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Abstract: A localized meshless method is used to simulate 3-D atmospheric wind fields for wind
energy assessment and emergency response. The meshless (or mesh-free) method with radial basis
functions (RBFs) alleviates the need to create a mesh required by finite difference, finite volume,
and finite element methods. The method produces a fast solution that converges with high accuracy,
establishing 3-D wind estimates over complex terrain. The method does not require discretization
of the domain or boundary and removes the need for domain integration. The meshless method
converges exponentially for smooth boundary shapes and boundary data, and is insensitive to
dimensional constraints. Coding of the method is very easy and can be done using MATLAB or
MAPLE. By employing a localized RBF procedure, 3-D wind fields can be established from sparse
meteorological data. The meshless method can be easily run on PCs and hand-held mobile devices.
This article summarizes previous work where the meshless method has successfully simulated 3D
wind fields over various environments, along with the equations used to obtain the simulations.
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1. Introduction

Wind energy continues to be a limited resource in the Southwestern U.S. A preliminary wind
energy study conducted by Pepper [1] and later by the National Renewable Energy Laboratory (NREL)
and AWS Truewind (now AWS Truepower, Albany, NY, USA) [2] showed that Nevada has wind
resource potential (Figure 1a). Detailed wind energy resource data is difficult to obtain, requiring data
gathering equipment to reach remote ridges and mountain tops where higher-class winds may exist.
Previous efforts indicated that Nevada has significant wind resource potential, mostly on ridge tops in
rural areas [3]. Numerical simulations based on extensive mesh-based models are typically conducted
to estimate the potential of wind energy over extended areas of interest. These models can be time
consuming to setup and require extensive computational resources. A fast, alternative approach to
these more conventional models is the use of meshless methods.

Sufficient wind resources may be available to provide both electric power and economic
development opportunities for rural areas, as shown in Figure 1. Efforts were undertaken by the
University of Nevada Las Vegas (UNLV) and Desert Research Institute (DRI) to examine wind energy
potential within the central and upper Northern regions of the state. The UNLV-DRI study resulted in a
revised, more refined estimate of wind resources within the central portion of the state with placement
of four meteorological towers near Whitney Mountain.
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Figure 1. (a) National Renewable Energy Laboratory and AWS Truepower—Nevada 50 m wind 
power map; (b,c) University of Nevada Las Vegas (UNLV) assessment (red-Class 7, Orange-Class 6, 
Yellow-Class 5, Green-Class 4)—1998 study. 

2. Mass Consistent Winds 

In order to create realistic 3-D wind fields, a mass consistent model must first be established. 
The basis for the model employed in this study follows the earlier works of Sherman [4] and later 
applied by Pepper [5]. The mass consistent model minimizes the differences between observed and 
computed velocity values. Simulation values are calculated at all the nodes within the computational 
domain utilizing weighted averaging around each measured meteorological data point, i.e., data 
obtained from an instrumented meteorological tower, to fill in values to all the nodes. This 
interpolated wind field is then minimized to reduce error and satisfy mass conservation. In this 
situation, the limitations of the incompressible approach should be noted. In reality, the atmosphere 
is compressible and the differences in density can lead to issues affecting temperature, humidity, and 
pressure (e.g., nocturnal drainage winds). In this approach, we have kept the simulations simple to 
provide quick estimates of the wind fields. A more detailed approach should include compressibility. 
However, the procedure would essentially be the same. 

Inverse squared weighting is first used to create a preliminary surface wind field employing a 
fixed radius from the tower and the values interpolated to all grid points in the first level above the 
terrain. The remaining upper level winds are then constructed using inverse weighting from the 
initial surface generated values. If measured vertical velocities are not available, the equation of 
continuity is then used to calculate the remaining velocities, i.e.,  
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Lagrange multipliers, ( , , ), which are used to adjust velocities. This Poisson equation contains 
the observed velocity values (u0, v0, and w0 obtained from meteorological tower or SODAR-SOnic 
Detection and Ranging-data), along with Gauss moduli (α) that can be tuned to adjust for more 

Figure 1. (a) National Renewable Energy Laboratory and AWS Truepower—Nevada 50 m wind
power map; (b,c) University of Nevada Las Vegas (UNLV) assessment (red-Class 7, Orange-Class 6,
Yellow-Class 5, Green-Class 4)—1998 study.

