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Abstract: A dynamical system submitted to holonomic constraints is Hamiltonian only if considered
in the reduced phase space of its generalized coordinates and momenta, which need to be defined
ad hoc in each particular case. However, specially in molecular simulations, where the number of
degrees of freedom is exceedingly high, the representation in generalized coordinates is completely
unsuitable, although conceptually unavoidable, to provide a rigorous description of its evolution and
statistical properties. In this paper, we first review the state of the art of the numerical approach that
defines the way to conserve exactly the constraint conditions (by an algorithm universally known as
SHAKE) and permits integrating the equations of motion directly in the phase space of the natural
Cartesian coordinates and momenta of the system. We then discuss in detail SHAKE numerical
implementations in the notable cases of Verlet and velocity-Verlet algorithms. After discussing in
the same framework how constraints modify the properties of the equilibrium ensemble, we show
how, at the price of moving to a dynamical system no more (directly) Hamiltonian, it is possible
to provide a direct interpretation of the dynamical system and so derive its Statistical Mechanics
both at equilibrium and in non-equilibrium conditions. To achieve that, we generalize the statistical
treatment to systems no longer conserving the phase space volume (equivalently, we introduce
a non-Euclidean invariant measure in phase space) and derive a generalized Liouville equation
describing the ensemble even out of equilibrium. As a result, we can extend the response theory of
Kubo (linear and nonlinear) to systems subjected to constraints.

Keywords: holonomic constraints; non-Hamiltonian dynamics; SHAKE

1. Introduction

The dynamical and statistical behavior of a mechanical system of many degrees of freedom
subjected to holonomic constraints presents specific features that seem worth presenting and discussing
in a unified framework. A mechanical Hamiltonian system is a system whose evolution is derivable
from a standard Hamiltonian

H(r, p) = K(p) + V(r), (1)

where

K(p) =
N

∑
i=1

p2
i /2mi (2)
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is the kinetic energy expressed in Cartesian coordinates as a Euclidean quadratic form of the momenta

p := {pi = mi ṙi, i = 1, . . . , N} , (3)

and V = V(r) is a function of the 3N Cartesian coordinates

r := {ri, i = 1, . . . , N} . (4)

N is the number of point particles in the system, and we have put ourselves in dimension 3. The space
of the coordinates is called configuration space, while the phase space {r, p} gives the space of the
mechanical states of the system. To say that the system is subjected to f holonomic constraints
is equivalent to saying that the motion has to evolve on a (3N − f )-dimensional configuration
space, which results from imposing f geometrical conditions σα(r) = 0 , α = 1, . . . , f at all times.
These constraints can connect all the coordinates of the configuration space, in which case we call
them global (Blue Moon [1,2]), or connect disjoint subgroups of the coordinates, which is, for example,
the way in which molecular systems can sometimes be described [3], or else can be the conditions
for orthonormality of single electron orbitals, as in the Car–Parrinello approach to ab initio molecular
dynamics [4].

Global constraints can be used to bring the system in situations normally difficult to visit. In these
cases, the constraints can act as a kind of Maxwell daemon. In the solution of the classical Statistical
Mechanics of dynamical systems, the constraints confront two major problems. As we have seen before,
the constraints are an essential ingredient in the definition of the dynamical system, therefore any
acceptable algorithm introduced to solve the dynamics of such a system cannot propagate any error,
as otherwise the statistical behavior of the ensemble in the presence of the constraints cannot be
properly formulated. This last problem in principle is automatically solved for Hamiltonian systems
by using generalized coordinates. However, especially for systems with many degrees of freedom,
generalized coordinates are completely intractable, and one should be able to formulate properly the
problem by using Cartesian coordinates in a standard way. As we will see, a family of algorithms
avoiding the propagation of the errors have been introduced [3,5], while the proper formulation of the
statistical ensemble is straightforward for the equilibrium case [6] but requires some more work for
non-equilibrium, where the missing ingredient is the correct Liouville equation to use [7]. To get the proper
Liouville equation one has to abandon the traditional Hamiltonian description, in which one had the
constraint forces by using a Lagrange multiplier, and go straight to the non-Hamiltonian behavior of the
equations of motion of the system in which the constraint forces are explicitly (analytically) solved. For this
non-Hamiltonian equations the Euclidean nature of phase space is no more an invariant, therefore one has
to find an invariant, non-Euclidean, measure to be associated with the phase space so that the statistical
behavior of the system can be properly described by generalizing the Liouville equation [7]. As we will
see, the non-equilibrium response of our constrained system to external perturbations can be derived
directly [8], while the best known results of linear response theory, the so-called fluctuation-dissipation
theorem, can be derived but requires some extra work [9]. The advised reader should be warned that in
this review we have excluded the treatment of non-holonomic constraints, a very large family difficult to
unify and in any event requiring special treatments [10].

In Section 2, we summarize the formalism needed to describe a system with constraints.
In Section 3, we write down the general (SHAKE) equations to be solved to derive whatever family
of numerical algorithms and briefly describe the two best known formulations: the one, adopted
with the Verlet algorithm, usually referred to as SHAKE [11], not to be confused with the reference to
the general equation to be solved, and the one modified to work with the velocity-Verlet algorithm,
usually referred to as RATTLE [12]. To these two, we will briefly add a more recent alternative
devised to give a parallel implementation of SHAKE [13]. In Section 4, we derive the equilibrium
ensemble of Hamiltonian systems subjected to holonomic constraints [6]. Section 5 presents an effective
approach to compute conditional averages by the use of holonomic constraints (Blue Moon) [1,2,14,15].



Computation 2018, 6, 11 3 of 24

The possibility to compute conditional averages can be used in conjunction with non-equilibrium
molecular dynamics techniques [16–20] to compute rate constants, hydrodynamical phenomena
and, in general, relaxations from large fluctuations statistically produced by introducing suitable
constraints. In Section 6, we formulate the non-Hamiltonian equations of motion for a constrained
system, we derive from them an invariant measure for the phase space, the correct generalized Liouville
equation and, again, as a way to see how all that works, the expressions for the equilibrium ensembles.
Then, we start from the generalized Liouville equation to give a rigorous expression for the response
to external perturbations of a constrained system [8] and we prove with some rigorous arguments that
also the classical results of linear response theory can be shown to hold [9]. The paper is concluded
by a short outlook in which we try to assess the state of the art in the treatment of the computational
classical Statistical Mechanics for systems subjected to holonomic constraints.

2. Dynamics with Holonomic Constraints

Given the Lagrangian L(r, ṙ) = K(ṙ)−V(r) of a dynamical system with N particles in dimension 3,
subjected to f holonomic constraints

σα(r) = 0, α = 1, . . . , f , (5)

the equations of motion (Lagrange equation of I type) are

d
dt

∂L
∂ṙi
− ∂L

∂ri
= mir̈i +

∂V(r)
∂ri

= −
f

∑
α=1

λα(t)
∂σα(r)

∂ri
, i = 1, . . . , N, (6)

where the λα(t), α = 1, . . . , f are the unknown Lagrangian multipliers to be determined by
imposing that

σα(r(t)) = 0 , ∀t , α = 1, . . . , f . (7)

Note that the multipliers λα(t) together with all their derivatives of any order can be determined
by taking successive time derivatives of the expressions σα(r(t)) = 0 . In particular,

σ̇α(t) = σ̇α(r(t), ṙ(t)) =
N

∑
i=1

(
ṙi ·

∂

∂ri

)
σα(r) = 0 , α = 1, . . . , f (8)

are evident conditions to be satisfied since holonomic constraints do not perform any mechanical work
and therefore permitted velocities and constrained forces have to be orthogonal. Moreover,

σ̈α(t) =

[
N

∑
i=1

(
r̈i ·

∂

∂ri

)
+

N

∑
i=1

N

∑
j=1

(
ṙi ·

∂

∂ri

)(
ṙj ·

∂

∂rj

)]
σα(r) = 0 , α = 1, . . . , f . (9)

