porous materials [81–84], as well as heterogeneous
catalysis in microflows [85,86].

2.4.2. Pattern Formation in the Gray–Scott System

This section will present a more detailed application of the RLBM to a non-linear, pattern-forming
chemical system known as the Gray–Scott reaction diffusion system (GSRDS) [87–89]. Its defining
characteristic is an autocatalytic reaction that allows stable or oscillatory structures to form in the
concentration fields of the chemical species. As the two main parameters of the system are varied,
a vast suite of different patterns is exhibited, including plane waves, spiral waves, lamellar phases
and circular solitons, or spots [76,88–93]. Such a characteristic example of non-equilibrium pattern
formation is a prime candidate for testing hypotheses regarding the thermodynamics of dissipative
structures and the relationship of such structures to the self-organization processes that contributed to
the origin of life [94,95]. Understanding such self-organization processes could also guide future work
in the fields of microfluidics and nanotechnology [96].

The majority of past investigations of the GSRDS were analytical or numerical, due to
its interesting mathematical properties as a non-linear dynamical system, capable of exhibiting
spatio-temporal chaos and complex pattern formation. These features made it an ideal exemplar
of the original ideas of Turing [97]. Despite the simplicity of the GSRDS, experimental work has shown
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that it can be readily mapped to the ferrocyanide-iodate-sulfite reaction, which exhibits a similar range
of oscillatory and pattern-forming behaviors [90,98,99].

The GSRDS is described by the following equations:

∂ψA
∂t

= DA∇2ψA − ψAψ2
B + F(1− ψA) (26)

∂ψB
∂t

= DB∇2ψB + ψAψ2
B − (F + R)ψB, (27)

where the second RHS terms represent the autocatalytic reaction and the third terms implement porous
wall BCs. These BCs act to maintain the concentration of species A close to unity and the concentration
of species B close to zero. The strength of these supply and removal terms is controlled by the two
parameters F and R. Note that the pattern formation process relies upon the following diffusivity
constraint: DB = DA/2. One can vary F and R freely and observe the aforementioned range of stable
and dynamic structures.

In the case of non-zero solvent velocity, the two equations above gain an extra advection term
and become:

∂ψA
∂t

= DA∇2ψA −∇ · (uψA)− ψAψ2
B + F(1− ψA)

∂ψB
∂t

= DB∇2ψB −∇ · (uψB) + ψA1 ψ2
B − (F + R)ψB

The dynamics of the GSRDS can be reproduced by the RLBM with the following evolution
equations:

hA
i (x + ei∆t, t + ∆t)− hA

i (x, t) = − 1
τA

(hA
i − heq,A

i )−ωi

[
ψAψ2

B − F(1− ψA)
]

hB
i (x + ei∆t, t + ∆t)− hB

i (x, t) = − 1
τB

(hB
i − heq,B

i ) + ωi

[
ψAψ2

B − (F + R)ψB

]
,

with equilibria defined by Equation (16). Such an RLBM system was explored for a still fluid by
Ayodele et al. [23], under several parameter combinations, and subsequently for a sheared fluid [24].

As a comprehensive assessment of the RLBM’s ability in the context of the GSRDS, the entire phase
space of chemical patterns can be reproduced by simulating a system in which the two parameters
F and R vary as a function of the vertical and horizontal coordinate, respectively. An instantaneous
snapshot from such a system is shown in Figure 2.

This phase diagram agrees well with analogous diagrams in previous works [89,91] and highlights
the complex emergent properties of this simple system. As was found by Ayodele et al. [23], the
characteristic size of the chemical structures can be modified by changing the diffusivity DA (keeping
the ratio DB = DA/2 constant). This is achieved in the RLBM simply by changing the relaxation
parameters τA and τB. To highlight this effect, Figure 3 shows four different phase portraits, each with
a different value of τA.

These phase diagrams highlight the coarse-graining effect of increasing the diffusivities of the
two species, which affects all patterns in an essentially equivalent manner. Thus, we now see how the
three key parameters of the system can be tuned to produce any desired pattern from the system’s
repertoire. Changes in F and R take the system through different structural phases, and changes in DA
allow a simple increase or decrease of the characteristic pattern length scale.

Such observations can be leveraged for the exploration of more complex interactions in systems
with large numbers of interacting chemical species. If there were mutual catalytic enhancements and
inhibitions, as well as physical interactions such as modulations of viscosity and/or passive scalar
diffusivities, one can imagine a vast range of potential life-like dynamics, including competition,
symbiosis and arms races.
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Figure 2. RLBM simulation of a GSRDS, with spatially-varying parameters. The supply rate F and
removal rate R are linear functions of the vertical and horizontal coordinate, respectively. The color
map shows the order parameter φ(x, t) = ψA(x, t) − ψB(x, t), with red corresponding to values of
φ = 1 and the deepest blue corresponding to φ ≈ −0.5. Also shown is the Hopf bifurcation (dotted
line) and the saddle node bifurcation (solid line).
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Figure 3. Phase portraits of RLBM simulations of a GSRDS with different relaxation parameters τA.
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2.5. Thermal Reactive LBM

The isothermal constraint of the RLBM is somewhat limiting. A vast range of
important systems involves the coupled dynamics of reactions, heat transfer and convection
(e.g., Andres and Cardoso [100], Rogers and Morris [101]). One of the most common applications
of thermal RLBMs (TRLBMs) has been for problems of combustion [28–30,77–79]. This section will
present a simple approach to relaxing the isothermal assumption of the RLBM, beginning with thermal
rate constants and moving on to enthalpy changes.