2. Mass Consistent Winds

In order to create realistic 3-D wind fields, a mass consistent model must first be established.
The basis for the model employed in this study follows the earlier works of Sherman [4] and later
applied by Pepper [5]. The mass consistent model minimizes the differences between observed and
computed velocity values. Simulation values are calculated at all the nodes within the computational
domain utilizing weighted averaging around each measured meteorological data point, i.e., data
obtained from an instrumented meteorological tower, to fill in values to all the nodes. This interpolated
wind field is then minimized to reduce error and satisfy mass conservation. In this situation,
the limitations of the incompressible approach should be noted. In reality, the atmosphere is
compressible and the differences in density can lead to issues affecting temperature, humidity,
and pressure (e.g., nocturnal drainage winds). In this approach, we have kept the simulations simple to
provide quick estimates of the wind fields. A more detailed approach should include compressibility.
However, the procedure would essentially be the same.

Inverse squared weighting is first used to create a preliminary surface wind field employing a
fixed radius from the tower and the values interpolated to all grid points in the first level above the
terrain. The remaining upper level winds are then constructed using inverse weighting from the initial
surface generated values. If measured vertical velocities are not available, the equation of continuity is
then used to calculate the remaining velocities, i.e.,

w = −
z∫

0

(
∂u
∂x

+
∂v
∂y

)
dz (1)

which stems from the conservation of mass for atmospheric (incompressible) flow [6],

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (2)
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A variational technique originally employed by Sasaki [7] is used to create an equation for
Lagrange multipliers, λ(x, y, z), which are used to adjust velocities. This Poisson equation contains
the observed velocity values (u0, v0, and w0 obtained from meteorological tower or SODAR-SOnic
Detection and Ranging-data), along with Gauss moduli (α) that can be tuned to adjust for more
horizontal or vertical effects (e.g., rough terrain may create more vertical influence). The resulting
Euler-Lagrange equation for λ(x, y, z) written as

∂2λ

∂x2 +
∂2λ

∂y2 +

(
α1

α2

)2 ∂2λ

∂z2 = −2α2
1

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z

)
(3)

where u0, v0, w0 are the measured velocity values in the x, y, and z directions and αi are the Gauss
precision moduli, where αi

2≡ 1/(2σi
2) (with the deviation errors from the observed and desired fields

defined by σi). Sherman [4] points out that these moduli are important in establishing non-divergent
wind fields over irregular terrain, where (α1/α2)2 is proportional to (w/u)2. Pepper and Wang [8] set
α1 (the horizontal adjustment) = 0.01 and α2 (the vertical adjustment) = 0.1.

Once λ is calculated at each node, the velocities are adjusted to satisfy continuity, keeping the
measured tower velocities fixed, i.e.,

u = u0 +
1

2α2
1

∂λ

∂x
(4)

v = v0 +
1

2α2
1

∂λ

∂y
(5)

w = w0 +
1

2α2
2

∂λ

∂z
(6)

Measured velocities are typically collected and averaged every 10–15 min, generating a new
3-D wind field. Equations (3)–(6) are updated once per cycle. Setting λ = 0 accounts for open or
“flow-through” boundaries; setting ∂λ/∂n = 0 on the boundary defines closed or “no-flow-through”
boundaries. Both Sherman [4] and Dickerson [9] employed this technique to produce realistic wind
fields using very sparse measured values.

3. Wind Power Density Calculation

Wind power density ranges from Class 1 (lowest) to Class 7 (highest), defined on a vertical
extrapolation of wind speed based on the 1/7 power law. The Battelle Wind Energy Resource Atlas
provides the source for classification data [10]. Satisfactory power-generating winds are typically Class
4 winds and higher, but as wind turbine technology advances, Class 3 winds are becoming viable.
Table 1 shows wind class versus power density for winds at 50 m.

Table 1. Wind Class versus Power Density.