Substituting in Equation (9) the equations of motion, Equation (6), and solving the resulting linear
system for the λs, we get

λα =
f

∑
β=1

[
− 1

mi

∂V
∂ri
·
(

∂

∂ri

)
σβ +

N

∑
i=1

N

∑
j=1

(
ṙi ·

∂

∂ri

)(
ṙj ·

∂

∂rj

)
σβ

]
Z−1

β,α , α = 1, . . . , f , (10)

where

Zα,β(r) =
N

∑
i=1

1
mi

(
∂σα

∂ri

)
·
(

∂σβ

∂ri

)
, α = 1, . . . , f , β = 1, . . . , f . (11)
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The expressions resulting from introducing Equation (10) in Equation (6) could possibly provide
fully explicit, no longer Hamiltonian, dynamics. For the moment, we will not be interested in such
formulation because any approximate algorithm that make use of Equation (10) will necessarily
propagate the errors in the constraint relations, Equation (5), with dramatic consequences on the
stability of the model. Further derivatives with respect to time of the σs will provide linear relationships
for the higher order derivatives of the λs, which could be needed in higher order algorithms.

By taking the standard Legendre transform on the Lagrangian L,

H =
N

∑
i=1

pi · ṙi −L , (12)

the same dynamics can be straightforwardly formulated in Hamiltonian terms,

ṙi =
pi
mi

, (13)

ṗi = −
∂V(r)

∂ri
−

f

∑
α=1

λα(t)
∂σα(r)

∂ri
, i = 1, . . . , N, (14)

involving the same treatment for the constraint forces. In the following, it will be useful for theoretical
purposes to consider an equivalent representation of the Hamiltonian expressed in terms of

(i) the f constraint relationships σ := {σα(r), α = 1, . . . , f}, and
(ii) the remaining (3N− f ) generalized coordinates q := {qν(r), ν = 1, . . . , 3N− f}.

This change of coordinates is a point transformation of the configuration space and therefore
generates a canonical transformation [10]. With this change of variables, the Lagrangian L of our
system generates the Lagrangian in the new coordinates given by

L∗ (q, q̇, σ, σ̇) = L (r(q, σ), ṙ(q, σ, q̇, σ̇)) . (15)

Sometimes, it is useful to call collectively the variable {q, σ} = {u}. From the Lagrangian L∗,
we get

pu =
∂L∗
∂u̇

(
pq =

∂L∗
∂q̇

, pσ =
∂L∗
∂σ̇

)
(16)

and

H∗ (u, pu) = K (p(u, pu)) + V (r(u)) = K∗ (u, pu) + V∗ (u) , (17)

where the kinetic term is now

K∗ = 1
2

pT
u ·M−1(u) · pu (18)

and

(M(u))α,β =
N

∑
i=1

mi
∂ri
∂uα
· ∂ri

∂uβ
, α = 1, . . . , 3N , β = 1, . . . , 3N (19)

is the metric matrix associated with the new variables. Note that it is almost immediate to find for the
inverse matrix M−1 the explicit expression

(
M−1(r)

)
α,β

=
N

∑
i=1

1
mi

∂uα

∂ri
·

∂uβ

∂ri
, α = 1, . . . , 3N , β = 1, . . . , 3N . (20)
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There is an intimate connection between the matrix M, the Jacobian matrix J = ∂r
∂u and the Jacobian

determinant J = ∂(u)
∂(r) = |J| of the {r} −→ {u} point transformation. Introducing the mass tensor

(µ)i,k = miδi,k for i, k = 1, . . . , 3N by means of the Kronecker delta, one can rewrite M in Equation (19)
and, of course, its determinant |M|, as

M =

(
∂r
∂u

)T
· µ ·

(
∂r
∂u

)
= JT · µ · J =⇒ |M| = |J||µ||J| = |µ|J2 . (21)

In this representation, the constrained motion is generated by the Lagrangian L∗(q, q̇, σ = 0,
σ̇ = 0) = Lc(q, q̇) in the (3N− f )-dimensional space

∂Lc

∂qν
− d

dt
∂Lc

∂q̇ν
= 0 , ν = 1, . . . , 3N− f . (22)

Note, however, that these equations are no longer in normal form.
The Hamiltonian formulation helps us to get back to an evolution expressed in normal form.

Given that

pu =
∂L∗
∂u̇

= M(u) · u̇ i.e., u̇ = M−1(u) · pu, (23)

we have

u̇ =
∂H∗
∂pu

= M−1(u) · pu, (24)

ṗu = −∂H∗
∂u

. (25)

To proceed, it is useful to write the matrices M and M−1 in block form

M =

(
A B

BT Γ

)
, M−1 =

(
∆ E
ET Z

)
, (26)

where

Aν,η(q, σ) =
N

∑
i=1

mi
∂ri
∂qν
· ∂ri

∂qη
, ν = 1, . . . , 3N− f , η = 1, . . . , 3N− f , (27)

Bν,α(q, σ) =
N

∑
i=1

mi
∂ri
∂qν
· ∂ri

∂σα
, ν = 1, . . . , 3N− f , α = 1, . . . , f , (28)

Γα,β(q, σ) =
N

∑
i=1

mi
∂ri
∂σα
· ∂ri

∂σβ
, α = 1, . . . , f , β = 1, . . . , f , (29)

∆ν,η(r) =
N

∑
i=1

1
mi

∂qν

∂ri
·

∂qη

∂ri
, ν = 1, . . . , 3N− f , η = 1, . . . , 3N− f , (30)

Eν,α(r) =
N

∑
i=1

1
mi

∂qν

∂ri
· ∂σα

∂ri
, ν = 1, . . . , 3N− f , α = 1, . . . , f , (31)

with Z already defined in Equation (11), to derive a number of results, which we will use in the
following. In particular, note that the block matrices defined above are not independent from each
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other. A first set of useful relations can be derived by expanding the expressions for the identity
1 = M−1M = M M−1

M−1M =

(
∆ A + E BT = 1 ∆ B + E Γ = 0
ET A + Z BT = 0 ETB + Z Γ = 1

)
=

(
A ∆ + B ET = 1 A E + B Z = 0
BT∆ + Γ ET = 0 BTE + Γ Z = 1

)
= M M−1. (32)

Another useful relation is the one that, in a different language, is known as Fixman’s Theorem [21].
It relates the determinants of the matrices A and Z

|A| = |M||Z| . (33)

Equation (33) can be derived directly observing that (use Equation (32) )

(i)

(
A 0

BT 1

)
= M ·

[
M−1 ·

(
A 0

BT 1

)]
= M ·

(
1 E
0 Z

)
, (34)

and that

(ii)

∣∣∣∣∣
(

A 0
BT 1

)∣∣∣∣∣ = |A| ,
∣∣∣∣∣
(

1 E
0 Z

)∣∣∣∣∣ = |Z| . (35)

By putting Equation (33) together with Equation (21), we obtain for the determinant of the block
matrix A, the interesting expression

|A|
1
2 = (|M||Z|)

1
2 = J |µ|

1
2 |Z|

1
2 (36)

that will be useful later on.
Going back to the constraint relations, the conditions σ̇ = 0 can now be written as

σ̇ = ET pq + Z pσ = 0, (37)

giving the non-zero values of the conjugated momenta p̃σ when the constraints are imposed,

p̃σ = −Z−1(q, σ = 0) ET(q, σ = 0) pq = −Z̃−1 ẼT pq , (38)

where Z̃ and Ẽ are implicitly defined in Equation (38). In these conditions, the Hamiltonian of the
constrained motion can be evaluated explicitly on the hypersurface σ = 0, pσ = p̃σ to obtain

H∗
(
q, σ = 0, pq, pσ = p̃σ

)
= K∗

(
q, σ = 0, pq, pσ = p̃σ

)
+ V∗(q, σ = 0) (39)