Chemical reaction rates are functions of many variables (pressure, cross-section of reactant
molecules, etc.), but one of the most influential is temperature. The temperature dependence of simple
reactions is encapsulated in the Arrhenius equation, which expresses the rate in terms of the frequency
factor A, activation energy E and temperature T:

k(T) = Ae−E/RT , (28)

which can simply replace the constant rate parameter used to scale reactions in the isothermal RLBM.
Another crucial thermal feature of reactions is changes in enthalpy from the reactant to product

state. If we assume that no pressure-volume work is done during a reaction, any free energy difference
will be released as a local change in internal energy, i.e., a gain or loss of heat. In the majority of
LBMs, the fluid is assumed to be incompressible, which automatically constrains the model to cases
of negligible compression work from reactions. If we follow the standard convention of a negative
enthalpy change implying an exothermic reaction, the internal energy distributions of a TRLBM are
governed by:

gi (x + ei∆t, t + ∆t)− gi(x, t) = − 1
τc
(gi − geq

i )−
R

∑
k=1

Ake−Ek/RT∆Hk

N

∏
l=1

ψ
αkl
l , (29)

where R is the number of reactions, Ak, Ek and ∆Hk are the frequency factor, activation energy and
enthalpy change of reaction k, N is the number of chemical species and αkl is the stoichiometric
coefficient for reaction k and chemical species l.

In addition to combustion, variants of the TRLBM have been applied to several complex fluid
problems including microfluidics [102] and fuel cells [103]. It has also been used to explore thermal
effects in the GSRDS. The addition of thermal rate constants and finite reaction enthalpies introduced a
completely new set of physical effects. A strongly endothermic reaction in a convecting fluid produced
a competitive dynamic, in which chemical structures and convection plumes were observed to compete
for a common heat source. This behavior was analogous to ecological effects, allowing compelling
parallels to be drawn between non-living dissipative structures and organisms [76,104].

It was also found that two sets of GSRDSs embedded in the same system could exhibit spontaneous
temperature regulation, if one set had an exothermic reaction and the other an endothermic reaction.
The composite system was found to be robust to large changes of boundary temperature, even when
such changes would normally eliminate the conditions for stable pattern formation [105]. This was
a further example of an effect strongly reminiscent of the living world (homeostasis), exhibited by a
purely physicochemical system.

2.5.1. Reversibility and Heat Transport Enhancement

This final section will present new results from a study in which the TRLBM was used to address
a simple thermodynamic transport problem. The system in question will be a two-dimensional fluid
with two solute species undergoing a reversible reaction A 
 B. If a steady vertical temperature
gradient is imposed on the system, it will respond with a net heat flux in the same direction. This heat
flux is normally constrained by the physical properties of the fluid (viscosity, thermal diffusivity and
coefficient of thermal expansion) and buoyancy force (strength of gravity), as well as the strength of
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the temperature gradient. If that gradient is strong enough, the fluid will undergo convective motion.
With the two chemical species and reaction present, the net heat flux of the system will be affected
(assuming non-zero enthalpy change ∆H). We can ask whether it will be enhanced or diminished, and
if so, how does this scale with the amount of chemical species present. They represent an extra degree
of freedom that the system can potentially make use of.

To address this problem, a series of simulations of a single size were carried out, with two different
sets of fluid parameters. The first set had a Rayleigh number of Ra = 5× 103, and the second had
a value of Ra = 5× 104. For each of the two Rayleigh numbers, simulations were performed with
fixed temperature BCs, and also with fixed flux BCs. The total mass of chemical species present in
the system was varied for each run (but held constant during the run, there was no flux of mass in or
out of the system). It was raised from zero to a value that gave mean concentrations of ψA = ψB = 4.
Each simulation was initialized with a small amount of noise and concluded when a steady state was
reached. Figure 4 displays the steady state configuration of a simulation with Ra = 5× 104, fixed
temperature BCs, and a mean initial chemical species concentration of ψA0 = ψB0 = 2.

The system configured itself such that the endothermic reverse reaction was more prevalent
at the lower, hotter end of the domain, leading to a higher steady state concentration ψA in that
region. The forward, exothermic reaction dominated at the cooler upper boundary, yielding higher
concentrations of B near the top wall. Indeed, it appears that the system maximized its heat flux by
arranging in this way. Having the endothermic reaction dominate at the lower wall means that the
system invests heat energy in converting B to A; this energy is carried by A as it is advected by the flow
before being released gradually as the reaction changes to A→ B at the upper wall. The two chemical
species and their reaction have been utilized as an additional heat delivery mechanism in parallel with
the advection and diffusion of heat alone. Note, however, that the velocity field is identical to that of a
purely convective, Rayleigh–Bénard system (see Figure 4a).