Class Power Density (W/m2) Mean Speed(m/s)

1 <200 <5.6
2 200–300 5.6–6.4
3 300–400 6.4–7.0
4 400–500 7.0–7.5
5 500–600 7.5–8.0
6 600–700 5.6–8.8
7 >800 >8.8
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The wind power density calculations are obtained by calculating the wind speed at each grid
point on an hourly basis.

Speedi =
√

u2
i + v2

i + w2
i (7)

The hourly wind power density at each grid point is then obtained using the simple expression,

WPDi = 0.5·ρ·Speed3
i (8)

with wind power in Watts, area is m2, wind velocity is m/s, and the density for air is 1.225 kg/m3 at sea
level. To account for density variation at elevation Z (above sea level in m), density is obtained using

ρ = 1.225− (1.194× 10−4)·Z (9)

The monthly average wind power density is then calculated using the relation

WPDmonthly_avg =

N
∑

i=1
WPDi

N
(10)

where N is the total number of hours in a selected month.

4. The Meshless Method

The meshless method is a unique numerical technique that does not require discretization with
a mesh [11,12]. In addition, the method can easily handle complex geometrical problems with
inhomogeneous or variable properties employing a general-purpose algorithm. Applications of
meshless (or mesh-free) methods have continued to increase over the past few years to solve a wide
range of problems [13–16]. In many situations, the meshless method can serve as a viable alternative
to problems involving complex or extensive mesh generation. Atluri and Zhu [13,17,18] discuss the
issue of node placement in mesh-free methods. In this work, radial basis functions (RBF) are used
since issues dealing with nodal placement are not critical.

The concept of a meshless approach to obtain approximate solutions to differential equations
began in the 1970s [19]. The method began to take more notice in the ensuing years due to their
ease in implementation, bypassing the need for nodal connectivity required in the more widely used
conventional mesh-based numerical methods. Mesh discretization using finite elements as well as
non-structured polygonal mesh techniques used in finite volume methods can become troublesome
when encountering complex geometries. While a variety of meshless approaches now exist, they
have the common property of not requiring a nodal mesh. This is a unique feature of the method,
and truly eliminates the effort typically required to produce a refined and optimal mesh (to ensure
mesh independence solutions including refined local adaptations—both time consuming). The more
common forms of meshless methods include smoothed particle hydrodynamics, reproducing kernel
particle, meshless Petrov–Galerkin, local radial point interpolation, finite point, and finite differences
with arbitrary irregular grids. Each method has benefits and drawbacks. Further details describing the
unique properties of meshless methods are given in Liu [15].

An example illustrating the placement of nodes in a uniform pattern versus a random pattern
is shown in Figure 2a,b. The nodes do not need to be distributed uniformly, and in fact can be
scattered and grouped within the problem domain to more accurately capture information in regions
of greater interest.
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Figure 2. Nodal placement for (a) uniform mesh and (b) random nodal placement.

Shape functions relate the influences from all the nodes within the domain on each individual
node. These functions act as support domains for each node, and can have weighted influence. In this
instance, the Lagrange multipliers, λ(x), are interpolated using the displacements at their nodes within
the support domain. For example, a PDE is discretized into a nodal matrix form, and the global matrix
solved using a simple elimination procedure.

4.1. Radial Basis Functions (RBF)

The RBF method employs a basis function that relates the influence of surrounding nodes to the
node of interest, i.e., a distance, d, with the nodes closest to the node of interest having the greatest
influence. This distance between the radial positions, r, can be expressed as:

di =
[
(r− ri)

2
]1/2

(11)

Hardy [20] introduced a basis function based on multi-quadratics (MQ). The MQ is a popular
function used to construct approximate solutions to PDEs, and is used in this study. Incorporating the
relation for distance, a basis function, φ, can be established such that:

φj =
[(

r− rj
)2

+ c2
j

]1/2
, j = 1, 2 . . . N (12)

where N is the total number of nodes. The Lagrange multipliers, λ(x), are then expressed as:

λ(x) =
N

∑
j=1

φj(x)λj (13)

where λj is the Lagrange coefficient defined at each point.
In order to solve the Poisson equation for λ(x), a linear operator (L ≡ ∇2) is applied to the interior

domain, Ω. Thus,

Lλ(x) =
N

∑
j=1

Lφj(x)λj (14)

where the linear operator (the PDE) is applied to the basis function. First and second derivatives of the
basis function are used to solve Equation (3). A boundary operator, B, is used to account for either
Dirichlet or Neumann conditions applied to the boundaries, Γ, i.e.,

Bλ(x) =
N

∑
j=1

Bφj(x)λj (15)
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The procedure used in this study is based on the approach used by Kansa [21]. Note that different
constants for the shape parameter can be used for the interior, Ω, and the boundary, Γ.

Equation (3) can be expressed as:

∂2λ

∂x2 +
∂2λ

∂y2 +

(
α1

α2

)2 ∂2λ

∂z2 = f (x) x ∈ Ω (16)

where x ≡ (x,y,z) with

f (x) = −2α2
1

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z

)
(17)

at all interior points, and
λ(x) = g(x) x ∈ Γ (18)

where g(x) denotes the divergence of the observed velocity values at the boundaries, Г. Introducing
the MQ form of the basis function for φj(x),

φj(x) =
√

r2
j + c2 =

√
(x− xj)

2 + (y− yj)
2 + (z− zj)

2 + c2 (19)

the derivatives can be written as

∂φj
∂x =

x−xj√
r2

j +c2
,

∂φj
∂y =

y−yj√
r2

j +c2
,

∂φj
∂z =

z−zj√
r2

j +c2

∂2φj
∂x2 =

(y−yj)
2+(z−zj)

2+c2

3
√

r2
j +c2

,
∂2φj
∂y2 =

(x−xj)
2+(z−zj)

2+c2

3
√

r2
j +c2

,
∂2φj
∂z2 =

(x−xj)
2+(y−yj)

2+c2

3
√

r2
j +c2

(20)

Substituting Equation (20) into Equations (16) and (18),

N

∑
j=1

(
∂2φj(xi)

∂x2 +
∂2φj(xi)

∂y2 +

(
α1

α2

)2 ∂2φj(xi)

∂z2

)
λj(xi) = f (xi) i = 1, 2, · · · , NI (21)

N

∑
j=1

φj(xi)λj = g(xi) i = NI+1, NI+2, · · ·N (22)

an N × N linear system of equations is created for the unknown, λj.
The introduction of the shape parameter, c, assists in enhancing the accuracy of the RBFs.

The shape parameter is based on the number of nodes, N, and distance, d, where d = 1
NI

N
∑

i=1
di, and di

is the distance between the i th data point and its nearest neighbor. The shape parameter depends on
the number and distribution of nodes, the choice of basis function, and computer precision [22].

4.2. Local RBF Approach

The two techniques commonly used in RBF-based methods are based on global versus local
collocation. The global approach collocates over the total number of nodes within the computational
domain, i.e., the global matrix is defined by the total number of nodes, N, creating an N × N matrix
that must be solved. The local approach employs only local collocation, creating a series of overlapping
matrices defined by m x m nodes surrounding the node of interest. This creates a small series of
linear equations that must be solved for each node. Providing the problem domain and number of
nodes are not huge, the global RBF approach works well for simple and small problems. Pepper et
al. [23] describes the use of the global RBF approach for 3-D wind fields. More detailed discussion
on implementation of the local approach is given in Waters and Pepper [24]. Since the localized RBF
method collocates a small number of points for each subdomain, the method is ideal for use as an app
on mobile devices.
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In order to approximate λ(x) of Equation (16), a series of local subdomains are solved that overlap
within the problem domain. Figure 3 shows a set of subdomains with the dark points serving as the
center node points. Each node serves as a center node of interest until all the nodes are resolved.
This permits λ(x) to be solved at every point, i.e.,

λ(xi) =
m

∑
k=1

φk(xi)λk,j, xi ∈ Ωj (23)

where λk,j are the coefficients of the RBFs. The RBF, φk, are the shape functions. Substituting
Equation (23) into Equation (21), an m x m linear algebraic system is obtained for each local domain
with an interior point, i.e.,

m

∑
k=1

(
∂2φk(xi)