=
1
2

(
pT

q p̃T
σ

) ( ∆̃ Ẽ
ẼT Z̃

) (
pq

p̃σ

)
+ Vc(q) (40)

=
1
2

pT
q

(
∆̃− Ẽ Z̃−1 ẼT

)
pq + Vc(q) (41)

=
1
2

pT
q Ã−1(q) pq + Vc(q) ≡ Hc(q, pq), (42)

where we first used p̃σ = −Z̃−1 ẼT pq to go from Equation (40) to Equation (41) and, then,
from Equation (41) to Equation (42), we have used the relations from Equation (32), A ∆+B ET = 1 and
A E + B Z = 0. The HamiltonianHc generates the equations of motion in the (3N− f )−dimensional
space in normal form
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q̇ =
∂Hc

∂pq
, (43)

ṗq = −
∂Hc

∂q
. (44)

3. SHAKE, Integrating the Equations of Motion

The numerical integration of the equations of motion (6) requires discretizing the time and to
provide a suitable algorithm of given precision. Generally, for evident reasons, one avoids the use
of algorithms requiring more than the computation at each step of the forces Fi = − ∂V

∂ri
avoiding

successive derivatives, e.g., Ḟi = −
(

∑j ṙj · ∂
∂rj

)(
∂V
∂ri

)
, etc. For illustrative purposes, we will limit

ourselves to write down the integration of the Lagrangian equations of motion using the Verlet
algorithm and of the Hamiltonian equations using the velocity-Verlet algorithm.

3.1. Verlet Algorithm

The celebrated (1967) Verlet algorithm is easily obtained by writing down and summing up the
forward and backward Taylor expansions of each coordinate truncated to the fourth order. Calling x
a generic variable in the configuration space set r (and ∂x = ∂

∂x ), it reads

x(t + h) = −x(t− h) + 2x(t) + h2ẍ(t) +O(h4), (45)

where t is the running time and h is the integration step resulting from time discretization. The velocity
with this algorithm is computed by subtracting the same forward and backward Taylor expansions.
We get, with one timestep of delay,

ẋ(t) =
x(t + h)− x(t− h)

2h
− h2

...
x (t)

3
+O(h4), (46)

where we have written explicitly the error of order O(h2) for further use. Notice that the velocities,
which carry a larger error, do not enter in the computation of the trajectory, which remains precise to the
order three, and, as it has been shown, has many other remarkable features that can be summarized by
saying that this algorithm is simplectic [22,23]. In presence of holonomic constraints, the acceleration of
any coordinate x can be decomposed in the two contributions, F = −∂xV coming from the interaction

potential of the model and G = −
f

∑
α=1

Λα(∂xσα) ≡ −Λ · (∂xσ) the constraint force, where Λ is a set of

parameters to be determined, so that

ẍ(t) =
1
m

[F(t) + G(t)] . (47)

Substituting Equation (47) in the algorithm Equation (45), we have

x(t + h) = x̄(t + h) +
h2

m
G(t) +O(h4), (48)

where x̄(t + h), the provisional value of the coordinate at time t + h, is the position the coordinate
would take in the absence of constraints. Now, and this is the essential conceptual content of the whole
family of SHAKE algorithms, we determine the set of the Λ parameters by imposing and solving the
set of algebraic equations

σα

(
{x̄(t + h)− h2

m
Λ · (∂xσ)}

)
= 0 , α = 1, . . . , f . (49)
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Since we have f Λ values and f constraint relationships, the system of algebraic, generally not
linear, equations is well posed. The values of the Λs solving these equations are in general different
from the values of the λ(t) obtainable from Equations (10). However, the difference cannot be of
greater order than the one involved in the algorithmic error. Therefore, the values of the coordinates at
time t + h will entail an error equivalent to the one produced by the blind application of the Verlet
algorithm. However, now, the constraint relationships will be satisfied exactly at every timestep and
the dynamics of the system will not disrupt the model.

Many different ways have been proposed to solve the system of Equations (46), see e.g., [13,24–27].
The original, and still commonly used, goes back to Berendsen [3], who called it, again, SHAKE.
It proceeds by satisfying one constraint at a time, iterating constraint relationship by constraint
relationship until convergence. The technical details have been worked out, apart from the original
paper, more pedagogically in [11]. Leimkuhler [28] has demonstrated that the resulting numerical
procedure maintains the time reversal invariance and the simplectic character of the algorithm. In the
referred to, original, implementation, the algorithm is inherently serial and cannot be easily parallelized.
Practical parallelizations are either approximate or the algorithms are specifically tailored to the
problems at hand. An interesting general parallel solution has been worked out by Weinbach and
Elber [13]. They take advantage of the fact that the essential step in solving the SHAKE equation

σα(x̄(t + h), Λ) = 0 , α = 1, . . . , f (50)

can be recast as the solution of a sparse linear problem of the type Ay = b with y the vector of
unknowns. Constructing a suitable positive definite matrix, they solve the SHAKE equation using
(parallel) conjugate gradient minimization of the quadratic form 1

2 ΛTAΛ−ΛTσ in place of the standard
iterative process (inherently serial).

3.2. Velocity-Verlet Algorithm

The Verlet algorithm can be easily recast in an algebraically equivalent form that, when applied
in the correct order, produces both the positions and the velocities at the same time. Using the
same symbols, let us first rewrite Equation (45) by replacing −x(t− h) with its value extracted from
Equation (46)

−x(t− h) = 2hẋ(t)− x(t + h) +
2h3

3
...
x (t + h) +O(h5), (51)

where we have written explicitly for further use the expression for the error O(h3), to be normally
rejected, in order to obtain the first equation of the velocity-Verlet algorithm, which expresses the
position x at time (t + h)

x(t + h) = x(t) + hẋ(t) +
h2

2
ẍ(t) + h3

...
x (t)

3
+O(h5) (52)

with an error of order O(h3), here retained in its explicit form. Next, we write the velocity ẋ(t + h)
from Verlet (46) taken at time (t + h) and eliminate the position x(t + 2h) using, again, Verlet (45) taken
to go from time (t + h) to time (t + 2h),
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ẋ(t + h) = [x(t + 2h)− x(t)]
/
(2h) − h2

3
...
x (t + h) +O(h4) (53)

=
[
2x(t + h)− x(t) + h2ẍ(t + h) +O(h4)− x(t)

] /
(2h) − h2

3
...
x (t + h) +O(h4) (54)

=
x(t + h) +

(
2x(t)− x(t− h) + h2ẍ(t) +O(h4)

)
− x(t) + h2ẍ(t + h) +O(h4)− x(t)

2h

− h2

3
...
x (t + h) +O(h4), (55)

where we made again use of Verlet (45) to expand one of the two x(t + h) contributions.
Regrouping terms and simplifying, we can write

ẋ(t + h) =
x(t + h)− x(t− h)

2h
+

h
2
[ẍ(t) + ẍ(t + h)] +O(h3)− h2

3
...
x (t + h) , (56)

= ẋ(t) +
h
2
[ẍ(t) + ẍ(t + h)] +

h2

3
[
...
x (t)− ...

x (t + h)] +O(h3) , (57)

where we got rid of the fraction

x(t + h)− x(t− h)
2h

= ẋ(t) + h2
...
x (t)

3
+O(h4) , (58)

using Verlet (46). Finally, by expanding with Taylor the third derivative term at time (t+ h),
...
x (t+ h) =

...
x (t) + h

....
x (t) + O(h2), we observe that the two terms ∝ h2 cancel each other leaving a term in h3.

