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Abstract: In this work, we summarize the recent progress made in constructing time-dependent
density-functional theory (TDDFT) exchange-correlation (XC) kernels capable to describe excitonic
effects in semiconductors and apply these kernels in two important cases: a “classic” bulk
semiconductor, GaAs, with weakly-bound excitons and a novel two-dimensional material, MoS2,
with very strongly-bound excitonic states. Namely, after a brief review of the standard many-body
semiconductor Bloch and Bethe-Salpether equation (SBE and BSE) and a combined TDDFT+BSE
approaches, we proceed with details of the proposed pure TDDFT XC kernels for excitons. We analyze
the reasons for successes and failures of these kernels in describing the excitons in bulk GaAs and
monolayer MoS2, and conclude with a discussion of possible alternative kernels capable of accurately
describing the bound electron-hole states in both bulk and two-dimensional materials.
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1. Introduction

Accurate theoretical description of the optical properties of materials, especially semiconductors,
is very important. From the practical side, these properties define the ability to absorb and emit light
and many other features of the systems. Additionally, one needs to properly explain spectroscopic and
other optical experimental data used to analyze the optical properties of materials. These properties
are defined to a large degree by the excited states in the system, thus, it is very important to correctly
describe the optical absorption spectrum that includes all possible types of excitations in order to
understand the properties of the existing and predict the properties of new materials.

One of the greatest challenges in the case of semiconductors is proper description of the excitonic
effects. Properties of the excitons, coupled one-electron, and one-hole states are, in principle, defined
by many-body effects. In particular, the binding energy of the excitons and their size strongly depend
on the static and dynamic screenings defined by the other charges, types of the atoms in the system
and by their orbitals that accommodate the electrons and holes forming the exciton, etc. In most
cases, especially for novel, complex, low-dimensional and nano-materials, it is not feasible to describe
excitonic effects by using many-body theory or other phenomenological approaches, which generally
have difficulties in taking all the important details described above into account. Therefore, it is
very desirable to have proper ab initio tools capable of accurately describing excitonic effects in
semiconductors [1].

The standard modern ab initio tool to study excitations in finite systems and solids is TDDFT [2],
an effective theory of charge density, in which all effects of electron-electron interactions and, hence, all
nontrivial excitations are described by the XC potential. Unfortunately, in the case of solids, standard
TDDFT XC potentials, like adiabatic local density approximation (LDA) and generalized gradient
approximation (GGA), do not give excitonic peaks in the absorption spectrum, or give such peaks
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with extremely small binding energies (see, e.g., [3–5]). Therefore, until very recent times the studies
of excitons in semiconductors were almost universally based on a combined ab initio + many body
approach, in which the GW calculations of the single-particle electronic structure were succeeded
by calculations of the two-particle spectrum (that may include excitonic peaks) by solving the
Bethe-Salpeter equation (BSE). This BSE approach [6–8] recommended itself as a reliable tool after being
tested on many systems, though one also meets with difficulties when using it: large computational
times, especially in the case of complex systems, not always well-adjusted approximations for the
vertex function in solving the BS equation, etc. Thus, it would be very desirable to develop TDDFT
XC potentials for excitons. Indeed, TDDFT is free from both shortcomings mentioned above—it is
computationally much less expensive and is, in some sense, “exact”, i.e., one does not need to make
any approximation for the XC potential. Since excitons can be considered within linear response theory,
to study these excitations one basically needs only the linear part of the XC potential defined by the
XC kernel.

The most straightforward way to calculate the TDDFT XC kernel for excitons is to obtain it
from the BSE (see, e.g., [9–11])). This BSE XC kernel, as well as its derivative—the nanoquanta
kernel [11,12]—showed themselves to be rather successful. However, extraction of these kernels
requires almost the same computational efforts as to calculate the excitonic binding energies with
the BSE approach. It is widely believed that one of the reasons of the successes of the BSE and
nanoquanta kernels is that these functionals contain a Coulomb singularity responsible for the effective
long-range electron-hole interaction necessary to form the Rydberg-type coupled electron-hole states.

Then, one may naively expect that a phenomenological long-range (LR) kernel fLR
XC(
→
q ) = −α/

→
q

2
,

with α of the order of the inverse static dielectric constant ε for given material, can be chosen as a
minimal model kernel to describe excitons [12–14]. Indeed, such a kernel was successfully applied
to describe excitonic effects in bulk and 2D materials [4,5,15–19]. Unfortunately, the corresponding
results strongly depend on the value of the parameter α and the relation α ∼ 1/εmay not necessarily
hold for all materials. Moreover, the strength of the oscillator peak (the peak height in the absorption
spectrum) is often overestimated in the LR kernel solution. Moreover, it is doubtful that this kernel is
capable of describing more “complicated” small-size, charge-transfer, excitons. Perhaps, in the last
case semi-local, e.g., Tao-Perdew-Staroverov-Scuseria (TPSS) [20] or Tao-Mo (TM) [21] potentials, that
accurately incorporate the short-range inhomogeneities, charge fluctuations, and other effects, have to
be used.

On the other hand, one can consider more complex but parameter-free kernels with a Coulomb
singularity, like the exact-exchange (EXX) kernel that can be derived from the exact-exchange energy.
Goerling et al. [22,23] have derived the expression for such a kernel from the linear-response solution
for the charge susceptibility. The EXX kernel was successfully applied in many cases (see, e.g., [24]).
Alternatively, one can obtain such a kernel by performing straightforward differentiation of the energy
functional with respect to the charge density. This procedure will give an equation for the XC potential,
called the optimized effective potential (OEP) (for references and details, see, e.g., [25]). The last
equation can be approximately solved and give the XC (for example, the Krieger-Li-Iafrate (KLI) [26])
potential and, subsequently, the XC kernel. The main disadvantage of the EXX, OEP, and similar
potentials is their orbital dependencies, which significantly reduces the speed of the calculations.

Recently, an alternative LR, orbital-independent and parameter-free, bootstrap (BO) kernel
was proposed in [27] and was successfully applied to several materials (see, e.g., [27–29]).
The computational cost of the BO calculations is the same as those of ALDA, and the price can
be reduced even further, by using a semi-analytical approximation in the BO equations, which give the
random phase approximation BO (or RBO) kernel [30].

In this paper, we present details of the TDDFT formalism in the density-matrix representation
(DM-TDDFT), and how it can be used to calculate the absorption spectrum and the excitonic binding
energies in semiconductors. Beginning with the many-body (semiconductor Bloch equation and BSE)
approach for excitons, we follow with details on the most often used approximations for the TDDFT
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XC kernels for excitons, including the contact, LR, and other kernels. In the last part of the work, we
apply many of these kernels to two important materials: “classical” bulk semiconductor GaAs and
a novel one-layer (1L) system of MoS2, [31] a system with very strong absorption and emission and
strongly-bound excitons [31,32]. We discuss the reasons for the successes and failures of different
kernels on the examples of these two representatives of the classes of the 2D and 3D materials, and
argue how one can possibly improve the existing kernels for these two types of systems.

2. Charge Susceptibility, Absorption Spectrum and Excitons

Excitons are very often identified as isolated peaks below the conduction band edge in the
experimentally-observed absorption spectrum. The last function can be calculated from the result for
the charge susceptibility. In this section, we give details of the general scheme on how to calculate
charge susceptibility within many-body theory and TDDFT and how to obtain the absorption spectrum
using these functions. More details on this can be found, for example, in Ref. [25].