∂x2 +
∂2φk(xi)

∂y2 +

(
α1

α2

)2 ∂2φk(xi)

∂z2

)
λk,j(xi) = f (xi) i = 1, 2, · · · , m xi ∈ Ωj (24)

with the boundary conditions:

m

∑
k=1

φk(xi)λk,j(xi) = g(xi) i ∈ NI+1, NI+2, · · · , N xi ∈ Ωj (25)

An m × m linear system consisting of the unknown multipliers,
{

λk,j

}m

k=1
is produced from

Equations (24) and (25) for each local domain defined by the interior center points where Equation (24)
applies to interior points (xi, i = 1, 2, . . . , NI) and Equation (25) applies to the boundary points.
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Figure 3. Node placement and circle of influence (from Pepper, D.W., et al. [25]).

Figure 4a,b shows a localized domain on a simple rectangular field with the center point
surrounded by 8 nodes, and a randomized array consisting of 30 points. Various test cases were
examined as to the optimal number of surrounding nodes, ranging from 5 to 30. It was found that
the best number with regards to acceptable accuracy and speed was nine nodes per local domain.
The global matrix involving N × N nodes in the global technique reduces to a simple m ×m matrix
that can be quickly solved, and does not create matrix conditioning issues.
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Table 2. Comparison of results for Exact, FEM, and Meshless Method (from Pepper, D.W., et al. [25]). 

Method Mid-Point (°C) Elements Nodes
Exact 94.512 0 0 
FEM 94.605 256 289 
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5. Comparison Results 
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As an example, to illustrate the accuracy of the meshless method, a simple test case was used to
solve for heat conduction in a two-dimensional plate subjected to prescribed temperatures along each
boundary [25], as shown in Figure 5. The temperature at the mid-point (1,0.5) was used to compare
numerical solutions with the analytical solution. The analytical solution is given as

θ(x, y) ≡ T − T1

T2 − T1
=

2
π

θ

∑
n=1

(−1)n+1 + 1
n

sin
(nπx

L

) sinh(nπy/L)
sinh(nπW/L)

which yields θ(1,0.5) = 0.445, or T(1,0.5) = 94.5 ◦C. Table 2 lists the final exact temperatures at the
mid-point compared with a finite element and the meshless method.
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Table 2. Comparison of results for Exact, FEM, and Meshless Method (from Pepper, D.W., et al. [25]).

Method Mid-Point (◦C) Elements Nodes

Exact 94.512 0 0
FEM 94.605 256 289

Meshless 94.514 0 325

5. Comparison Results

The Nevada Test Site (NTS) is located within the southern part of Nevada, about 100 miles
northwest of Las Vegas. The NTS was used principally for nuclear weapons testing. The terrain and
26 wind tower locations are shown in Figure 6.

An h-adaptive finite element model was initially developed by Pepper and Wang [8] utilizing the
UNLV supercomputer system to simulate 3-D winds over the NTS, as shown in Figure 6. The initial
meshes were constructed using USGS and DEM data.
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Figure 6. Nevada Test Site (a) topography and (b) meteorological tower system (NOAA).

Meteorological tower and upper air data from 1 January 1993, were used to initialize the wind
field. The NTS meteorological towers (partially shown as dots in Figure 6b are scattered throughout
the site. The 10 m level mesh is shown in Figure 7a,b for the h-adaptive FEM model. The additional
velocity vectors in the FEM solution in Figure 8b occur from local refinement (h-adaptation). Results
for the 50 m level are shown in Figure 9a,b. A power density map of the NTS is shown in Figure 10.
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The meshless method employed only 240 nodes. The FEM model required over 12,500 nodes.
While the meshless method utilized a coarse density of nodes, the velocities and patterns were
generally close to the results obtained using the high-resolution finite element model. Furthermore,
the meshless code was written in MATLAB, a widely popular and inexpensive software package used
in many institutions than runs on PC platforms, while the h-adaptive FEM was written in FORTRAN,
parallelized, and was run on a supercomputer.