Finally, we arrive at the second equation of the velocity-Verlet algorithm

ẋ(t + h) = ẋ(t) +
h
2
[ẍ(t) + ẍ(t + h)] +O(h3) , (59)

which expresses the velocity ẋ at time (t + h), again with an error of order O(h3).
Substituting Equation (47) into Equation (52), we have, analogously to the previous section,

x(t + h) = x̃(t + h) +
h2

2m
G′(t) +O(h3), (60)

where x̃(t + h), the provisional value of the coordinate at time t + h, is the position that the coordinate
would take in the absence of constraints using Equation (52), and G′ = −Λ′ · (∂xσ) is the constraint
force and the parameters Λ′ are determined by imposing and solving the set of equations

σα

(
{x̃(t + h)− h2

2m
Λ′ · (∂xσ)}

)
= 0 , α = 1, . . . , f . (61)

Again, we have an algebraic system with f constraint relationships σ and f unknown values Λ′.
The problem is well posed and the solution can be retrieved exactly along the same lines as before,
by using the iterative SHAKE algorithm. Of course, we will have a different set of parameters, Λ′ 6= λ,
but the new positions x(t + h) will satisfy the constraints (5) exactly at the time t + h. To calculate the
new velocities, the above procedure must be repeated by substituting Equation (47) in Equation (59),
now at time t + h,

ẋ(t + h) = ˜̇x(t + h) +
h

2m
G′′(t + h) +O(h3) , (62)
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where G′′ = −Λ′′ · (∂xσ) and

˜̇x(t + h) = ẋ(t) +
h
2
[F(t) + F(t + h)] +

h
2m

G′(t), (63)

the provisional velocity at time t+ h, i.e., the value the velocity would take in the absence of constraints
at time (t + h). Note that, at this stage, the Λ′ and, therefore, the constraint force G′(t) at time t are
already computed and therefore included in ˜̇x(t + h), while one needs to determine the yet unknown
parameters Λ′′ by imposing and solving the set of equations

σ̇α

(
{x(t + h), ˜̇x(t + h)− h

2m
Λ′′ · (∂xσ)(t + h)}

)
= 0 , α = 1, . . . , f . (64)

Once more, we have an algebraic system with f constraint relationships, σ̇, and f unknown
values, Λ′′. The problem is well posed and the solution can be retrieved by an iterative SHAKE-like
procedure, i.e., proceeding by satisfying one constraint relation at a time. The whole procedure of
imposing constraints within the velocity-Verlet scheme is known by a different name, the RATTLE

algorithm [12], although it is indeed nothing else than the same SHAKE procedure applied twice,
once for positions and once for velocities, to two different sets of equations. The main difference with
the original SHAKE algorithm [3] lies in the fact that the velocities calculated using Equation (62) are at
each time exactly tangent to the constraint hypersurface σ = 0, while the velocities calculated, usually,
simply using Equation (46) in the original SHAKE algorithm are tangent only within the algorithm
accuracy (O(h2)). This extra precision does not come for free, but at the cost of doubling the effort in
calculating the unknown Λ parameters. As long as the velocities in the Verlet algorithm do not enter
directly into the numerical integration of the positions, such difference can be safely ignored; however,
if desired, nothing would impede applying SHAKE in the same spirit, and with similar costs, to correct
the velocities from Equation (46).

4. Equilibrium Statistical Mechanics in the Hamiltonian Formulation

The expression of the statistical equilibrium ensemble in Cartesian coordinates of a system
subjected to holonomic constraints is not smooth but singular since the probability density defined
in a 6N-dimensional phase space is associated with a mechanical system whose motion takes place
in a (6N − 2 f )-dimensional subspace, i.e., the intersection of the 2 f hypersurfaces σ(r) = 0 and
σ̇(r, p) = 0.

On the contrary, it is immediate to write down the (microcanonical) probability density in the
reduced phase space of the 2(3N − f ) generalized coordinates q, pq using the Hamiltonian Hc in
Equation (42).

Let Ô(r, p) be a dynamical variable defined using Cartesian coordinates and Ôc(q, pq) = Ô(r(q, σ = 0),
p(q, σ = 0, pq, pσ = p̃σ)) the equivalent variable expressed using generalized coordinates, restricted to the
constrained hypersurface. The familiar microcanonical average in generalized coordinates reads

〈Ô〉NVE =
1

N!Ω(N, V, E)

∫
dq dpq Ôc(q, pq) δ

(
Hc(q, pq)− E

)
, (65)

where

Ω(N, V, E) =
1

N!

∫
dq dpq δ

(
Hc(q, pq)− E

)
. (66)

We will now transform it into the equivalent integral in Cartesian coordinates by making use of
the canonical transformation that connect the “generalized” phase space variables (u, pu) introduced
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in Section 2 to the “Cartesian” phase space variables (r, p). We first remark that, on the (6N − 2 f )
phase space hypersurface, one has

dq dpq = dqdσ δ(σ) dpqdpσ δ(pσ − p̃σ) = dudpu δ(σ)δ(pσ − p̃σ), (67)

where, for the product of the first f delta functions, we have used the shortcut notation δ(σ) = ∏α δ(σα),
and, equivalently, for the last term δ(pσ − p̃σ) = ∏α δ((pσ − p̃σ)α).

A more convenient expression for this product of delta functions can be derived by nothing that
by multiplying Equation (37) by Z−1, one obtains:

Z−1 σ̇ = pσ + Z−1 ET pq = pσ − p̃σ . (68)

Finally, using the facts that the Jacobian associated with a canonical transformation generated
by a point transformation in the coordinates preserves the phase space volume, i.e., ∂(u, pu)

∂(r, p )
= 1,

and Equation (42), we can write for the microcanonical average (65)

〈Ô〉NVE =
1

N!Ω(N, V, E)

∫
du dpu Ô∗(u, pu)δ [H∗ (u, pu)− E] δ(σ)δ(pσ − p̃σ) (69)

=
1

N!Ω(N, V, E)

∫
dr dp Ô(r, p)δ [H (r, p)− E] δ(σ(r))δ(Z−1σ̇(r, p)), (70)

where now,

Ω(N, V, E) =
1

N!

∫
dr dp δ [H (r, p)− E] δ(σ(r))δ(Z−1σ̇(r, p))

=
1

N!

∫
dr dp |Z(r)| δ(σ̇(r, p)) δ(σ(r)) δ [H (r, p)− E] , (71)

with |Z| the modulus of the determinant of the matrix Z. From Equation (69), it follows directly the
expression for the probability density in the microcanonical equilibrium ensemble in Cartesian coordinates

P (micro) (r, p) =
δ [H (r, p)− E] |Z(r)|δ(σ̇(r, p))δ(σ(r))

N!Ω(N, V, E)
(72)

and similar for other equilibrium ensembles. In particular for the Canonical ensemble, where classically
momenta and coordinates are explicitly independent, the probability density will result in being

P (r, p) =
exp {−βH (r, p)} |Z(r)|δ(σ̇(r, p))δ(σ(r))∫

drdp exp {−βH (r, p)} |Z(r)|δ(σ̇(r, p))δ(σ(r))
. (73)

For theoretical purposes, as we will see in the following, it is very useful to write the ensemble
in terms of the marginal configurational probability density PM(r) and the conditional probability
density of the momenta PC(p|r):

P(r, p) = PM(r)PC(p|r), (74)

where

PM(r) dr =
(∫

dp P(r, p)
)

dr =

∫
dp e−βH(r,p)δ(σ(r))δ(Z−1σ̇(r, p))∫

drdp e−βH(r,p)δ(σ(r))δ(Z−1σ̇(r, p))
dr . (75)

Explicitly, PM can be computed by first integrating out the delta functions for σ̇ in Equation (75),
which amounts, after a change of variables, to the substitutions pσ = p̃σ, and then by executing the
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Gaussian integrals involved in the canonical ensemble. Assuming that the standard result of the
integration of a unidimensional Gaussian integral is known,

∫ +∞

−∞
dx e−

1
2 x2/a =

√
2πa , (76)

and, for a multidimensional Gaussian integral, diagonalizing the quadratic form and using the
invariance of the determinant under unitary transformations, one derives immediately for the integral
that, in n dimensions, ∫

