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Abstract: We propose a limited-memory quasi-Newton method using the bad Broyden update and
apply it to the nonlinear equations that must be solved to determine the effective Fermi momentum
in the weighted density approximation for the exchange energy density functional. This algorithm
has advantages for nonlinear systems of equations with diagonally dominant Jacobians, because
it is easy to generalize the method to allow for periodic updates of the diagonal of the Jacobian.
Systematic tests of the method for atoms show that one can determine the effective Fermi momentum
at thousands of points in less than fifteen iterations.
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1. Introduction

The accuracy and scope of density functional theory calculations is limited by the need to
approximate the density functionals for the exchange-correlation energy [1–4]. This motivates the
robust stream of research into exchange-correlation functionals and the development of new strategies
for approximating the exchange-correlation energy. Based on the realization that local and semilocal
forms for the exchange-correlation energy functional will always give qualitatively incorrect results
for some systems [5–13], there has been significant recent work on developing nonlocal density
functionals. Some of this work reexamines the very first strategy for nonlocal density functional:
the weighted density approximation [14–17]. The goal of this work is to present a new diagonally
updated limited-memory quasi-Newton method we developed for solving a system of nonlinear
equations associated with the weighted density approximation. In the remainder of this section, we
present background material on the weighted density approximation, so that the nature of the system
of nonlinear equations we are solving is clear. (In particular, the system of nonlinear equations is very
large, but the Jacobian is dominated by contributions from its diagonal.) Section 2 presents the new
method we developed.

For simplicity, in this paper we will consider only the weighted density approximation for the
exchange energy, although weighted density approximations for the exchange-correlation and kinetic
energy are also available [11,18–36]. The basic strategy of the weighted density approximation for the
exchange energy is to approximate the exchange hole for the electrons,

hσ
x
(
r, r′
)
= − |γ

σ(r, r′)|2

ρσ(r)ρσ(r′)
(1)
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where γσ(r, r′) is the one-electron reduced density matrix of the noninteracting Kohn-Sham reference
system with electron spin-density ρσ(r). The exchange energy of σ-spin electrons can be computed
from electron spin-density and the exchange hole,

Eσ
x [ρ

σ] =
x ρσ(r)ρσ(r′)hσ

x(r, r′)
|r− r′| drdr′ (2)

Many of the failures of modern density functionals are associated with the self-interaction errors
that afflict traditional approaches to designing approximate functionals [37–40]. One advantage of the
weighted density approximation is that the self-interaction error is eliminated by explicitly imposing
the normalization of the exchange hole,

− 1 =
∫

ρσ
(
r′
)
hσ

x
(
r, r′
)
dr′ (3)

When Equation (3) holds, the exchange(-correlation) potential has the correct asymptotic
decay [38,41–45]. This helps to explain why weighted density approximations tend to give more
accurate excitation energies, band gaps, and frontier molecular orbital energies than traditional
semilocal density functional approximations [36,46–57]. The relatively simple version of the weighted
density approximation we consider here is not especially accurate (because the exchange hole is more
localized than it should be), but its biggest disadvantage is its high computational cost. A similar
normalization requirement to Equation (3), when applied to the direct correlation function, allows
one to build nonlocal exchange-correlation holes, which is a promising strategy for increasing the
accuracy of the weighted density approximation [19,20,58]. In this contribution, we shall focus instead
on reducing the computational cost of weighted density approximation calculations.

Inspired by the mathematical treatment of the nearly uniform electron gas, it is traditional
(albeit not ubiquitous [19,20,36,58–62]) to approximate the exchange hole as a function of the form

hσ
x
(
r, r′
)
= η

(
kσ

F
(
r, r′
)∣∣r− r′

∣∣) (4)

where kσ
F(r, r′) is interpreted as the effective Fermi momentum associated with an electron configuration

with σ-spin electrons at positions r and r′. We shall choose η
(
kσ

F|r− r′|
)

to have the form appropriate
for the uniform electron gas, namely

ηUEG
(
kF
∣∣r− r′

∣∣) = −9(sin(kF|r− r′|)− (kF|r− r′|) cos(kF|r− r′|))2

(kF|r− r′|)6 (5)

This ensures that the uniform-electron gas limit is retained. Garcia-Gonzalez et al. proposed
modelling the two-point effective Fermi momentum, kσ

F(r, r′) , as the power-mean of the effective
Fermi momentum at the points separately [27,63],

kσ
F
(
r, r′
)
=

((
kσ

F(r)
)p

+
(
kσ

F(r
′)
)p

2

) 1
p

(6)

In this study, we use p = 0.001, which is very close to the geometric mean. (We confirmed that our
qualitative conclusions are valid for all 0 < p ≤ 1

2 .) The multidimensional integrals in Equations (2)
and (3) were evaluated numerically, using Becke–Lebedev quadrature [64].