2.1. Many-Body Susceptibility

To calculate the charge susceptibility, let us begin with the formulation of general problem of
linear response. In a perturbed system, one can separate the time-dependent charge density into the
static (initial) and the perturbed (fluctuating) parts:

n(
→
r , t) = n0(

→
r ) + n1(

→
r , t). (1)

The space- and time-dependencies of the fluctuating part of the charge density n1(
→
r , t) are defined

by the external potential:
v(
→
r , t) = v0(

→
r ) + v1(

→
r , t)θ(t− t0), (2)

where the first and the second parts are the static (including the ion) and the time-dependent (turned
on at time t0) parts of the potential, respectively. The second term defines also the interaction part of
the many-body Hamiltonian operator in the Heisenberg representation:

Ĥ1(t) =
∫

d3r′v1(
→
r
′
, t)n̂(

→
r
′
), (3)

where n̂(
→
r
′
) is the charge-density operator (here and below, the subscript 1 stands for the first-order,

or linear, approximation). Part (3) of the total Hamiltonian Ĥ(t) = Ĥ0 + Ĥ1(t) defines the effects
of the perturbation on the system (Ĥ0 is the Hamitonian of the unperturbed system). In order to
find the charge susceptibility (and, hence, as we show below, the absorption spectrum), one does not
need to solve the general nonequilibrium problem with the total, and usually a rather complicated,
Hamiltonian Ĥ(t). As an alternative, one can calculate the susceptibility within the linear-response
approximation by finding first the eigenenergies Ωn and eigenfunctions Ψn from the solution of the
static Schrödinger equation with the Hamiltonian Ĥ0. Ωn and Ψn define the charge susceptibility, or
the retarded density-density response function:

χnn(
→
r ,
→
r
′
, t− t′) = −iθ(t− t′)〈Ψ0|

[
n̂(
→
r , t− t′), n̂(

→
r
′
, 0)
]
|Ψ0〉 (4)

where [. . . , . . .] is the commutator of the density operators. The last function in frequency
representation:

χnn(
→
r ,
→
r
′
,ω) = −i

∫ ∞

−∞
dτθ(τ)〈Ψ0|

[
n̂(
→
r , τ), n̂(

→
r
′
, 0)
]
|Ψ0〉eiωτ, (5)

allows one to calculate the absorption spectrum (see Section 2.4).
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In the linear-response approximation, the expression for the susceptibility also defines the density
fluctuation as functional of the external potential:

n1(
→
r , t) =

∫ ∞

−∞
dt′
∫

d3r′χnn(
→
r ,
→
r
′
, t− t′)v1(

→
r
′
, t′), (6)

i.e., Equations (4) and (5) completely define the excitation spectrum and the spatio-temporal
charge dynamics.

To find the explicit frequency-dependent expression for the susceptibility (from Equation (5)),
one can insert the sum of the product of eigenvectors ∑∞

n=0 |Ψn〉〈Ψn| (equal one) between the density
operators in Equation (5), and then use the interaction representation for the density operators:
n̂(
→
r , τ) = eiĤ0τn̂(

→
r )e−iĤ0τ (n̂(

→
r ) on the right-hand side is time-independent), and use the fact that

e−iĤ0τ|Ψn〉 = e−iΩnτ|Ψn〉. This gives:

χnn(
→
r ,
→
r
′
,ω) = ∑ ∞

n=0(
〈Ψ0|n̂(

→
r )|Ψn〉〈Ψn|n̂(

→
r
′
)|Ψ0〉

ω−Ωn + Ω0 + iη
− 〈Ψ0|n̂(

→
r
′
)|Ψn〉〈Ψn|n̂(

→
r )|Ψ0〉

ω+ Ωn −Ω0 + iη
). (7)

The last result can be also used to calculate the frequency-dependent fluctuating charge density
from the frequency transform of Equation (6):

n1(
→
r ,ω) =

∫
d3r′χnn(

→
r ,
→
r
′
,ω)v1(

→
r
′
,ω). (8)

To summarize, knowledge of the eigenenergies and eigenfunctions of the unperturbed system
allows one to calculate the charge susceptibility from Equation (7), which gives the excitation and
absorption spectrum, including the excitonic peaks, and in general to obtain the linear-response charge
dynamics from Equation (6) or Equation (8).

2.2. TDDFT Susceptibility

In TDDFT, the many-body problem is mapped on an effective problem of one electron in an
“external” Kohn-Sham (KS) potential:

vKS[n](
→
r , t) = v(

→
r , t) +

∫
d3r′

n(
→
r
′
, t)

|→r −→r
′
|
+ vXC[n](

→
r , t), (9)

which is in general a non-linear functional of the charge density (the first, the second and the last terms
on the right-hand side are the external, Hartree and the XC potentials, correspondingly). To find the
linear-response TDDFT susceptibility, one can begin with substituting the linear (in external field and

density) part of the KS “perturbing” potential vKS1(
→
r
′
, t′) into the linear-response TDDFT analogue of

the many-body Equation (6):

n1(
→
r , t) =

∫
dt′
∫

d3r′χKS(
→
r , t,

→
r
′
, t′)vKS1(

→
r
′
, t′), (10)

where

χKS(
→
r , t,

→
r
′
, t′) =

δn[vKS](
→
r , t)

δvKS(
→
r
′
, t′) | vKS=vKS[n0](

→
r )

(11)

is the KS susceptibility. The explicit expression for the linear KS XC potential is:

vKS1[n](
→
r , t) = v1(

→
r , t) +

∫
d3r′

n1(
→
r
′
, t)

|→r −→r
′
|
+ vXC1[n](

→
r , t), (12)
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The only nontrivial (XC) part of the KS potential can be written as:

vXC1[n](
→
r , t) =

∫
dt′
∫

d3r′fXC(
→
r , t,

→
r
′
, t′) n1(

→
r
′
, t′), (13)

where

fXC(
→
r , t,

→
r
′
, t′) =

(
δvXC[n](

→
r , t)

δn(
→
r
′
, t′)

)
n0(
→
r )

(14)

is the XC kernel, the key component of the TDDFT theory for excitons.
As the next step of the derivation of the equation for the susceptibility, one can substitute

Equation (13) into Equation (12), and then Equation (12) into Equation (10), which gives:

n1(
→
r , t) =

∫
dt′
∫

d3r′χKS(
→
r , t,

→
r
′
, t′)
[
v1(
→
r
′
, t′)

+
∫

dτ
∫

d3x
{
δ(t′−τ)
|→r
′
−→x |

+ fXC(
→
r
′
, t′,
→
x , τ)

}
n1(
→
x , τ)

]
.

(15)

Expressing the linear charge density in the last equation in terms of the susceptibility Equation (6)
gives the TDDFT equation for the charge susceptibility in terms of the KS susceptibility and the
XC kernel:

χnn(
→
r , t,

→
r
′
, t′) = χKS(

→
r , t,

→
r
′
, t′)

+
∫

dτ
∫

d3x
∫ ∞
−∞ dτ′

∫
d3x′χKS(

→
r , t,

→
x , τ)

{
δ(τ−τ′)
|→x−→x

′
|

+fXC(
→
x , τ,

→
r
′
, t′)
}
χnn(

→
r
′
, τ′,

→
r
′
, t′).

(16)

The KS susceptibility can be obtained from the static DFT results for the KS eigenfunctions ϕ0
i (
→
r )

and eigenenergies Ei as:

χKS(
→
r ,
→
r
′
,ω) =

∞

∑
j,k=1

(fk − fj)
ϕ0

j (
→
r )ϕ0∗

k (
→
r )ϕ0∗

j (
→
r
′
)ϕ0

k(
→
r
′
)

ω− Ej + Ek + iη
, (17)

where EF is the Fermi- or the highest-occupied molecular orbital energy and fj = θ(EF − Ej) are the
state occupancies (see Appendix A for the details of the derivation of the last equation).

Equation (16) can be also written in the frequency domain:

χnn(
→
r ,
→
r
′
,ω) = χKS(

→
r ,
→
r
′
,ω)

+
∫

d3x
∫

d3x′χKS(
→
r ,
→
x ,ω)

{
1

|→x−→x
′
|
+ fXC(

→
x ,
→
x
′
,ω)

}
χnn(

→
x
′
,
→
r
′
,ω).

(18)

Then, inverting Equation (18) one may obtain the XC kernel in terms of the KS and total
susceptibilities:

fXC(
→
r ,
→
r
′
,ω) = χ−1

KS (
→
r ,
→
r
′
,ω)− χ−1

nn (
→
r ,
→
r
′
,ω)− 1

|→r −→r
′
|
. (19)

Thus, one can calculate the charge susceptibility from Equation (16) by using the static DFT
result for the KS susceptibility (Equation (17)) and the TDDFT XC kernel. Provided the XC kernel
has the proper form, one can obtain the exciton peaks in the absorption spectrum obtained from the
susceptibility, as shown in Section 2.4.