. . .
∫

dx e−
1
2(xT ·A−1·x) = (2π)

n
2 |A|

1
2 . (77)

Focusing on the numerator in Equation (75), making a change of variables in the integral by using
dp = J−1dpu = J−1dpqdpσ, one has

e−βVδ(σ)dr J−1
∫

dpqdpσ e−
β
2 [p

T
u ·M−1·pu]δ(pσ − p̃σ) = e−βVδ(σ)dr J−1

∫
dpq e−

β
2 [p

T
q ·A−1·pq] (78)

= e−βVδ(σ)dr
(

2π

β

) 3N− f
2

J−1|A|
1
2 =

(
2π

β

) 3N− f
2
|µ|

1
2 e−βVδ(σ)|Z|

1
2 dr. (79)

To obtain Equation (79), we have proceeded as follows. First, we substitute the kinetic Hamiltonian
term in the exponential with its “unconstrained” expression in Equation (40) and integrate over dpσ

using Equation (42). Now, we perform the remaining multidimensional Gaussian integral over
the remaining momenta pq by using Equation (77) and use Equation (36) to arrive at the result in
Equation (79). Following the same procedure for the denominator and simplifying the constants in
Equation (79), we finally gets for the normalized marginal probability density

PM(r) =
e−βV(r)δ(σ) |Z|

1
2∫

dr e−βV(r)δ(σ) |Z|
1
2

. (80)

Equation (80) tells us that the marginal probability density in configuration space, in the presence
of constraints, is not simply ∝ exp (−βV)δ(σ) but contains the biasing term |Z(r)| 12 coming from the
limitations in momentum space induced by the constraints.

The conditional probability density in momentum space is given by

PC(p|r) = P(r, p)
PM(r)

=
e−

β
2 [p

T ·µ−1·p]−βVδ(σ)δ(Z−1σ̇(r, p))∫
dp e−

β
2 [pT ·µ−1·p]−βVδ(σ)δ(Z−1σ̇(r, p))

(81)

=
e−

β
2 [p

T ·µ−1·p]δ(Z−1σ̇(r, p))(
2π
/

β
) 3N− f

2 |µ| 12 |Z| 12
(82)

=
(
2π
/

β
)− 3N− f

2 |µ|−
1
2 e−

β
2 [p

T ·µ−1·p]|Z|
1
2 δ (σ̇(r, p)) , (83)

where to get the first equality we referred to Equation (80); for the next step, the result implicit
in Equation (79); and, finally, then Equation (83). The configuration dependent factor |Z(r)| 12 in
Equation (83) indicates that, when there are constraints, positions and momenta are no longer
independent. In particular, the distribution of momenta becomes no more simply Maxwellian.

5. Rare Events and Blue Moon Ensemble

In the statistical mechanical treatment of macroscopic phenomena, one is interested in computing
the properties of interest by identifying suitable observables, i.e., function of phase space, ξ̂(r, p),
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although here, and for a while, we will focus on observables depending only on the configuration
space and obtaining their macroscopic counterpart by taking an ensemble average (to be definite, let us
choose to work with the canonical ensemble) of it,

ξ = 〈ξ̂〉 = 1
Q

∫
drdp e−βH(r,p)ξ̂(r) , Q =

∫
drdp e−βH(r,p) . (84)

More generally, given one observable, it can be instructive to compute the marginal probability
density associated with it in the ensemble

Pξ(ξ
′) =

1
Q

∫
drdp e−βH(r,p)δ

(
ξ̂(r)− ξ′

)
≡
〈
δ(ξ̂ − ξ′)

〉
. (85)

Macroscopically speaking, this probability density has a profound meaning since it can be
associated, via the definition of the (Landau) free energy

Wξ(ξ
′) = −kBT lnPξ(ξ

′) (86)

to the reversible work needed to bring the physical system from a reference state to the value ξ = ξ′.
This fact can be easily seen by taking the derivative with respect to ξ′ of Equation (86)

dWξ(ξ
′)

dξ′
= −kBT

d
dξ′

lnPξ(ξ
′)− kBT
Pξ(ξ′)

d
dξ′
Pξ(ξ

′) (87)

= − kBT
Pξ(ξ′)

∫
drdp

e−βH(r,p)

Q
d

dξ′
δ(ξ(r)− ξ′) . (88)

In the same spirit of Section 2, we introduce the canonical transformation from the Cartesian
coordinates {r, p} to the generalized coordinates {u, pu}, where u = (q, ξ) with the set q suitably
chosen. Now, using that d

dξ′ = −
(

∂
∂ξ

)
, integrating by parts, we arrive at

dWξ(ξ
′)

dξ′
=

∫
dudpu

(
∂H∗
∂ξ

)
e−βH∗δ(ξ − ξ′)∫

dudpu e−βH∗δ(ξ − ξ′)
=
〈
(

∂H∗
∂ξ

)
δ(ξ̂ − ξ′)〉

〈δ(ξ̂ − ξ′)〉
, (89)

where H∗ is the Hamiltonian expressed in the generalized u coordinates, see Equation (17).
In generalized coordinates, the kinetic term K∗ in the Hamiltonian (see Equation (18)) gives a non-zero
contribution to the derivative, which is nothing but a geometrical correction that ultimately involves
(see Appendix A) the Jacobian J = ∂(u)

∂(r) of the coordinate transformation,

dWξ(ξ
′)

dξ′
=

〈[(
∂V∗
∂ξ

)
− kBT

(
∂ ln J

∂ξ

)]
δ(ξ̂ − ξ′)

〉/〈
δ(ξ̂ − ξ′)

〉
. (90)

From Equation (90), we see that the derivative ofWξ is a conditional average, at a given value of
the observable, of the generalized force acting on the system, i.e., typically a thermodynamic force.
The evaluation of this expression as given in Equation (90) requires constructing explicitly the set
of generalized coordinate u, something usually very cumbersome, and needs an ad hoc derivation
in each particular case. As a matter of fact, it is possible to circumvent this technical difficulty [15]
and derive expressions directly in terms of the function ξ(r) and its derivatives with respect to the
Cartesian coordinates r. The “work” associated with this force is what we identify with reversible
work. By thermodynamic integration, we can get the reversible work relative to a reference state and
by exponentiation the probability density associated with the random variable ξ̂.

In standard conditions, when ξ̂ is a unimodal random variable, the sampling of its probability
density is an easy matter that can be computed directly in any straightforward Monte Carlo or
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Molecular Dynamics simulation by simply recording the histogram of visited ξ′ values. Things become
less evident when the probability distribution of the random variable is not only multimodal, but the
regions in between the maxima are characterized by very low probabilities so that whatever simulation
gets stuck in one of the highly probable regions and, physically speaking, we are in the presence of
a metastability. When this is the case, a brute force sampling of the histogram is no longer possible and
one has to find, by cunning, alternative ways to proceed. As we will see in the following, the concept
of conditioned or constrained probability will take us out of the difficulty.