The impediment to the widespread adoption of the weighted density approximation is its
computational cost. The normalization constraint for the exchange hole, Equation (3), must be
imposed at every point on the numerical integration grid, and evaluating the normalization integral
at each point requires a three-dimensional numerical integration. For typical atoms and molecules,
determining the effective Fermi momentum requires solving a nonlinear system of ~104–106 equations
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(Equation (3) at each grid point) with respect to the same number of unknowns (kσ
F(r) at each grid

point), subject to an inequality constraint at each grid point (kσ
F(r) > 0, because it is physically absurd

for the Fermi momentum to be nonpositive). Moreover, each of the nonlinear equations is relatively
expensive to evaluate, since it requires a numerical integration.

The traditional approach to density-functional theory avoids this problem by performing the
integral over r′ in Equation (2) analytically, defining the exchange-correlation energy density,

εx[ρ
σ; r] =

∫
ρσ(r′)hσ

x(r, r′)
|r− r′| drdr′ (7)

An alternative, but more convenient, intermediate quantity is the system-averaged
spherically-averaged exchange charge,

〈nx[ρ
σ; u]〉 = 1

N

∫ [∫
ρσ(r)ρσ(r + u)hσ

x(r, r + u)dr
]

dΩu (8)

where dΩu denotes integration over the solid angle associated with u = r′ − r. (〈nx(u)〉 is often called
the system-averaged spherically-averaged exchange hole, but we prefer to distinguish between the
exchange hole, hx(r, r′), and the exchange charge, ρ(r′)hx(r, r′), which is the charge that is depleted
due to the presence of an electron at r′.) The exchange-correlation energy can then be evaluated using

Eσ
x [ρ

σ] =
∫

ρσ(r)εx[ρ
σ; r]dr = N

∫ ∞

0
4πu〈nx[ρ

σ; u]〉du (9)

The normalization constraint is applied at the level of the functional by requiring that the
system-averaged spherically-averaged exchange charge is normalized,∫ ∞

0
4πu2〈nx[ρ

σ; u]〉du = −1 (10)

Equation (10) is a far weaker constraint than Equation (3), as it only requires normalization in
an average sense. When the electron density is (nearly) uniform, its behavior at one point in space
is representative of its system average, imposing Equation (10) (nearly) removes the self-interaction
error. This is not true for systems like atoms and molecules, where the chemically relevant regions
of the electron density vary over many orders of magnitude. This is clear from the observation that
the weighted density approximation using Equation (5) gives results that are quite different from the
uniform density approximation, which is obtained if one assumes a homogeneous electron density and
performs the integral in Equation (7) analytically to obtain an approximate formula for the exchange
energy [18,65].

Motivated by our desire to explore the weighted density approximation in more detail, in the next
section, we will present a diagonally-updated limited memory bad Broyden method that allows us to
solve the large system of nonlinear equations associated with the weighted density approximation in
a computationally efficient manner. Then we present the results of a numerical test of this method
(Section 3) and discuss its implications and the possibilities for further improvement (Section 4).

2. Methods

The methods we shall use for solving the nonlinear equations for the weighted density
approximation are generally applicable, so we will first rewrite the problem (cf. Equations (3)–(6)) in a
general form. Suppose there are G points in the numerical integration grid,

{
rg
}G

g=1. The unknown

is the value of the Fermi momentum at each of these points, which we denote k ≡
{

kg
}G

g=1 ≡{
kF
(
rg
)}G

g=1. Because the equations for the different spins are decoupled, we shall simplify our
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notation by omitting the spin-index, σ. There is a nonlinear equation for each grid point also, which has
the form, {

0 = fg(k)
}G

g=1
(11)

where

fg

(
{kh}G

h=1

)
≡ 1 +

G

∑
h=1

whρσ(rh)ηUEG

((
1
2
(
kg
)p

+
1
2
(kh)

p
) 1

p ∣∣rg − rh
∣∣) = 0 (12)

Here {wh}G
h=1 denote the numerical integration weights. The Jacobian for this system of equations

is defined as

jgh =
∂ fg

∂kh
(13)

Using Newton’s method, one could then define an update for the variables,

knew
g = kold

g −
G

∑
h=1

j−1
gh fh

(
kold

)
(14)

where j−1
gh are the elements of the inverse Jacobian matrix, J−1. In matrix-vector notation, Equation (14)

can be written as
knew = kold −

(
Jold
)−1

fold (15)

The method is then repeated using the updated variables knew to evaluate the equations, (11),
and the Jacobian thereof, until convergence is achieved.