2.3. Susceptibility: Finite vs. Extended (Periodic) Systems

The results obtained in the last two Subsections are valid in the general cases of finite systems
and infinite non-periodic systems. In this subsection, we present the corresponding formula for the
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TDDFT susceptibility for periodic systems. In the last case, the problem is simplified, since one needs
the KS eigenfunctions in the primitive cell only and the eigenvalues (band energies) are defined by the
momenta in only one, the first, Brillouin zone.

Indeed, due to translation invariance of the response function:

χ(
→
r ,
→
r
′
,ω) = χ(

→
r +

→
r ,
→
r
′
+
→
r ,ω) (20)

(
→
R are lattice vectors) and of the other functions, like χKS(

→
r ,
→
r
′
,ω), fXC(

→
r ,
→
r
′
,ω) and the Coulomb

potential 1
|→r−→r

′
|
, one can express them as Fourier sums:

χ(
→
r ,
→
r
′
,ω) =

1
V ∑
→
k

∑
→
G,
→
G
′
e−i(

→
k+
→
G)
→
r χ(
→
k +

→
G,
→
k +

→
G
′
,ω)ei(

→
k+
→
G
′
)
→
r
′

(21)

(and similar for χKS(
→
r ,
→
r
′
,ω) and fXC(

→
r ,
→
r
′
,ω)) and:

1

|→r −→r
′
|
=

1
V ∑
→
k

∑
→
G,
→
G
′
e−i(

→
k+
→
G)
→
r δ→

G,
→
G
′

4π

|
→
k +

→
G|

2 ei(
→
k+
→
G
′
)
→
r
′
, (22)

where
→
G and

→
G
′

are the reciprocal vectors. To simplify the expressions for the functions in the sums in
the last equations, we introduce the definitions:

χ→
G
→
G
′(
→
k ,ω) = χ(

→
k +

→
G,
→
k +

→
G
′
,ω), (23)

v→
G
(
→
k ) =

4π

|
→
k +

→
G|

2 . (24)

Substituting Equations (21)–(24) into Equation (18) gives the (reciprocal vector) matrix equation
for the charge susceptibility:

χ→
G
→
G
′(
→
k ,ω) = χ

KS
→
G
→
G
′(
→
k ,ω)

+ ∑
→
G1,
→
G2

χ
KS
→
G
→
G1
(
→
k ,ω)

{
v→

G1
(
→
k ,ω)δ→

G1
→
G2

+ f
XC
→
G1
→
G2
(
→
k ,ω)

}
χ→

G2
→
G
′(
→
k ,ω),

(25)

where the frequency-dependent KS matrix susceptibility is defined as:

χ
KS
→
G
→
G
′(
→
k ,ω) = 1

V ∑
→
k
′

∞
∑

j,l=1

(f
l
→
k +
→
k
′−f

j
→
k
′ )

ω+ε
j
→
k
′−ε

l
→
k +
→
k
′+iη

∫
d3rϕ0∗

j
→
k
′(
→
r )e−i(

→
k+
→
G)
→
rϕ0

l
→
k+
→
k
′(
→
r )

×
∫

d3r′ϕ0∗
l
→
k+
→
k
′(
→
r
′
)ei(

→
k+
→
G
′
)
→
r
′
ϕ0

j
→
k
′(
→
r
′
)

(26)

and j, l are the band indices (for derivation of the last expression, see, for example [25]).

The solution of the matrix Equation (25) for χ→
G
→
G
′(
→
k ,ω) (in practice, the equation is solved with a

finite number of the reciprocal vectors that defines the rank of the matrices) basically consists of matrix
inversion, and can be written as:

χ→
G1
→
G2

= ∑
→
G3

(A−1)→
G1
→
G3

χ0
→
G3
→
G2

, (27)
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where
A→

G1
→
G3

= δ→
G1
→
G3
−∑
→
G4

χ0
→
G1
→
G4

f
HXC

→
G4
→
G3

, (28)

and:
f
HXC

→
G4
→
G3

= v→
G4
δ→

G4
→
G3

+ f
XC
→
G4
→
G3

(29)

(we have omitted the momentum and frequency indices (
→
k ,ω), which are the same for each function

and matrix in Equations (27)–(29)). The required number of the required reciprocal vectors is needed
to be checked separately for each problem.

In the next subsection, we present details how one can obtain the absorption spectrum by using
the susceptibilities from Equations (7), (18) and (27).

2.4. Absorption Spectrum

The absorption spectrum can be obtained by calculating the imaginary part of the macroscopic

dielectric function εmac(ω) that can be found by space-averaging the dielectric function ε(
→
r ,
→
r
′
,ω).

The last function is connected with the charge (optical) susceptibility from the previous subsections as:

ε(
→
r ,
→
r
′
,ω) = 1 + 4πχ(

→
r ,
→
r
′
,ω). (30)

In order to perform the macroscopic averaging of the last function, one can use the equation that
connects the microscopic electric induction and the electric field by means of the dielectric function:

→
D(
→
r ,ω) =

∫
d3r′ε(

→
r ,
→
r
′
,ω)

→
E(
→
r
′
,ω), (31)

which, in the case of a periodic system, can be transformed to:

→
D→

G
(
→
k ,ω) = ∑

→
G
′
ε→

G
→
G
′(
→
k ,ω)

→
E→

G
′(
→
k ,ω). (32)

Averaging of the last equation over the unit cell gives the scalar relation between the macroscopic
quantities:

→
Dmac(ω) = εmac(ω)

→
Emac(ω). (33)

In the homogeneous case, when ε(
→
r ,
→
r
′
,ω) = ε(

→
r −→r

′
,ω), the dielectric function ε(

→
r ,
→
r
′
,ω)

depends on the difference of two spatial vectors and its Fourier transform ε→
G
→
G
′(
→
k ,ω) is diagonal in the

reciprocal vector indices. In this case, the average of ε(
→
r ,
→
r
′
,ω) can be easily obtained by integrating

over (
→
r −→r

′
), which gives:

εhom
mac (ω) = εhom(

→
q → 0,ω ). (34)

In the general, non-homogeneous, case due to local-field effects (spatial fluctuations), the situation

is more complicated since ε→
G
→
G
′(
→
k ,ω) is a non-diagonal matrix. In particular, in the case of cubic

systems, to calculate εmac(ω), one needs to perform the matrix inversion (see, e.g., [33]):

εmac(ω) =

[
ε−1
→
G
→
G
′(
→
k → 0,ω )|→

G=0,
→
G
′
=0

]−1
. (35)

In order to connect ε−1
→
G
→
G
′(
→
k → 0,ω ) with the charge susceptibility matrix, one can write, in

analogy with Equation (33), the equation:
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v1(
→
r ,ω) =

∫
d3r′ε(

→
r ,
→
r
′
,ω)

[
v1(
→
r
′
,ω) +

∫
d3r′′

n1(
→
r
′′

,ω)

|→r
′
−→r

′′
|

]
, (36)

Using Equation (6) gives:

ε−1(
→
r ,
→
r
′
,ω) = δ(

→
r −→r

′
) +

∫
d3r′′

χ(
→
r
′′

,
→
r
′
,ω)

|→r −→r ′′ |
. (37)

In the periodic case, the last equation can be transformed to:

ε−1
→
G
→
G
′(
→
k ,ω) = δ→

G
→
G
′ + v→

G
(
→
k )χ→

G
→
G
′(
→
k ,ω). (38)

One can show from the last equation that the macroscopic dielectric function is:

εmac(ω) = 1− v0(
→
k → 0 )χ00(

→
k → 0,ω ), (39)

where χ→
G
→
G
′(
→
k ,ω) is calculated from Equation (25) with:

v→
G
(
→
k ) =


0,
→
G = 0

4π

|
→
k+
→
G|

2 ,
→
G 6= 0

(40)

(for details of the derivation of Equation (38) and references, we refer the reader to Appendix M of [25]).
Thus, Equations (7), (18), (27) and (38) define the absorption spectrum. In the next section we begin

to discuss the general features of different theories for excitons and how these features must be reflected
in the structure of the XC kernel needed to obtain the absorption spectrum with excitonic peaks.