To see that, we consider the condition ξ(r) = ξ′ as the constraint

σ(r) = ξ̂(r)− ξ′ = 0, (91)

and we compare the conditional probability

P(r|ξ′) = P(r, ξ′)

P(ξ′) =
e−βVδ(ξ̂ − ξ′)∫
dr e−βVδ(ξ̂ − ξ′)

(92)

with Equation (80) for the marginal probability density in the presence of the constraint σ. We find

P(r|ξ′) =
|Z|− 1

2P constr
M (r)∫

dr |Z|− 1
2P constr

M (r)
=

|Z|− 1
2

〈|Z|− 1
2 〉constr

σ

P constr
M (r)∫

dr P constr
M (r)

, (93)

i.e., a way to sample the conditional probability of r given ξ′ by unbiasing a constrained probability
density. Now, even regions of the configurational space associated with very low probabilities can be
efficiently sampled and the metastability problem is taken out. In particular as a kind of corollary to
Equation (93), we have for any configurational observable Ô(r),

〈Ô(r)〉cond
ξ′ ==

〈|Z|− 1
2 Ô(r)〉constr

σ

〈|Z|− 1
2 〉constr

σ

, (94)

with the rhs that, at variance with its left counterpart, can be efficiently sampled even for values of ξ′

corresponding to metastabilities.
The next problem arises when we need to take conditional averages for observables depending

on the whole phase space, i.e., r and p. This case, apparently not so common, is instead general if
one considers conditional dynamic properties (time correlation functions) even of configurational
properties. Indeed, as it is immediately evident, Ô(r(t)) is nothing else than a function of the
initial condition (r, p) parametrically dependent on the time t. Therefore, to be able to sample an
unbiased conditional ensemble, with σ = 0, we need to have unbiased P(r, p|ξ′). We know that
the momenta in the constrained ensemble, Equation (83), are irreversibly biased and thus unusable.
However, we can unbias the configurations taken along a constrained trajectory and associate with
them momenta sampled from an unbiased probability distribution. Knowing that, in the original
ensemble, positions and momenta are independent and moreover the distribution of momenta Pp(p)
is just a product of Maxwellians, we can easily get such a sample

P(r, p|ξ′) = Pp(p)Pr(r|ξ′) (95)

from which directly a computable expression for a time correlation function at given ξ′

〈Ô(r(t))Ô(r) | ξ′〉 = 〈|Z|
− 1

2 Ô(r(t))Ô(r) | ξ′〉constr
σ

〈|Z|− 1
2 〉constr

σ

, (96)

where the time evolution now has to be intended to be fully unconstrained. The ensemble so constructed
is the Blue Moon Ensemble and the problem of this particular metastability is now solved. In particular,
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if we are interested in the calculation of an unconditioned time correlation function in a system where
a brute force calculation (due to metastability) is not possible, we can compute it by thermodynamic
integration using the predetermined marginal probability of ξ, Pξ(ξ

′). We get

〈Ô(r(t))Ô(r)〉 =
∫

dξ ′ Pξ(ξ
′)〈Ô(r(t))Ô(r) | ξ ′〉. (97)

To simplify the algebra and the notation, we have developed our argument only in the case of one
scalar condition, ξ. The generalization to a vectorial condition is straightforward but cumbersome,
and it can also be found explicitly derived in the literature [29]. The case in which the mechanical
system contains constraints other than the ones representing physical conditions, typically molecular
constraints, is formally more involved but conceptually identical. The interested reader can find all
needed details in Ciccotti et al. [2].

6. Liouville Equation in the Presence of Constraints

The careful reader will have noticed at this point that we have properly solved the dynamics
of a Hamiltonian system subjected to holonomic constraints and also formulated, in the Cartesian
space, its statistical behavior at equilibrium. Instead, we have been unable to formulate in general
the Statistical Mechanics of the system, including the evolution of the non equilibrium ensemble.
The reason is that we miss the Liouville equation for this family of dynamical systems. We will see
in the following that a generalized Liouville equation, always in the Cartesian reference description,
can be derived at the price of abandoning the formulation of the dynamical evolution of the system by
Lagrange multipliers and deriving, instead, the statistical behavior of a many-body, non-Hamiltonian
system still satisfying the (assumed) conditions needed to justify a statistical treatment (e.g., chaotic
behavior of the constituents, etc.). In these conditions, we will be able

(i) to get a correct generalized Liouville equation;
(ii) to find the results already obtained for the equilibrium ensemble;

(iii) to generalize to these systems the theory of the response to external perturbations (in particular
Kubo linear response theory [30]) well known and of widespread use for Hamiltonian systems,
not only theoretically but also in molecular dynamics simulations [19,31–33].

A general, non-Hamiltonian, dynamical autonomous system is defined, in the set of variables
{x}(≡ {r, p=mṙ}), by

ẋ = G(x) (98)

with the single component Gi(x) not derivable as ± ∂H
∂xi′

. The first and most important difference with
a Hamiltonian system, especially in view of the derivation of the statistical properties of such a system,
is that the phase space volume can be no more an invariant of the motion. If that happens, the standard
approach of Statistical Mechanics is doomed to fail. However, it is easy to see that an invariant measure
for the systems given in Equation (98) is easily found. Indeed, now

dxt = J(xt, x0)dx0, (99)

where xt = xt(t; x0) is the solution of Equation (98), x0 the initial condition and Jt = J(xt, x0) the
determinant of the Jacobian matrix of the time-generated change of variables. In Appendix B, it is
shown that

d
dt

J(xt, x0) =
(
∇T

xt ẋt

)
J(xt, x0) = κ(xt) J(xt, x0), (100)

where κ, the divergence of the flow in phase space κ(xt) = ∇T
xt ẋt, is known as the phase space

compressibility of the dynamical system, and we have introduced the shorthand notation ∇xt for the
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gradient ∇x =
∂

∂x
with respect to coordinates xt at time t. The solution of Equation (100) with the

initial condition J(xt=0, x0) = 1 is

J(xt, x0) = exp
{∫ t

0
dτκ(xτ)dτ

}
= exp{w(xt, t)−w(x0, 0)} , (101)

where w(xt, t) is the primitive function associated with the indefinite time integral of κ(xt), which exists

with certainty given that κ(xt) =
d ln Jt

dt
. Substituting this results in Equation (99), we find

exp{−w(xt, t)}dxt = exp{−w(x0, 0)}dx0 (102)

i.e., the conservation in time of the measure e−w(xt,t)dxt. The factor exp{−w(xt, t)}, let us call it
γ(xt, t), is the metric factor associated with the coordinate transformation x0 → xt,. It tells us that
the statistical space of the variables x is no more Euclidean but has a non trivial metric structure.
Remembering that the statistical ensemble is described by a probability density P(x, t), we have for the
normalization condition, ∫

dxγ(x)P(x, t) = 1 , ∀t, (103)

from which we get d
dt (
∫

dxγP) = 0 and, therefore, the continuity equation

∂

∂t
(γ(x)P(x, t)) +∇T

x (ẋγ(x)P(x, t)) = 0 , (104)

which represents the new, valid form for the Liouville equation for our more general dynamical
systems. The solutions of Equation (104) will give us the evolution in the time of the ensemble
associated with our non-Hamiltonian systems in non-equilibrium conditions while their stationary,
asymptotic solutions can represent the equilibrium ensemble. We will now proceed in two steps,
in order to derive the consequences of this more general approach to Statistical Mechanics. First, we will
discuss how to obtain, in these conditions, not just a stationary solution but the correct equilibrium
ensemble corresponding to the microcanonical ensemble of the standard case and show, just for
illustration, how by this procedure we can re-derive the equilibrium ensemble for systems subjected
to holonomic constraints. Then, second, using the general form of the solution of Equation (104),
we will show the validity of the response approach developed by Onsager and Kubo (at least) for the
Hamiltonian case.

6.1. Generalized Distribution Function

Assuming that the system (98) possesses nc conserved quantities Ĉk(x), k = 1, . . . , nc,

dĈk(x)
dt

= 0 , k = 1, . . . , nc, (105)

the space sampled by its trajectories will be the subspace intersection of the hypersurfaces Ĉk(x) = ck,
where the values ck are determined by the initial conditions. The “microcanonical” distribution
function generated in these conditions is

P (micro)(x) ∝
nc

∏
k=1

δ
(
Ĉk(x)− ck

)
. (106)

The solution (106) satisfies Equation (104) since its total time derivative is evidently zero and,
moreover, is microcanonical since all accessible configurations are equiprobable. Other solutions exist,
for example products of delta functions for subsets of the full set of conservation laws, but they do not
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correspond to physical ensembles since they will represent hypersurfaces containing states that will
never be visited. In other words, physical ensembles cannot be obtained by using only the solutions of
the Liouville equation (104). To satisfy the stationary Liouville equation is a necessary but not sufficient
condition. From the previous observations, it is possible to derive the rules to be followed to construct
the proper equilibrium ensemble and the correct invariant measure.