A simple flow chart is listed in Figure 11 for generating the model output. The implementation of
the coding is very simple, especially since the method is explicit and does not require matrix solvers.

Later efforts were undertaken to examine wind energy potential for central NV. The terrain surface
plot, topographic contours, and tower locations are shown for the region near Whitney Mountain in
central NV in Figure 12a,b [26].

The resulting power density contours per month for September 2001 to February 2002 are shown
in Figure 13a–l.
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was developed to provide first responders with a 3-D wind field [27]. A local meshless technique 
obtains wind speeds, wind direction, and temperature data from various fire stations. The fire 
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Figure 14 depicts fire stations across the Las Vegas Valley with their fire station numbers. 
Currently, the Clark County Department of Air Quality monitors resultant wind data in miles per 
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(November 2001); (g) 50 m and (h) 100 m (W/m2) (December 2001); (i) 50 m and (j) 100 m (W/m2)
(January 2002); (k) 50 m and (l) 100 m (W/m2) (February 2002).

6. Implementation of the Meshless Method for Mobile Applications

An advantage of the meshless method is its ability to run quickly and without the need for a
supercomputer. This makes it an ideal method to run on a mobile application. A mobile application
was developed to provide first responders with a 3-D wind field [27]. A local meshless technique
obtains wind speeds, wind direction, and temperature data from various fire stations. The fire stations
represent the nodes, which do not need to be meshed.

Figure 14 depicts fire stations across the Las Vegas Valley with their fire station numbers. Currently,
the Clark County Department of Air Quality monitors resultant wind data in miles per hour and
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resultant wind direction measured in degrees compass. The monitoring stations information was used
to collect initial wind speed and direction data closest to the fire stations. A hypothetical wind field
was then developed showing information coming from each of the fire stations. Figure 15 illustrates
the wind field.
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Currently, the Clark County Department of Air Quality monitoring stations provide data once
an hour. The goal of the fire station monitoring stations would be to provide “real-time” updates.
Depending on the equipment used, this can range from 10 min to as low as 1 min, depending on the
accuracy of the data needed. The fire stations serve as the nodes for the meshless method. Once the
intermediate wind vectors are populated, the updated image can be pushed to the mobile application.
Figure 16 illustrates the image a first responder would observe of a populated 3-D wind field on a
mobile device (Android version).
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An online connection is not always available for first responders in remote areas. The application
can run independently of the server’s information. A first responder would have the ability to
call into a fire station of choice, collect u and v values for the wind data, and input them into the
mobile application. The application would then run the meshless algorithm and update the map
independently of the server. Once connection was established again, the server would push the latest
information to the mobile device. Figure 17a,b depict the layout of the application and the various
output maps and data inputs.

First responders have the flexibility of choosing what type of map to view through a drop-down
menu. Options include fire station numbers only, fire station vectors, and populated vectors. A button
enables them to update the map whenever they want, otherwise, the map will update every time data
is available when a wireless connection is established. If there is no connection and a first responder
would like update a specific node, the “change wind vector at location” button leads to a menu
where the fire station number and u, v wind speed values can be input. This proof-of-concept mobile
application has great potential and will be available for users in the future.
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7. Conclusions

A localized meshless method has been developed to calculate 3-D wind fields utilizing sparse
data obtained from meteorological towers. Results were compared with field data obtained from a
network of meteorological towers located at the Nevada Test Site (Nevada National Security Site) and
an h-adaptive finite element model. The meshless method produced nearly identical wind velocity
values and patterns as the h-adaptive finite element method, but with significantly less computational
cost and difficulty.

The advantages of using localized meshless methods for meteorological simulations are significant
when dealing with large, complex terrains, and completely eliminates the need for complicated and
detailed meshes common to conventional numerical approaches. Additional node points can be easily
added or removed from problem domains without having to re-mesh the entire system. The localized
meshless technique is not only more computationally efficient but also yields equally accurate results
compared with mesh-based methods. Current efforts are now underway to implement the method
to display 3-D real-time wind data on mobile devices for use by the Las Vegas Fire Department in
emergency response situations within the Las Vegas Valley.
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