3. Many-Body Approaches for Excitons

3.1. Semiconductor Bloch Equations and the Wannier Equation

The simplest many-body approach for excitons is based on the single-particle approximation.
Namely, one can consider the following two-band second quantized Hamiltonian of interacting
quasi-particles in the Heisenberg representation for the operators [34]:

H = ∑
k
(Ecka+k ak −Evkb+

−kb−k)

+ 1
2 ∑

k,k′ ,q 6=0
Vq(a+k+qa+

k′−q
ak′ak + b+

k+qb+
k′−qbk′bk − 2a+k+qa+

k′−q
bk′bk)

− →ε (t)∑
k
(a+k b−k

→
dcv + h.c.),

(41)

where ak and b−k correspond to the electron and hole operators with the subscript momentum indices,
Eck and Evk are the electron and hole (conduction and valence band) spectra, Vq is the Coulomb

potential,
→
ε (t) is the pulse electric field and

→
dcv is the transition dipole moment (for simplicity, we

omit the spin indices and vector symbols over the momentum and spatial vectors in this and/or some
other large-size equations below). We use the dipole approximation for the interaction of the electrons
and holes with the electric field, which is valid when the electric field wavelength is much larger
than the unit cell and the magnetic component of the pulse can be neglected, like in the case of the
visible light.

To analyze the response of the system to an external perturbation it is convenient to introduce the
following quantities of interest that can be expressed in terms of averaged operators:
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nck(t) = 〈a+k ak〉, (42)

nvk(t) = 〈b+
−kb−k〉, (43)

Pk(t) = 〈b−kak〉, (44)

which correspond to the excited electron density, excited hole density and charge polarization
(including excitonic states), respectively.

Writing down the Heisenberg equations for the operators under the average brackets in the last
three equations, then statistically averaging the resulting equations, and making the Hartree-Fock
splitting in the four-operator terms, one can get the semiconductor Bloch equations for the charge
densities and the polarization:

i
∂Pk(t)

∂t
= (Eck − Evk)Pk(t) + (nck(t) + nvk(t)− 1)

[
→
dcv
→
ε (t) + ∑

q 6=k
V|k−q|Pq(t)

]
+ i

∂Pk(t)
∂t
|scatt, (45)

∂nck(t)
∂t

= −2Im

{[
→
dcv
→
ε (t) + ∑

q 6=k
V|k−q|Pq(t)

]
P∗k(t)

}
+

∂nck(t)
∂t
|scatt, (46)

∂nvk(t)
∂t

= 2Im

{[
→
dcv
→
ε (t) + ∑

q 6=k
V|k−q|Pq(t)

]
P∗k(t)

}
+

∂nvk(t)
∂t

|scatt, (47)

where the last terms describe the scattering effects beyond the HF approximation. These equations
allow one to find the time dependencies of the excited electron and hole densities, as well as the
polarization. The last quantity in the frequency representation defines the absorption spectrum
(∼ ImP(ω)

(ω)
, see, e.g., [4]).

In the linear response theory approximation in the case of weak pulses one can put in these
equations nck(t) = 1, nvk(t) = 0. Then, in the parabolic band approximation Equation (45) in the
frequency representation transforms to:

(ω− Eg −
k2

2mr
)Pk(ω)− ∑

q 6=k
V|k−q|Pq(ω) = −

→
dcv
→
ε (ω), (48)

where Eg is the band gap energy and mr is the reduced electron-hole mass (we neglected the scattering
effects beyond the HF approximation).

It is easy to see that the last equation reduces to the many-body Wannier equation for the
excitons [35] if one neglects the (source) term on its right-hand side. The solution of the Wannier
equation gives the energy of exciton—a coupled state of electron and hole that interact with the
Coulomb potential Vk. Thus, the polarization has a pole at the excitonic energy within the band gap,
and hence the absorption spectrum possesses a peak at this energy. In principle, one can use the
solution of Equation (48) to estimate the exciton energies in solids by adding a dielectric (screening)
parameter 1

ε in front of the Coulomb potential, though in many cases such an approximation, which
neglects details of the dynamical and local-field effects, is not sufficient.

3.2. Bethe-Salpeter Equation

A higher level of the many-body approximation to study excitons is based on the Bethe-Salpeter
equation (BSE) approach [6–8]. In this case, to describe the two-particle effects, including excitons,
along with the one-particle Green’s function (GF):

Gab = −i〈T̂aaa+b 〉, (49)
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and one also finds the two-particle GF:

Gabcd = −i〈T̂aaaba+c a+d 〉, (50)

where T̂ is the time-ordering operator. For simplicity, in the last two equations we use one lower
index for the electron operator, that corresponds to the space and time coordinates and the electron
quantum numbers, like momentum, orbital momentum and spin. While the one-particle GF describes
the single-particle properties, the two-particle one contains information about the energies of the
two-particle states, including excitons, and other two-particle properties of the system.

Formally, the solution for the two-particle GF can be expressed in terms of one-particle GFs as:

Gabcd = GacGbd −GadGbc + Gaa′Gc′c Kr
a′b′c′d′Gd′dGb′b, (51)

where Kr is a reducible kernel and summation (integration) over repeated indices is assumed
(for details, see, e.g., [36]).

For the reasons given below, it is more convenient to use an irreducible kernel K instead of the
reducible one (the irreducible kernel, contrary to the second one, does not include diagrams that can be
divided by cutting two single-particle GF lines). Both kernels are connected by the following relation:

Kr
abcd = Kabcd −Kab′ cd′Gd′a′ Gc′b′ Kr

a′bc′d. (52)

Using the irreducible kernel, one can write an equation for another GF:

Labcd = −Gabcd + GacGbd. (53)

This equation is:
Labcd = GadGbc −Gaa′Gc′c Ka′b′c′d′Ld′bb′ d. (54)

Equations (52) and (54) are called the Bethe-Salpeter equations for the reducible kernel and for
the Green’s function L, correspondingly.

There are several advantages of using the function Labcd instead of Gabcd. The first one is that one
can easily find the charge susceptibility from Labcd:

χab = −iLaba+b+ (55)

(the upper plus signs mean that the time for the corresponding operators is larger by an infinitesimally
small amount than in the corresponding operator without this sign). Another important advantage is
the possibility to calculate the excitonic spectrum from Equation (54). Let us demonstrate this.

Assuming the Coulomb interaction to be weak, and expanding the two-particle GF on the
left-hand side of Equation (51) in the lowest-order approximation in the Coulomb interaction vab, one
can obtain the lowest order in vab approximation for Kr. Then, substitution of Kr into Equation (52)
allows one to find the lowest-order expression for K:

Kabcd = −iδadδbcvac + iδacδbdvab. (56)

Substituting this result into Equation (54), approximating the single-particle GFs in the last
equation by their free-electron counterparts G0

ad, putting the time variables equal ta = tc = t and
tb = td = t′ and performing the frequency Fourier transform with respect to the time variable (t− t′),
one can modify Equation (54) to:

Labcd(ω) = L0
abcd(ω) + iL0

ab′ ca′(ω)va′b′ La′bb′d(ω)− iL0
aa′ ca′(ω)va′b′ Lb′bb′d(ω), (57)

where L0
abcd = G0

adG0
bc (detailed expression for this function is given in Equation (58) below).
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To show explicitly that the function Labcd(ω) defined in Equation (57) contains the necessary
information about the excitons, we will transform the last equation into an equation that looks more
similar to the familiar excitonic Wannier equation (Equation (48)). For this, the following steps need
to be taken. First, one transforms the time-ordered GFs into the retarded ones using the Langreth’s
rules [36]. Second, using the Lehmann’s representation for the free GFs one can express them in terms
of the DFT KS wave functions and energies. This, in particular, gives:

LR0(x1, x2, x3, x3,ω)

= ∑
n,m

fn(1− fm)
[
ϕ0

m(x1)ϕ
0∗
m (x4)ϕ

0
n(x2)ϕ

0∗
n (x3)

ω−εm+εn+iη

−ϕ
0
m(x2)ϕ

0∗
m (x3)ϕ

0
n(x1)ϕ

0∗
n (x4)

ω+εm−εn+iη

]
.

(58)

As the next step, one can look for the solution for the GF L by using the following approximation
(ansatz):

LR(x1, x2, x3, x3,ω) = ∑
c,v

[
ϕ0

c(x1)ϕ
0∗
v (x3)Lcv(x1, x3,ω) +ϕ0

v(x1)ϕ
0∗
c (x3)Lvc(x1, x3,ω)

]
. (59)

Finally, substituting this expression into Equation (57), one can obtain two equations for the
unknown “excitonic” matrix elements Lcv and Lvc. In the case of applied pulse with frequency close
to the gap frequency, one can show that Lvc � Lcv, i.e., Lvc can be neglected (this corresponds to the
Tamm-Dancoff approximation). This can be seen by looking at the pole structure of these two functions
at frequencies close to the gap value: Lcv ∼ 1

ω−Eg+iη , Lvc ∼ 1
ω+Eg+iη .