The ensemble:

1. Construct the distribution function by Equation (106) using all the independent conservation
laws implicit in the equations of motion;

2. Eliminate from the statistical space all variables that result uncoupled to the bulk of the system
or driven by it. By driven, we mean variables

(i) whose evolution follows that of the other variables without influencing those ones and
(ii) that do not appear in the phase space expression of any of the nc conserved quantities Ĉk.

A (not so) typical example could be that of particles of zero mass interacting with the system
only via the holonomic constraints defining their own values (see Appendix C).

The measure:

3. Once the essential, reduced, set of variables, let us call them x′, has been selected, calculate the
phase space compressibility κ(x′) = ∇T

x′ ẋ
′ of the reduced dynamical system

ẋ′ = G̃(x′) (107)

and use κ(x′) to determine γ(x′).

The results are

P (micro)(x′) =
∏nc

k=1 δ
(
Ĉk(x′)− ck

)∫
dx′ γ(x′) ∏nc

k=1 δ
(
Ĉk(x′)− ck

)
,

(108)

where, via the normalization factor, is implicitly defined the new partition function

Ω(c1, . . . , cnc) =
∫

dx′ γ(x′)
nc

∏
k=1

δ
(
Ĉk(x

′)− ck
)

. (109)

We now turn, for illustrative purposes, to apply the formalism just developed to an originally
Hamiltonian dynamical system subjected to holonomic constraints. As we have seen before, the non-
Hamiltonian equations of motion are obtained inserting directly Equation (10) into Equation (14).
The result is

ṙi =
pi
mi

, (110)

ṗi =−
∂V
∂ri
−

f

∑
α=1

{
f

∑
θ=1

[
− 1

mi

∂V
∂ri
·
(

∂

∂ri

)
σθ

+
N

∑
k=1

N

∑
j=1

(
pk
mk
· ∂

∂rk

)( pj

mj
· ∂

∂rj

)
σθ

] (
Z−1

)
θ,α

}
∂σα(r)

∂ri
, i = 1, . . . , N. (111)
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Now, σα = σ̇α = 0 , α = 1, . . . , f are 2 f conservation laws to be added to the Hamiltonian.
The compressibility factor κ is (easily) computed as

κ = ∇T
x ẋ =

N

∑
i=1

(
∂

∂pi
· ṗi

)
= −

f

∑
α=1

N

∑
i=1

(
∂λα

∂pi

)
· ∂σα

∂ri
(112)

= −2
f

∑
α=1

f

∑
θ=1

N

∑
i=1

[(
1

mi

∂

∂ri

)
·
(

N

∑
j=1

pj

mj
· ∂σθ

∂rj

)](
Z−1

)
θ,α

∂σα

∂ri
(113)

= −
f

∑
α=1

f

∑
θ=1

[
2

N

∑
i=1

1
mi

∂σα

∂ri
· ∂σ̇θ

∂ri

] (
Z−1

)
θ,α

= −
f

∑
α=1

f

∑
θ=1

Żα,θ

(
Z−1

)
θ,α

= − d
dt

ln|Z|, (114)

giving

γ = e−w = |Z|, (115)

from which we recover the ensemble already derived, Equation (73).

6.2. Response Theory

We address now the central question of dynamical non-equilibrium Statistical Mechanics for
systems subjected to holonomic constraints: how to get statistical averages when the evolution of the
system is no more stationary be it due to time-dependent perturbations or to the study of relaxation
processes [8]. These problems are already solved in the Hamiltonian case (even with non-Hamiltonian
perturbations but conserving the phase space volume [19,31–35]); here, we extend that solution to
our present case. Let us start from the simpler case of the study of relaxation. Here, we have the
system prepared in a non-equilibrium condition and we intend to study the macroscopic relaxation of
an observable:

〈Ô〉t =
∫

dω(x)Ô(x)P(x, t), (116)

where dω(x) = γ(x)dx is the invariant measure already derived and P(x, t) is the ensemble at time t
obtained by evolving with the generalized Liouville Equation (104) the initial non-stationary ensemble
P(x, 0) ≡ P(x). Let us define the Liouville operator

ıL̂0 = ẋT∇x = µ−1 pT∇r − (∇xV)T ∇p −
f

∑
α=1

λα(x) (∇rσα)
T ∇p . (117)

It follows immediately that

dÔ(x(t))
dt

= ıL̂0Ô(x(t)) (118)

with formal solution

Ô(x(t)) = eıL̂0tÔ(x) . (119)

As for the evolution of the ensemble, we can start from the Liouville equation (104)

∂γP
∂t

= −∇T
x (ẋ γP) = −

(
ıL̂0 + κ

)
(γP) , (120)
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from which we can (easily) find, by using the fact that |Z| = |Z(r)| and the identity |Z| = eTr ln Z, that

ıL̂0γ =
N

∑
i=1

pi
mi
· ∂|Z|

∂ri
=

f

∑
α=1

f

∑
θ=1

[
N

∑
i=1

pi
mi
· ∂Zαθ

∂ri

] (
Z−1

)
θα
|Z| (121)

=

[
f

∑
α=1

f

∑
θ=1

Żαθ

(
Z−1

)
θα

]
|Z| = − κ γ, (122)

i.e.,

∂P
∂t

=
(
−ıL̂0

)
P , (123)

or else, once again,

dP
dt

=
∂P
∂t

+ ıL̂0P = 0 . (124)

Moreover, as in the standard case

P(x, t) = e−ıL̂0tP(x) . (125)

By remembering that we are working with an invariant measure, we find, again,

〈Ô〉t =
∫

dω Ô(x)P(x, t) =
∫

dω
[
eıL̂0tÔ(x)

]
P(x) =

∫
dω Ô(x(t))P(x), (126)

a relation easy to implement in molecular dynamics simulation of a relaxation process if we can prepare
a sample of the non-equilibrium initial ensemble P(x).

Let us now move to the case in which we are interested to compute the response of the system to
an external time-independent field. The equations of motion become

ẋ = G(x) + D(x)F (t), (127)

with D(x) derivable (D(r) =
∂Hp
∂p ; D(p) = − ∂Hp

∂r ) or not from a Hamiltonian perturbation term
(Hp). In any event, to simplify the formalism (and on the basis of what is usually done in transport
studies [36]), let us assume that ∇T

x D(x) = 0, i.e., that the perturbation satisfies the incompressibility
condition. This condition guarantees that, even in the presence of the perturbation, the non-zero
compressibility arises only from the constraints and it is given by Equation (114). The Liouville
operator is now time-dependent

ıL̂(t) = pT∇r −
(
∇T

r V +∑
α

λα∇T
r σα

)
∇p +F (t)DT∇x (128)

and

Ô(x(t)) = T exp
{

ı
∫ t

0
dτL̂(τ)

}
Ô(x) , (129)

where T is the time-ordering operator. However, in spite of this more daring complexity, again the
probability density evolves with the operator

S†(t, 0) = T exp
{
−ı
∫ t

0
dτL̂(τ)

}
(130)
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so that, again,

〈Ô〉t =
∫

dω Ô(x)S†(t, 0)P(x) (131)

=
∫

dω Ô(x(t))P(x) (132)

is the initial condition an equilibrium distribution or a general one, in any event a relation easy to
implement in molecular dynamics simulations. Equation (132) is valid in general both in the linear
response regime and beyond it. In the case of small perturbations, it is possible to show, after some
algebra, that, in the presence of constraints, the classical linear response result of Green [37] and
Kubo [30] is recovered and holds without any alteration from the uncostrained case [9].