In practice, this technique does not always converge. Convergence can be enhanced by scaling
the step, using either a trust radius or a line search. Specifically, the update is rewritten as

knew = kold − ζ
(

Jold
)−1

fold (16)

where ζ is chosen so that the step-size is decreased whenever the Newton update (Equation (15),
which is derived by truncating the Taylor series for f(k) at first order) is unreliable.

For large systems of ∼ 104 or more equations, evaluating and inverting the Jacobian for each
Newton iteration, Equation (16), is prohibitively expensive. This motivates quasi-Newton methods,
where the Jacobian or its inverse is approximated. One of the simplest quasi-Newton methods is to
evaluate only the diagonal elements of the Jacobian,

dgh = jghδgh =

{
∂ fg
∂kg

g = h

0 g 6= h
(17)

The inverse of a diagonal matrix is simply the inverse of its diagonal elements, so this gives a very
simple update formula,

knew
g = kold

g − ζ
kold

g

dold
gg

(18)

The system of equations associated with the weighted density approximation, Equation (12),
gives a Jacobian that is strongly diagonally dominant, so this formula is appropriate for our application,
and we shall test it in Section 3.

One can often improve the simple diagonal update formula if one uses information from previous
iterations. As an example, suppose one has the function and argument values from several previous
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iterations, f1, f2, . . . , fm and k1, k2, . . . , km, respectively. (Here and in the following, we use fm to denote
the equations evaluated at the argument km, f(km).) If the vector km − kn is short enough, then

Jm(km − kn) ≈ Jn(km − kn) ≈ fm − fn (19)

J−1
m (fm − fn) ≈ J−1

n (fm − fn) ≈ km − kn (20)

These secant conditions can be used to improve an initial estimate for the Jacobian (Equation (19))
or inverse Jacobian (Equation (20)). The best-known methods for doing this are the methods proposed
by Broyden [66,67],

Jm = Jm−1 +
∆fm − Jm−1(∆km)

∆km · ∆km
∆kT

m (21)

J−1
m = J−1

m−1 +
∆km − J−1

m−1(∆fm)

∆fm · ∆fm
∆fT

m (22)

where
∆fm = fm − fm−1 (23)

∆km = km − km−1 (24)

and, more generally, we define
∆fm−s = fm − fm−1−s (25)

∆km−s = km − km−1−s (26)

The Jacobian in Equation (21) is usually called the Broyden update for the Jacobian. The method
based on the inverse Jacobian, Equation (22), is usually called the “bad” Broyden method
because in its original applications, it did not perform as well as the “good” Broyden update,
Equation (21) [66,68–72]. It is more convenient to have an update to the inverse Jacobian than the
Jacobian itself since (cf. Equation (16)) otherwise one needs to solve a (large) system of linear equations
to determine the step. Fortunately, the “good” Broyden update can also be formulated as an update to
the inverse Jacobian,

J−1
m =

(
I +

∆km − J−1
m−1(∆fm)

∆fT
mJ−1

m−1∆fm
∆fT

m

)
J−1

m−1 (27)

Storing the entire (inverse) quasi-Newton Jacobian matrix is impractical for large systems of
nonlinear equations, but fortunately one only needs to know the action of the inverse-Jacobian matrix
on the vector fm to compute the updated step. Furthermore, we can decide to store only the results of
the last few updates, Equations (23) and (24). With such a procedure, one can control the computational
cost and amount of memory required to compute the quasi-Newton update.