Thus, the remaining equation in momentum representation becomes:

(ω− Eg −
p2

2mc
− k2

2mv
)Lcv;pk(ω) + ∑

q 6=k
V|k−q|Lcvq;q−(p−k)(ω) = 0, (60)

i.e., it has the form of the Wannier Equation (48). Therefore, function Lcv and hence the two-particle
GF (54) has an excitonic pole(s) (for more details of the derivation, see book [36]). In practice, however,
one needs to solve the original Equation (57) more accurately to obtain the excitonic binding energies
in the BSE formalism.

4. TDDFT and Excitons: the Density-Matrix Approach

To begin, the discussion on studies of excitons with “pure” TDDFT, we present the DM formulation
of this theory [4,5,19], which is one of the most convenient schemes for the practical applications. To
derive the DM-TDDFT equation for the exciton binding energy, one can begin with the KS equation:

i
∂Ψv

k(r, t)
∂t

= H(r, t)Ψv
k(r, t), (61)

where k is the wave vector, v is the valence-band index, and the KS Hamiltonian is:

H(r, t) = −∇
2

2m
+ VH[n](r, t) + VXC[n](r, t) + erE(t). (62)

In the last equation, the terms on the right-hand side are the kinetic (first), Hartree (second), and
XC (third) potentials, and an external homogeneous electric field (the last term). Equation (61) has to
be solved self-consistently with the equation for the electron density:

n(r, t) = ∑
l,|k|<kF

|Ψl
k(r, t)|2 (63)
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where l are the occupied band indices. In the DM representation, Equations (61) and (62) are solved by
expanding the KS wave function in the basis of the static DFT wave functions ϕ0l

k (r):

Ψv
k(r, t) = ∑

l
cvl

k (t)ϕ0l
k (r). (64)

The time-dependent coefficients cvl
k (t) completely describe the system dynamics. Below we drop

index v for sake of simplicity, since we will consider the case of one valence band. The coefficients
cl

k(t) can be found from the following equation:

i
∂cm

k
∂t

= ∑
l

Hml
kkcl

k, (65)

where
Hlm

kq(t) =
∫
ϕ0l∗

k (r)H[n](r, t)ϕ0m
q (r)dr. (66)

However, to study the system response it is more convenient to consider the bilinear combination
of c-coefficients, the density matrix:

ρlm
kq(t) = cl

k(t)c
m∗
q (t). (67)

Its diagonal elements describe the level occupancies, while the non-diagonal ones—the electron
transitions, including the excitonic effects. The matrix elements satisfy the Liouville equation:

i
∂ρlm

kq(t)

∂t
= [H(t), ρ(t)]lmkq . (68)

In the case of two (valence v and conduction c) bands, one can derive the exciton TDDFT equation
for the non-diagonal element ρcv

kq(t) by using Equations (62), (63), (66) and (68). Expansion of the
charge density fluctuations in Equation (68), in terms of the density matrix elements (Equation (67))
(by using Equation (63)), leads to the TDDFT Wannier equation [5]:[

(εc
k+q − ε

v
k)δkk′ + Fcvvc

kkk′k′

]
ρcv

n,k′+αq(ω) = En,q, ρcv
n,k+αq, (69)

where q is the exciton momentum, α is the reduced hole mass, and n is the bound state number.
The effective electron-hole interaction is described by the last term in the brackets defined as:

Fabcd
kqk′q′(ω) =

∫
dr1dr2ϕ

0a∗
k (r1)ϕ

0b
q (r1)fXC(r1, r2,ω)ϕ0c∗

k′ (r2)ϕ
0d
q′ (r2). (70)

One can obtain the excitonic binding energies from Equation (69) by setting q = 0.
We have generalized the above formalism for the case of higher excitations—trions and

biexcitons [19]. One can derive equations for these quasi-particles similar to Equation (69) by expanding
the corresponding wave functions in terms of three (trion) and four (bi-exciton) KS wave functions
with the coefficients that include the corresponding polarization matrix elements. The solution of the
equation for this element will give the binding energy for the trion and biexciton. In addition to the
e-h attraction terms of type (69), and the equation will also include the e-e and h-h repulsion terms
with the interaction matrix elements:

wcdab
k1k2p1p2

=
1
εee

∫
dr1dr2ϕ

0c∗
k1

(r1)ϕ
0d∗
k2

(r2)
1

|r1 − r2|
ϕ0a

p1
(r1)ϕ

0b
p2
(r2) (71)

(εee is static e-e screening; for details, see [19]).
In the following Subsections we present an overview of the main types of the proposed kernels to

study excitons with TDDFT. To calculate the excitonic energy one can proceed in three ways:
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(1) to calculate the dielectric function with a given fxc, as described in Section 2. Then, the excitonic
binding energies will be identified as peaks in the absorption spectrum.

(2) to propagate in time the KS equation, with consequent frequency transformation of the
polarization matrix element which also defines the absorption spectrum that might include
excitonic peaks.

(3) to solve the linearized Equation (69) for the excitonic binding energies.

The first and the third approaches correspond to the linear response (where the XC kernel is used),
while the second might be regarded as a more general, since the time-propagation of the KS equation
can be performed for any non-linear XC potential.

Below, we describe the main types of proposed XC kernels which we will use to calculate the
excitonic binding energies with Approach 3.

5. XC Kernels

5.1. BSE Kernel: General Definition and the Nanoquanta Approximation

The most straightforward and most formal way to analyze the structure of the XC kernel for
excitons would be to start from the BSE (Equation (54)). Namely, one can derive the equation for the
charge susceptibility from Equation (54) by using the variables for the function L as in Equation (55) and
compare the resulting equation with the corresponding TDDFT (Equation (18)) in order to obtian the
structure of the BSE fxc. After some straightforward but cumbersome transformations, the combination
of these two equations give the following equation that connects the XC kernel with the reducible
kernel K: ∫

dr3dr4χKS(r1,r3)fXC(r3,r4)χ(r4,r2)

=
∫

dr3dr4dr5dr6LKS(r1,r5, r1,r3)K(r3,r4, r5,r6)L(r6,r2, r4,r2).
(72)

In some sense, it is meaningless to apply the BSE XC kernel to study the excitons with TDDFT,
since the solution of the BSE equation along with the XC kernel provides also the excitonic energies (as
poles of the charge susceptibilities, Equation (55)). However, the knowledge of the structure of the
BSE XC kernel for excitons is very important from the point of view of building the general TDDFT
for semiconductors.

Below, we briefly describe one possible approximation for the solution of Equation (72),
which gives the so-called nanoquanta XC kernel [12]. In this approximation, one first finds the
many-body single (quasi)-particle GF Gqp(r1,r2,ω) = ∑

k
ϕqpk(r1,,ω)ϕqpk(r2,,ω)/

[
ω− Eqpk

]
by using

the lowest-order GW approximation for the electron self-energy, Σ(r1,r2) = iGqp(r1,r2)W(r1,r2), where
the screened Coulomb interaction is defined by the equation:

W(r1,r2) = v(r1,r2) +
∫

dr3dr4v(r1,r3)χ̃(r3,r4)W(r4,r2) (73)

where (χ̃(r3,r4) is the irreducible susceptibility). Then, using the one-loop approximation (the first
term in Equation (54)) for LKS and L on the r.h.s. of Equation (72) and the one-loop approximation
for the susceptibilities on the l.h.s. of this equation, χ(r1,r2) = χKS(r1,r2) = χqp(r1,r2) =

−iGqp(r1,r2)Gqp(r2,r+1 ), one can obtain an equation for the part of the XC kernel that produces
excitonic states:∫

dr3dr4χqp(r1,r3)fXC(r3,r4)χqp(r4,r2)