7. Conclusions

The dynamics and Statistical Mechanics of a many-body system subjected to holonomic constraints
have been discussed both following, as for the equilibrium case, the classical historical Lagrange
(Hamilton) approach, using Lagrangian multipliers, and, more generally, from the newer perspective,
encompassing also non-equilibrium, of non-Hamiltonian flows in phase space. One section has been
dedicated to review in depth the most relevant numerical implementations, while, for the sake of
readability, the reader has been addressed to the relevant literature for the technically most involved
cases. A quite peculiar application, the zero-mass particle case, has been discussed to show how
constraints can be creatively used to extend the description of the system opening a different, efficient,
way of incorporating, for example, new features in force field models. Let us, finally, remark that
developing the statistical theory of dynamical systems subjected to holonomic constraints permits to
cover both equilibrium and non-equilibrium simulations of molecular systems but also to explore the
domain of rare events, including the computing of complex free energy landscapes, the probing of
the dynamics of rare events and even performing non-equilibrium hydrodynamical simulations by
properly sampling initial conditions assigning the proper weight to the ensemble of non-equilibrium
trajectories that gives the correct (linear and nonlinear) response.
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Appendix A

To evaluate the thermodynamic force in Equation (90), we need to separately address the
contributions from the kinetic and the potential terms in the HamiltonianH∗(u, pu),

dWξ(ξ
′)

dξ ′
=

∫
dudpu

[(
∂K∗
∂ξ

)
+
(

∂V∗
∂ξ

)]
e−βH∗δ(ξ − ξ ′)∫

dudpu e−βH∗δ(ξ − ξ ′).
(A1)

The potential term does not depend on the momenta pu and its contribution is immediately
addressed. The kinetic termK∗ = 1

2 pT
u M−1pu can be rearranged in a more significant form by performing

the integral over the momenta,
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∫
dpu

[
1
2 pT

u
∂M−1

∂ξ pu

]
exp{− β

2 pT
u M−1pu}∫

dpu exp{− β
2 pT

u M−1pu}
(A2)

= −kBT
∂

∂ξ

∫
dpu exp{− β

2 pT
u M−1pu}∫

dpu exp{− β
2 pT

u M−1pu}
(A3)

= −kBT
∂

∂ξ

(
2π
β

)3N/2
|M|1/2(

2π
β

)3N/2
|M|1/2

(A4)

= −kBT
2

(
∂ ln|M|

∂ξ

)
= −kBT

(
∂ ln J

∂ξ

)
, (A5)

where we have used Equation (77) and Equation (21).

Appendix B

We enclose for self-consistency of our text a straightforward demonstration of Equation (100).
If the coordinate system is changed from coordinate ξ = x(0) to the coordinates x = x(t|ξ) from the
time evolution transformation, the volume element in the n-dimensional space changes accordingly to
the formula

dx1dx2 . . . dxn = dx =
∂(x1, x2, . . . , xn)

∂(ξ1, ξ2, . . . , ξn)
dξ1dξ2 . . . dξn = Jdξ, (A6)

where J = |J| is the Jacobian, i.e., the determinant of the Jacobian matrix

(J)i,k =
∂xi
∂ξk

. (A7)

A simple linear algebra result, based on the invariance of determinants and traces with respect to
unitary transformations, such as diagonalization, states that, for a given square matrix A, with Ã = U−1AU
its diagonal form, the determinant |A| = |Ã| = ∏i(Ã)i,i can be expressed using Tr ln A, the trace of the
logarithm of the matrix itself:

eTr ln A = eTr ln Ã = e∑i ln(Ã)i,i = ∏
i
(Ã)i,i = |A| . (A8)

Applying Equation (A8) to the matrix J, one obtains for the Jacobian the formula

J(x, ξ) = |J| = eTr ln J . (A9)

Equation (A9) can be derived with respect to time t to obtain for J the equation of motion

dJ
dt

=
d eTr ln J

dt
= Tr

(
dJ
dt

J−1
)

eTr ln J =

(
n

∑
i=1

n

∑
k=1

(
dJ
dt

)
i,k
(J−1)k,i

)
J . (A10)

The derivatives of the elements of the Jacobian matrix can be expressed in terms of the velocity
field ẋ = dx

dt = G(x), where we have used Equation (98) to remind readers that the “velocities”
ẋi, i = 1, . . . , n can be expressed as functions of the coordinates x(ξ) and, therefore, by exchanging the
order of derivation, (

dJ
dt

)
i,k

=
d
dt

∂xi
∂ξk

=
∂ẋi
∂ξk

. (A11)



Computation 2018, 6, 11 22 of 24

Substituting Equation (A11) in Equation (A10), and reminding readers that
(

J−1)
k,i =

∂ξk
∂xi

,

we finally obtain

dJ
dt

=

(
n

∑
i=1

[
n

∑
k=1

∂ẋi
∂ξk

∂ξk
∂xi

])
J =

(
n

∑
i=1

∂ẋi
∂xi

)
J = κ J , (A12)

i.e., Equation (100).

Appendix C

The axis of a diatomic molecule cannot provide a reference frame (a comoving frame) attached
to the molecule. However, adding to the molecule a third point of mass zero not collinear with the
physical molecule, we can get the comoving frame we were looking for. We show below that this extra
variable is driven and doesn’t alter the dynamics and Statistical Mechanics of our system [38]. In order
to create a rigid triatomic molecule, i.e., a rigid triangle, one needs to specify three so-called “bond”
constraints for the square distances between each pair of atoms

σij =
1
2

[
(rj − ri)

2− d2
ij

]
, ij = 12, 23, 31, (A13)

where ri is the three-dimensional atomic coordinate of atom i with i = 1, 2, 3 an dij is the (rigid) distance

between atoms i and j. Bond constraints are easy to deal with since, as
∂σij
∂ri

= −(rj − ri), the constraint
force is parallel to the bond, and the equations of motion are

m1r̈1 = F1 + λ12(r2− r1) + λ31(r3− r1), (A14)

m2r̈2 = F2 + λ23(r3− r2) + λ12(r1− r2), (A15)

m3r̈3 = F3 + λ31(r1− r3) + λ23(r2− r3), (A16)

where Fi is the total force acting on atom i. Assuming i = 3 is the index of the virtual particle and
F3 = 0, one immediately has that

m3r̈3 = λ31(r1− r3) + λ23(r2− r3) = 0, (A17)

implying λ31 = 0 and λ23 = 0, as the two non-zero bond vectors r1− r3 and r2− r3 are, by definition,
not collinear. By taking the limit for m3 → 0 of Equation (A16) after dividing it by m3 one has that,
although the total force acting of r3 is zero, the acceleration

r̈3 = ζ1(r1− r3) + ζ2(r2− r3) ,
(

ζ1 = lim
m3→0

λ31

m3
, ζ2 = lim

m3→0

λ23

m3

)
(A18)

does not need to vanish, and the equations of motion can be rewritten as
m1r̈1 = F1 + λ12(r2− r1),
m2r̈2 = F2 + λ12(r1− r2),
r̈3 = ζ1(r1− r3) + ζ2(r2− r3).

(A19)

One can notice that, as expected, the motion of the two “real” atoms is not affected by the addition
of the virtual one and the dynamics of the third virtual atom simply follows the motion of the first
two, “driven” by the constraints. Noting, moreover, that the new variable doesn’t enter in any of the
conservation laws of the system, we can conclude safely that also the statistical behavior of the system
is not altered by the presence of the extra particle. Equations (A19) can be integrated numerically using
SHAKE with the Verlet algorithm described in Section 3.
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Another, possibly more interesting, case can arise with a force-field model containing extra-centers
of force, whose positions do not coincide with the atomic positions but follow adiabatically the motion
of the atoms, taking positions that satisfy the condition of zero force on them. The dynamics of these
extra zero-mass points are again inherently driven by that of the material points and so does not
intervene in the statistical behavior of the material system.
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