The remainder of this section presents the limited-memory “bad” Broyden method we developed
for the weighted density approximation. Specifically, we noticed that the “bad” Broyden method
has an especially simple quasi-Newton update. Suppose one has an initial guess for the inverse
Jacobian, J̃−1. The action of the inverse quasi-Newton Jacobian on fm can then be computed recursively.
One starts with the initialization,

pm = 0
qm = fm

(28)

and then refines the Jacobian according to the recursion,

pn−1 = pn + ∆kn
∆fT

n
|∆fn |2

qn

qn−1 = qn − ∆fn
∆fT

n
|∆fn |2

qn =

(
I− ∆fn

∆fT
n

|∆fn |2

)
qn

(29)
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One can include as many previous steps from Equations (23) and (24) as one wishes, but because
it is most effective to update the inverse Jacobian using local information; including too much
previous information not only increases the computational cost, but often degrades the accuracy of the
approximation. If the data from s previous steps are included, then the action of the quasi-Newton
inverse Hessian is computed by

J−1fm ≈ pm−s + J̃−1qm−s (30)

This is the limited-memory bad Broyden procedure we developed to solve Equations (11) and (12).
To make this procedure practical, we introduce two additional refinements. First, we can

periodically update the approximate inverse-Jacobian that is used in Equation (30) using, for example,
the diagonal approximation to the Jacobian (which is relatively easy to compute for the weighted
density approximation). Second, we introduce a global trust radius to control the stepsize. We also
tried using a local trust radius, where each component of the step could be scaled separately, but this
did not improve our results. Suppose the trust radius for step m is τm. Then we will take the full
quasi-Newton step if the `1 norm of the step is shorter than the trust radius, ‖(Jm)

−1fm‖1 ≤ τm.
Otherwise, we (1) scale back the step so that it is the same size as the trust radius,

km+1 = km − τm
(Jm)

−1fm

‖(Jm)
−1fm‖1

(31)

and (2) because it is physically absurd to have a negative effective Fermi momentum; we never let the
Fermi momentum at any grid point decrease by a factor of more than two in any iteration,

km+1,g = max
(

km+1,g,
1
2

km,g

)
(32)

Here
{

km=1,g
}G

g=1 denote the elements of the updated Fermi momentum from Equation (31).
Next we then check to see if the total absolute error in the nonlinear system decreased; otherwise we
reject the step and try again with a step size equal to half the previous stepsize. That is, we evaluate
fm+1 = f(km+1) and if ‖fm+1‖1 > ‖fm‖1, then we reject the step and try again with

τm =
1
2

min
(

τm,
∣∣∣J−1fm

∣∣∣) (33)

If the step is accepted, then we need to update the trust radius. The basic idea is that if the sign of
the objective function changes, fm+1,g/ fm,g < 0, then we overshot the solution of the gth nonlinear
equation. We therefore let each grid point “vote” on whether it thought the last step was too long
( fm+1,g/ fm,g > −0.1), too short ( fm+1,g/ fm,g > 0.1), or about right. Let nlong denote the number of
too-long steps, nshort denote the number of too-short steps, and ζm = ‖km+1 − km‖1 denote the length
of the previous step. We then update the trust radius based on whether the consensus seems to be that
the trust radius was too short or too long. Specifically,

τm+1 =


τm ·min

(
nshort

2·nlong+1 , 2
)

nshort > 2 · nlong

ζm ÷min
( nlong

2·nshort+1 , 2
)

nlong > 2 · nshort

τm otherwise

(34)

The three cases in this formula correspond to cases where the step was too short for most grid
points, too long for most grid points, or “about right”. Equation (34) can be thought of as a trust-radius
update based on the `0 norm.
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3. Results

We tested the limited-memory bad Broyden method from Section 2 by solving the weighted
density approximation for the neutral atoms, H–Kr, with p = 0.001 (cf. Equation (12)). We tested
the method storing up to 10 previous steps (s = 1, 2, . . . , 10 in Equation (30)), using the diagonal
approximation to the Jacobian (cf. Equation (17)) to estimate J̃−1 (cf. Equation (30)). We also considered
updating the diagonal inverse-Jacobian approximation every t iterations (t = 1, 2, . . . , 5). For our tests,
it was fastest to use 8 previous steps (s = 8) and to update the approximate inverse Jacobian every
other iteration (t = 2). The nonlinear equations were considered converged when the error in every
equation was less than 10−3.

In Figure 1, we report key results. The bad Broyden method by itself is quite poor, converging
less than 15% of the calculations in 20 iterations, and only 60% of the calculations within 200 iterations.
Bycontrast, because the Jacobian is diagonally dominant, using the diagonal Jacobian (and updating
it in every other iteration) converges all the atoms within 16 iterations. The best method of all starts
with the diagonal update, but then improves the model using the limited memory bad Broyden
update retaining 8 vectors. With that method, all the atoms are converged in just 11 iterations.
We also tested the method for different hole correlation models (the Gaussian model ηG(kF|r− r′|) ∝
− exp