=
∫

dr3dr4dr5dr6Gqp(r1,r3)Gqp(r4,r1)W(r3,r4)Gqp(r3r2)Gqp(r2,r4),
(74)

with the screened interaction defined by Equation (73), where one sets χ̃(r3,r4) = χqp(r1,r2). This kernel
was successfully applied to study the excitonic effects in different materials, including Si [3] and Ar [10].
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5.2. Adiabatic Local XC Kernels

In the adiabatic approximation, all memory effects are neglected. To get an excitonic state, the
memory effects do not appear to be decisive, though they can significantly modify the binding energy.
The simplest adiabatic XC kernel is the adiabatic (local-in-time) spatially-independent contact kernel:

fcontact
XC (

→
r ,
→
r
′
,ω) = −4πAδ(

→
r −→r

′
), (75)

where A describes the effects of local charge “interaction”. Being purely phenomenological, this kernel
can capture the main features of the excitonic effects in some materials. Indeed, one can regard it as
averaged over cell more realistic adiabatic LDA XC kernel:

fLDA
X (

→
r ,
→
r
′
,ω) = − 1[

9πn2
0(
→
r )
]1/3 δ(

→
r −→r

′
), (76)

or even more complex gradient density-corrected kernels, like gradient-expansion approximation
(GEA), Perdew-Wang (PW91) [37], Perdew-Burke-Ernzernhof (PBE) [38], and other GGA kernels
(see [25] for details on the kernels and the references).

As a rule, the LDA, PBE and other local kernels lead to strongly underestimated binding energies.
This is connected with neglecting the LR (Coulomb) features in the e-h interaction, since the Coulomb
interaction is needed for strong binding of the usually far-separated electrons and holes.

5.3. Adiabatic LR XC Kernels

Indeed, taking into account effects of LR interaction improves significantly the situation, the
binding energies are often of order of the experimentally-observed values.

The simplest LR kernel is the kernel with the same name:

fLR
XC(r, r′) = −1

ε

1
|r− r′| , (77)

where ε is the effective scattering parameter (dielectric function).
More systematically one can construct an XC kernel that takes into account the effects of the

LR interaction by using an energy functional that includes such effects. A natural choice for such a
functional is the exact exchange (EXX) energy:

Eexact
X

[
ϕ(0)

]
= −1

2 ∑
σ,i,j

∫
d3r

∫
d3r′

ϕ0∗
iσ(r

′)ϕ0
jσ(r

′)ϕ0
iσ(r)ϕ

0∗
jσ(r)

|r− r′| , (78)

where σ is the spin variable and i and j are other quantum numbers that correspond to given
state. Since the corresponding XC potential (OEP [39,40]) and the kernel depend on the set of
orbitals, to obtain the XC potential one needs to perform the functional differentiation of the energy

(Equation (78)) by using the chain rule, which can be symbolically written as v0
XCσ(r) =

δEexact
XC [ϕ(0)]
δnσ(r)

=

δEexact
XC [ϕ(0)]
δϕ0

jσ′ (r
′)

δϕ0
jσ′ (r

′)

δnσ(r)
+
δEexact

XC [ϕ(0)]
δϕ0∗

jσ′ (r
′)

δϕ0∗
jσ′ (r

′)

δnσ(r)
. Performing the differentiation and applying some other

transformations in the resulting equation will lead to the following equation for v0
XCσ(r):

∑
σ,i,j

∫
d3r′

[
v0

XCσ(r
′)− Υ0

XCjσ(r
′)
]
ϕ0

iσ(r)ϕ
0∗
iσ(r

′) ∑
k 6=j

ϕ0
kσ(r

′)ϕ0∗
kσ(r)

εjσ − εkσ
+ c.c. = 0, (79)
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where

Υ0
XCjσ(r) =

1
ϕ0∗

jσ(r)

δEexact
XC

[
ϕ(0)

]
δϕ0

jσ(r)
. (80)

The fist summation in Equation (79) is performed over the occupied states, while the last one—over
all states. Since one cannot invert Equation (79) in order to obtain the explicit analytical expression for
the XP potential (though the exact potential can be obtained numerically [41]), to get a feeling of the
main features of the OEP potential one needs to transform the equation to a more convenient form
by doing some approximations. The simplest one, the so called KLI approximation, [26] is based on
approximating the energy differences in this equation by the effective average value εjσ − εkσ = ∆ε.
In this case, the equation is significantly simplified:

vKLI
XCσ(r) =

1
2nσ(r)

∑
σ,i,j

njσ(r)
[
Υ0

XCjσ(r) + (vKLI
XCjσ − Υ0

XCjσ)
]
+ c.c., (81)

with:
vKLI

XCjσ =
∫

d3rϕ0∗
jσ(r)v

KLI
XCjσ(r)ϕ

0
iσ(r). (82)

While it is much easier to solve the KLI (Equation (81)) than the general OEP (Equation (79)), in
practice some additional approximations in the KLI equation are often used. One of them is to neglect
the spatially-independent term under the integral (vKLI

XCjσ − Υ0
XCjσ), which gives the Slater XC potential:

vSlater
XCσ (r) =

1
2nσ(r)

∑
σ,i,j

njσ(r)
[
Υ0

XCjσ(r) + Υ0∗
XCjσ(r)

]
, (83)

Further simplification is the approximation of the orbital charge density in the denominator of the
last expression by the average value, which gives the global averaging method (GAM) XC potential:

vGAM
XCσ (r) =

1
2Nσ

∑
σ,i,j

njσ(r)
[
Υ0

XCjσ(r) + Υ0∗
XCjσ(r)

]
. (84)

Using the differentiation chain rule in Equations (81), (83) and (84) as above, one can obtain the
expressions for the KLI, Slater, and GAM XC kernels, correspondingly (actually, in the KLI case—the
equation for the kernel). We present here the expressions for the Slater kernel:

fSlater
XCσ (r) = −

2|∑j,σϕ
0
jσ(r)ϕ

0∗
jσ(r

′)|
|r− r′|n0(r)n0(r′)

. (85)

As it follows from the results above, the three kernels contain the Coulomb singularity, which
results in a rather good description of the exciton energies even in the GAM case.

5.4. Exact-Exchange (Frequency-Dependent) Kernels

Another example of the LR kernel which includes also non-adiabatic effects is the EXX kernel.
As it was shown by Goerling et al. [22,23] using the exact exchange energy and deriving the linear
response charge susceptibility, such a kernel has the following structure:

fEXX

X
→
G
→
G
′(q,ω) = ∑

→
G1,
→
G2

χ−1

KS
→
G
→
G1

(q,ω)H
x
→
G1
→
G2
(q,ω)χ−1

KS
→
G2
→
G
′(q,ω) , (86)

where H
x
→
G1
→
G2
(q,ω) is a functional of the Coulomb potential and of the KS wave functions that

contains the Coulomb singularity core 1
|r−r′ | . This core results in a singular structure of the kernel in
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the momentum representation. In particular, the lowest in the reciprocal vector indices part of the XC
kernel matrix has the following singular form:

fEXX
X (q,ω) =

 fEXX
X00 (ω)

q2
fEXX
X01 (ω)

q
fEXX
X10 (ω)

q fEXX
X11 (ω)

. (87)

As the calculations show, the presence of the Coulomb singularity leads to a rather successful
description of the excitonic effects in some materials when the momentum cut-off is enforced
(see, e.g., [24]).

5.5. Semi-Local Approximation: Tao-Mo Kernel

There is another possible type of the non-local XC potential for excitons that properly takes into
account short-range interaction effects—the so-called semi-local potentials (and, hence, semi-local
kernels). These potentials might be relevant in the case of small-radius, e.g., charge-transfer, excitons.
We will stop on one such a recently proposed potential by Tao and Mo (TM) [21] that gives improved
XC energy as compared to LDA, PBE, and TPSS potentials. The derivation of the expression for
the exchange hole $x(r, r′) for the TM potential was based on the second-order expansion in small
(non-locality) parameter u = r− r′ and assuming that the result: (1) recovers the uniform electron
gas case; (2) gives the correct small r− r′ dependence up to the second-order expansion; (3) gives a
converged large r− r′ limit.