It is straightforward to quantify the heat transport increase exhibited by these systems. Figure 5
shows the different components of heat flux as a function of average chemical species concentration.
The heat flux values are normalized by total heat flux; thus, the curves show fractional contributions to
the three different modes of heat transport: diffusion, convection and advection by chemical species.
Similar trends can be seen for both types of BC. With increases in chemical species concentration, an
increasing heat transport function is exhibited by the chemical aspect of the system, and the relative
roles of the other heat transport mechanisms are reduced. It seems the system is gradually switching
over to a configuration in which advection and reaction provide an increasingly larger fraction of the
total heat transport. This makes sense because higher quantities of chemical species mean that the
heat exchange as a result of reactions will increase, and the amount of heat that can be invested in the
enthalpy of chemical species also increases.

However, one would expect that this trend cannot continue ad infinitum. There is likely to be
a lower limit for the diffusive heat transport (in the fixed boundary temperature case, the absolute
diffusive heat flux is constant since the temperature difference and thermal diffusivity are constant),
since all heat must enter and leave the system by diffusion. The blue curves of Figure 5 appear to have
a decreasing curvature with a gradient that seems to be tending to zero.

Considering the role of convection, it should be kept in mind that the advection of chemical
species relies on there being a sustained fluid flow. That fluid flow is induced by the temperature
gradient, and so, in the case of fixed flux BCs, as the system becomes ”more efficient” at transporting
heat, it gradually diminishes the driving force for the generation of buoyant motion. Thus, for these
BCs, it is likely that there will be an eventual saturation of the relative magnitude of chemical advective
heat transport.

In the fixed temperature case, this can never be an issue because the driving force is constant
(the boundary heat flux adjusts itself to maintain the boundary temperatures at their relevant values).
One observation that is not shown in Figure 5 is that for this BC, the total heat flux increased with
ψ. The presence of the chemical species enhanced the system’s heat transport abilities, and it used



Computation 2017, 5, 37 12 of 18

those new abilities to augment its total heat flux above that which would occur without the action of
the chemistry.

(a)

(b)

(c)

Figure 4. Steady state flow and concentration fields of a TRLBM simulation in which chemical species
A reversibly transforms into species B: A 
 B, which has a lower enthalpy value (the reaction is
exothermic in the forward direction). (a) Temperature field with velocity streamlines; (b) concentration
field of the first component ψA; and (c) concentration field ψB. The initial concentrations were
ψA0 = ψB0 = 2.
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Figure 5. Heat flux components as a function of average chemical species concentration for
TRLBM chemical convection simulations at two different Rayleigh numbers. The heat flux values
(corresponding to diffusion in blue, convection in red and advection by passive scalar chemical species
in green) are normalized by the total heat flux.
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3. Conclusions

This paper described a powerful version of the LBM, in which fluid dynamics, heat transfer,
buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes can
all be incorporated simultaneously. The method is a natural extension of previous versions, and it
retains the second order accuracy of the standard LBM. It is simple to code and easily parallelizable.

The single-phase and thermohydrodynamic forms of the model were described, and previous
applications to natural convection and the validity of the principle of MEP were presented.
It was shown that isothermal chemical reactions can be accurately simulated, and the complex,
pattern-forming behavior of the GSRDS was comprehensively reproduced. Thermally-resolved
systems were then explored, by introducing a temperature-dependent rate factor and reaction-induced
internal energy changes due to enthalpy differences. Previous results including ecological
phenomena (competition and temperature regulation) of dissipative structures in the thermal GSRDS
were discussed.

Finally, an investigation of heat flux enhancement by the reaction and advection of chemical
species was presented. It was observed that convecting fluid systems with a reversible reaction between
solute species are able to transport more heat than their non-chemical counterparts. The presence
of the chemical species provided a parallel channel for heat flow, the spatial structure of which was
optimized by the system to maximize total heat flux.

There is an almost limitless range of systems that can be investigated using this TRLBM, since
the number of chemical species and reactions can be increased until computational power becomes
a binding constraint. Porous media can also be incorporated as they are in the standard LBM, and
geochemical systems such as hydrothermal vents can be readily modeled. A range of fields from
biophysics to astrobiology to chemical engineering could make use of this method.

4. Further Work

To further validate the present method, it would be useful to take a range of complex thermal
chemical systems and compare their results with those of mainstream commercial multi-physics
solvers, and perhaps also with laboratory experiments. It would be interesting to explore the limits at
which the TRLBM begins to lose accuracy, and the computational efficiency of the method should be
compared to more conventional CFD models. Accuracy limits might also be amenable to analytical
calculation.
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