(
−k2

F
∣∣r− r′

∣∣2) [65] and the exchange-correlation hole of the uniform electron gas [11,73]) and
for various values of p. The results are very similar, with the bad Broyden method with periodic
diagonal updates performing the best. As the p value in Equation (12) increases, the equations become
increasingly difficult to converge, though up until p ≈ 0.5 convergence is achieved in less than
~20 iterations. When p > 1, the algorithm seems to do an acceptable job of finding a least-squares
solution that almost satisfies the nonlinear equations, which do not seem to have any solution [11,18].Computation 2017, 5, 42  8 of 12 
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Figure 1. Convergence of quasi-Newton approaches for the weighted density approximation of atoms.
The percent of the atoms H–Kr, for which the nonlinear equations in Equation (11) have converged to
with 10−3 (vertical axis) within a given number of iterations (horizonal axis). Eight vectors are retained
in the bad Broyden update and the diagonal Jacobian is updated every other iteration. The curves show
the results for the simplest limited-memory bad Broyden update (with no diagonal update except in
the first iteration; dotted line), the limited-memory bad Broyden update (with diagonal updates every
other iteration; solid line), and the diagonal approximation to the (inverse) Jacobian updated every
other iteration (with no bad Broyden updates; dashed line).
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The computational cost of the method is dominated by the evaluation of the objective function
(Equation (12)) at each grid point and the computation of the diagonal elements of the Jacobian,
which has almost exactly the same cost as evaluating the objective function. This is why we
compute the diagonal elements of the Jacobian only in every other iteration instead of every iteration;
the incremental increase in convergence rate obtained by computing the Jacobian’s diagonal each
iteration is not worth the additional computational expense. The actual computation of the bad
Broyden update, Equations (28)–(30), is comparatively insignificant, partly because it can be efficiently
evaluated using the (precomputed) quantities fk · fl (k, l = m− 1− s, m− s, . . . , m).

Based on these results, it seems the diagonally-updated limited-memory bad Broyden method
is ideally suited for the problem of solving the weighted density approximation equations, (12), and
is presumably useful for other similarly large, diagonally dominant systems of nonlinear equations
as well.

4. Discussion

Despite its theoretical promise, applications of the weighted density approximation have been
limited by the difficulty of solving the nonlinear equations for the local effective Fermi momentum in
the weighted density approximation (cf. Equation (12)). Because there is one nonlinear equation for
each grid point, and evaluating each equation requires an integration over all space, this is an extremely
challenging numerical problem. It is not uncommon to have ~104–106 grid points, and having fewer
than ~103 grid points is extremely rare. We developed a limited-memory quasi-Newton method, which
we believe will be useful also in other contexts, based on a recursive formulation of the bad Broyden
update, built upon an approximate inverse-Jacobian (which we update every other iteration using the
diagonal approximation for the Jacobian). For the atoms H–Kr, this method always converged in 11 or
fewer iterations.

There are two ways to improve this model. First, we can reduce the number of nonlinear equations
to be solved. It is reasonable to expect, for example, that after solving Equations (11) for enough grid
points, accurate results for the effective Fermi momentum at the other grid points could be obtained
by interpolation. Second, we could improve the quasi-Newton method itself. One possibility would
be to notice that the same recursive method we developed for the bad Broyden method could be used
for the good Broyden method, (21), simply by interchanging the roles of ∆kn and ∆fn. That method,
however, still requires solving the equations for the step-size. Another possibility is that instead of
sequentially updating the Jacobian, we could use a multisecant update [74]. In particular, defining the
matrices whose columns are determined from the previous steps,

Φm =
[

∆fm ∆fm−1 ∆fm−2 · · ·
]

(35)

Km =
[

∆km ∆km−1 ∆km−2 · · ·
]

(36)

we can write a multisecant update for the bad Broyden method as:

J−1
m = J̃−1 +

(
Km − J̃−1 ·Φm

)(
ΦT

m ·Φm

)−1
ΦT

m (37)

and for the good Broyden method as

J−1
m = J̃−1 +

(
Km − J̃−1Φm

)(
ΦT

m J̃−1Φm

)−1
ΦT

m J̃−1 (38)

The matrix inversions in Equations (37) and (38) should be viewed as generalized (Moore–Penrose)
inverses. We believe that Equation (38) is the most reasonable way to implement a limited-memory
good Broyden method, but we have not implemented or tested this method because we doubt it is
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possible to greatly improve upon the results we obtained for the limited-memory bad Broyden method
with periodic diagonal updates (as shown in Figure 1).
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