More precisely, starting from general expression that connects the exchange energy and the hole:

EX =
1
2

∫
d3r

∫
d3r′

n(r)$x(r, r′)
|r− r′| , (88)

using the conventional hole $x(r, r′) = −
2|∑j,σϕ

0
jσ(r)ϕ

0∗
jσ (r

′)|2

n0(r)
, introducing new variables u = r− r′ and

rλ = λr + (1− λ)r′, where 1
2 ≤ λ ≤ 1 is a contraction parameter, expanding the hole in terms of small

u, and averaging the integral in Equation (88) over u, one can arrive to the following expression for
the XC energy that is a local functional of the charge density and its |∇n(r)|2 and ∇2n(r) corrections.
The advantage of this type of functional is its locality, and on the other hand ability to take into account
short-range (charge fluctuation/non-locality) effects. We refer the reader to [21] for discussion on
how the non-local effects on the semi-local level lead to an improvement of the system energies as
compared to the LDA and other local potentials.

5.6. Bootstrap Kernel

Another type of kernel that takes into account the effects of long-range interaction and is physically
motivated by its close connection to the experimental quantity–dielectric function, the so called
Bootstrap (BO) kernel was proposed by Gross and collaborators [27]. The basic motivation for the

choice of the kernel was that: (1) it must have a Coulomb singularity, fboot
XC
→
G1
→
G2
(
→
k → 0,ω )→ −αXC

k2 ,

in which case the dielectric function ε(
→
k → 0,ω ) may have an exciton pole at finite frequency; and

(2) at
→
k → 0 the kernel fboot

XC
→
G1
→
G2

gives static dielectric function close to RPA, that reproduces the

experimental data well.
The postulated kernel has the following structure:

fboot
XC
→
G1
→
G2
(
→
k ,ω) = −

ε−1
→
G1
→
G2

(
→
k ,ω = 0)v→

G2
(
→
k )

εKS
00 (
→
k ,ω = 0)− 1

=

ε−1
→
G1
→
G2

(
→
k ,ω = 0)

χKS
00 (
→
k ,ω = 0)

, (89)
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where the KS susceptibility and the dielectric function are defined in Equations (26) and (38),
correspondingly. To find the kernel (Equation (89)) one has to solve the last equation self-consistently
with Equations (25) and (38) for the susceptibility and dielectric functions.

A significant advantage of the BO kernel is its genuinely “ab initio” form (i.e., it is essentially
defined by the KS wave functions), relative technical simplicity of calculation as compared, e.g., to the
the EXX kernel. As results of the calculations show, the BO kernel can successfully describe excitonic
effects for a large number of bulk semiconductors.

5.7. RPA Bootstrap (RBO) Kernel

Simplification of the BO kernel leads to the so called RPA Bootstrap (RBO) [30] kernel constructed
by approximating the macroscopic dielectric function by its 00 matrix element in the reciprocal
vector representation:

εM(ω) =
1

ε−1
00 (ω)

= 1− v0χ00(ω). (90)

Then, one transforms the susceptibility equation into the macroscopic and the RPA parts:

χ(ω) = χRPA(ω) + χRPA(ω)fXC(ω)χ(ω), (91)

χRPA = χKS(ω) + χKS(ω)vχRPA(ω), (92)

where v is the Coulomb potential (Equation (40)).
Next, substitution of the macroscopic dielectric function (Equation (90)) into the BO XC kernel

Equation (89) gives:

fRBO
XC
→
G1
→
G2
(
→
k ,ω) =

1

εM(0)χKS
00 (
→
k ,ω = 0)

. (93)

In the RBO approximation, only the terms with
→
G1 = 0,

→
G2 = 0 are taken into account. Contrary

to the BO case, where one needs to iterate the system of Equations (25), (38) and (48), in the RBO
approximation one does not need to do it. Namely, the analytical solution of the corresponding system
of Equations (90)–(93) gives:

εM(0) =
1
2
(1 +

χRPA

χKS
− vχRPA) +

√
1
4
(1 +

χRPA

χKS
− vχRPA)

2

− χ
RPA

χKS
. (94)

To find the RBO kernel, one needs to calculate χKS00 from Equation (26), then χRPA from
Equation (92), substitute these two into Equation (94) and the resulting εM(0) and χKS00 in Equation (93).

In fact, one can find the exciton energy even without using the XC kernel in this case: the exciton
pole occurs at frequency ω0 when Im εM(ω0), and hence Imχ00(ω0), (see Equation (90)) has a pole
inside the gap. This is a great simplification of the RBO approximation which, in many cases, give
similar results to the BO absorption spectrum (for a recent discussion on the connections between both
kernels, see [42,43]).

6. Applications: Bulk GaAs and Monolayer MoS2

6.1. GaAs

The DFT part of the calculations was performed with the plane-wave and pseudopotential method
as implemented in the Quantum Espresso package [44]. The PBE XC potential [38] was used to take into
account the effects of the electron interaction, and the ultra-soft pseudopotentials were used to describe
the core-valence charge interactions. For all results presented, the energy cutoffs of 65 Ry and 360 Ry
were used for the plane-wave basis sets and the charge density grids, respectively. These settings have
been verified to achieve the total energy convergence less than 0.0001 a.u. For geometry relaxation, the
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force on atoms is converged below the threshold of 0.001 a.u. We have used the 20× 20× 20 mesh for
the k-points in the first Brillouine zone.

The primitive cell of the system and the orbital densities of GaAs are shown in Figure 1, and for
the corresponding atomic DOS and the band structure—see Figure 2.Computation 2017, 5, 39 17 of 23 
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Figure 2. The orbital DOS (a) and the band structure (b) of bulk GaAs obtained with PBE approximation.
The band gap is 0.595 eV.

As it follows from these figures, there are two heavy- and one light-hole bands near the
gamma-point. The heavy-hole band is doubly degenerate at this point (we will mark the corresponding
states hh1, hh2, and lh, correspondingly). Thus, we will consider three types of excitons corresponding
to the three types of holes. For simplicity, we neglect here the effects of the spin orbit splitting which
do not significantly affect the excitonic binding energies.

Using this DFT input data, we have calculated the excitonic binding energies by solving
eigen-energy Equation (69) in the two-band approximation. The results for the corresponding excitonic
energies obtained with the local and the LR kernels are shown in Table 1.

Table 1. Excitonic energies (in meV) for different hole states in GaAs obtained with different XC
kernels. Here and in Table 2, if not specified we use the following parameters for the local and LR
kernels: A = 1, ε = 1. The experimental values for the exciton binding energies are 1.51–4.9 meV (the
heavy-hole energy is larger, around 5 meV) [45,46].

XC Kernel (hh1) (hh2) (lh)

contact −2.000 −2.284 −1.437
Slater −1.332 −1.833 −1.293

LR −0.492 −0.511 −0.442
GEA −0.183 −0.221 −0.224
LDA −0.216 −0.270 −0.308
PBE −0.250 −0.323 −0.447

PW91 −0.222 −0.282 −0.295
PW corr −0.0004 −0.00067 −0.001488
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Table 2. Excitonic energies (in eV) in 1L MoS2 obtained with different XC kernels. The experimental
estimations for the excitonic binding energies are 0.2–0.5 eV [31,32].

XC Kernel Binding Energy, eV

local (A = 1) −2.661
local (A = 0.238) −0.300

Slater −1.067
LR (ε = 1) −0.106

LR (ε = 0.75) −0.300
GEA −0.007
LDA −0.0096
PBE −0.0118

PW91 −0.0097
PW corr. −0.00001

As follows from Table 1, the local kernels severely underestimate the values for the excitonic
binding energies, while the LR kernels are in reasonable agreement with the experimental data.

It is important to note that no bound states were found in GaAs (see, e.g., [41,47]) with LDA and
some GGA potentials. Our very small binding energies (<0.5 meV) for GaAs is almost in agreement
with these theoretical results, taking into account difference in the DFT input used in the TDDFT
calculations. Similar conclusion can be made in the case of the Slater kernel. Namely, our result of
rather weakly-bound electron-hole states (energy ~1 meV) and the absence of binding found in [41]
can be possibly due to the arguments above and also due to different number of the occupied bands
used in the DFT calculations that define the total ground state charge density that enters in the Slater
XC kernel. In particular, in the Quantum Expresso code that we used, this number is different for the
LDA (used in the work [41]) and PBE (used by us) pseudopotential files.

As it was mentioned above, the main reason for the failure of the local kernels is the missing
LR feature in their structure. Inclusion of the correlation energy correction (in the PW interpolated
approximation, Ref. [37] defined as “PW corr” in Table 1) does not improve the situation. Moreover,
from Table 1 it follows that the exchange-part of the kernel gives the main contribution to the
electron-hole coupling. Importantly, the inclusion of the semi-local correction (TM kernel) significantly
improves the values of the excitonic energies (0.6 meV, 0.5 meV, and 0.8 meV for three states in Table 1)
as compared to the local kernel results, though the numbers are still significantly lower than the
experimental ones. The main reason for this is large excitonic radii in GaAs, and in such distances the
semi-local corrections do not work sufficiently well.

We find that the BO kernel with its LR structure gives the excitonic binding energy 1 meV for
the strongest bound that is of the same order of magnitude as in the experimental data. Detailed
analysis of the dependence of the excitonic energies on the number of k-points and other computational
parameters in the LR and BO kernels were performed in [48,49]. Our result for the LR kernel are in a
reasonable agreement with those in [48,49] (0.5 meV vs. 0.6–0.8 meV), especially given the difference in
the screening dielectric constant parameters (we used ε = 1, while smaller values were used in [48,49]).
For the BO kernel our result of 1 meV is in slightly better agreement with experiment than the one
obtained in [49] (~0.3 meV). As shown also in [49], one can obtain binding energies from the BO
kernel which are closer to experimental values by performing a material-dependent scaling of the
dielectric function.

6.2. MoS2

Similar to GaAs, the DFT part of the calculations was performed by using the Quantum Espresso
package [44] with PBE XC potential [38] and ultra-soft pseudopotentials. The energy cutoffs are 65 Ry
and 360 Ry for the plane-wave basis sets and the charge density grids, respectively, and the 15× 15× 1
mesh for the k-points in the first Brillouine zone was used.
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As DFT calculations show, the material is a direct-gap semiconductor, with dominating Mo
atom d-orbital contribution to the excited electron and hole states (the lattice and the electronic band
structures are shown in Figures 3 and 4, correspondingly). The two-dimensional structure of the
system results in a strongly reduced e-h screening which lead to large excitonic energies.
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Similar to GaAs, the LR kernels do much better job giving excitonic energies that are not far
from the experimental estimations 0.2–0.5 eV [31,32] (Table 2). It is important to stress that the results
obtained with the local and LR kernel strongly depend on the choice of parameters, and one can
reproduce the experimental data with reasonable choice of A and ε.

Importantly, the semi-local correction for this material (TM XC kernel) significantly improves the
value of the binding energy (81 meV) as compared to, for example the LDA kernel result (9.6 meV).
The possible reason for better performance of the semi-local kernel in the case of MoS2 as compared to
GaAs is much smaller (~10 times) excitonic radius in MoS2 (~100 A in GaAs). The BO kernel result is
also in rather good agreement with the experiment—0.15 eV.

7. Discussion

In this work we discussed details of the most often used many-body and TDDFT approaches to
study excitonic effects in semiconductors. We paid special attention to the structure of relevant TDDFT
XC kernels and applied many of them to two different systems: bulk GaAs and monolayer MoS2.
As our results show, the kernels that contain Coulomb singularity (LR, Slater, BO) produce excitonic
energies much closer to that extracted from experimental data than the local kernels. The conclusion is
valid for both materials. On the other hand, we found that the semi-local correction (the TM kernel)
leads to significant improvement of the result in the case of MoS2 because of the smaller excitonic
radius in this system.
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These and other recent results demonstrate that TDDFT is a good, inexpensive alternative to the
BSE approach to study excitonic effects in semiconductors. Nevertheless several important steps still
need to be performed, such as:

(1) Construction of kernels that can reproduce accurately exciton (not-necessarily) Rydberg series.
For this, frequency-dependence of the kernel might be crucial.

(2) Description of excitons with different spins (dark and bright excitons, etc.). In this case spin
TDDFT must be considered, together with possible spin-dependent kernels (matrices).

(3) Accurate description of the excitonic time-resolved emission spectra, in which phonon effects
must be taken into account. In this sense, for practical purposes it would be desirable to construct
a non-adiabatic kernel that incorporates memory effects related to electron-phonon interaction.

Solutions of these problems will, hopefully, lead us closer to a complete TDDFT for excitons.
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Appendix A. Kohn-Sham Response Function

Let us find the KS susceptibility by expressing it in terms of the one-particle GFs.
We begin with the retarded and advanced GF operators:

ĜR,A
(ω) =

1
ω− Ĥ± iη

= ∑
λ

|λ〉〈λ|
ω− ελ ± iη

, (A1)

that give the corresponding GFs:

GR,A(
→
r ,
→
r
′
,ω) = 〈→r |ĜR,A

(ω)|→r
′
〉 = ∑

λ

〈→r |λ〉〈λ|→r
′
〉

ω− ελ ± iη
= ∑

λ

ϕλ(
→
r )ϕ∗λ(

→
r
′
)

ω− ελ ± iη
. (A2)

For the lesser Green’s function the fluctuation-dissipation theorem:

G<(ω) = −f(ω− µ)
[
GR(ω)−GA(ω)

]
(A3)

Gives:
G<(

→
r ,
→
r
′
,ω) = 〈→r |Ĝ<

(ω)|→r
′
〉 = 2πi ∑

λ

fλδ(ω− ελ)ϕλ(
→
r )ϕ∗λ(

→
r
′
). (A4)

Then, the free two particle GF:

L0(
→
x 1,
→
x 2,
→
x 3,
→
x 4; z, z′) = G0(

→
x 1, z;

→
x 4, z′)G0(

→
x 2, z′;

→
x 3, z) (A5)

reduces to the following retarded function:

LR
0 (
→
x 1,
→
x 2,
→
x 3,
→
x 4;ω)

=
∫ dω′

2π

[
GR

0 (
→
x 1,
→
x 4;ω+ω′)G<

0 (
→
x 2,
→
x 3;ω′)

+ G<
0 (
→
x 1,
→
x 4;ω+ω′)GA

0 (
→
x 2,
→
x 3;ω′)

] (A6)

(see [34], Table 5.1).
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In our case,
→
x 4 =

→
x 2,

→
x 3 =

→
x 1, and one obtains:

LR
0 (
→
x 1,
→
x 2,
→
x 1,
→
x 2;ω)

=
∫ dω′

2π

[
GR

0 (
→
x 1,
→
x 2;ω+ω′)G<

0 (
→
x 2,
→
x 1;ω′)

+G<
0 (
→
x 1,
→
x 2;ω+ω′)GA

0 (
→
x 2,
→
x 1;ω′)

]
=
∫ dω′

2π

[
∑
i

ϕi(
→
x 1)ϕ

∗
i (
→
x 2)

ω+ω′−εi+iη 2πi ∑
j

fjδ(ω
′ − εj)ϕj(

→
x 2)ϕ

∗
j (
→
x 1)

+2πi ∑
i

fiδ(ω+ω′ − εi)ϕi(
→
x 1)ϕ

∗
i (
→
x 2)∑

l

ϕj(
→
x 2)ϕ

∗
j (
→
x 1)

ω′−εj−iη

]
= i

[
∑
i,j

fj
ϕi(

→
x 1)ϕ

∗
i (
→
x 2)ϕj(

→
x 2)ϕ

∗
j (
→
x 1)

ω+εj−εi+iη

+∑
i,j

fi
ϕi(

→
x 1)ϕ

∗
i (
→
x 2)ϕj(

→
x 2)ϕ

∗
j (
→
x 1)

−ω+εi−εj−iη

]
= i ∑

i,j
(fj − fi)

ϕi(
→
x 1)ϕ

∗
i (
→
x 2)ϕj(

→
x 2)ϕ

∗
j (
→
x 1)

ω+εj−εi+iη .

(A7)

Thus, from Equation (A7) one can obtain:

χKS(
→
x 1,
→
x 2,ω) = ∑

i,j
(fj − fi)

ϕi(
→
x 1)ϕ

∗
i (
→
x 2)ϕj(

→
x 2)ϕ

∗
j (
→
x 1)

ω+εj−εi+iη

= (−i)
∫ ∞
−∞ dω′G0(

→
x 1,
→
x 2,ω+ω′)G0(

→
x 2,
→
x 1,ω′)

(A8)

which coincides with Equation (17).
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