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Abstract: The recently modified Pascal function is further exploited in this paper in the design of
passive analog filters. The Pascal approximation has non-equiripple magnitude, in contrast of the most
well-known approximations, such as the Chebyshev approximation. A novelty of this work is the
introduction of a precise method that calculates the coefficients of the Pascal function. Two examples
are presented for the passive design to illustrate the advantages and the disadvantages of the Pascal
approximation. Moreover, the values of the passive elements can be taken from tables, which are
created to define the normalized values of these elements for the Pascal approximation, as Zverev
had done for the Chebyshev, Elliptic, and other approximations. Although Pascal approximation can
be implemented to both passive and active filter designs, a passive filter design is addressed in this
paper, and the benefits and shortcomings of Pascal approximation are presented and discussed.

Keywords: analog filters; pascal approximation; pascal coefficients; pascal filters; passive filters;
filter approximation

1. Introduction

The Pascal approximation was first introduced in [1]. However, this approximation lacked one
basic attribute all polynomial approximations used in filter design should share, namely the value of 1
at Ω = 1. Furthermore, a new modified Pascal function with the above feature was introduced in [2],
where a filter-appropriate modified symmetric Pascal function was acquired after some manipulation
of the Pascal function. This later form of Pascal function is exploited further here.

The Pascal approximation [1–4], like other similar approximations used in filter design, uses a
polynomial as the approximating function in the filter gain response

G(Ω) =
H0√

1 + λ2PD(N, Ω)2
(1)

where N is the order of the filter, λ is the ripple factor, corresponding to the ε ripple factor of Chebyshev
approximation, H0 is the maximum permitted passband gain and PD(N, Ω) is the modified Pascal
polynomials of degree N from [3,4]

PD(N, Ω) =
(−1)N

N!

N

∏
k=1

(
N + 1

2
ΩΩD +

N− 1
2
− k + 1

)
(2)
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The frequency ΩD is the frequency where the shifted and scaled symmetric Pascal function takes
the value −PDmax, where PDmax is the higher local maximum in the interval (−1, 1). Both variables are
independent of Ω and they depend solely on the order of the filter (N). Their values for range of filter
orders N is tabulated in [3].

The ripple factor λ is bounded between λmin and λmax as presented in Figure 1. The two bounds
can be expressed either in linear form, as functions of the gains (H0, Hc, Hs) or in the logarithmic form
of logarithmic, as functions of the attenuation bounds Amax and Amin both bounds are positive

√
10

Amin
10 −1

|PD(N, Ωs)|
=

√(
H0
Hs

)2
− 1

|PD(N, Ωs)|
= λmin ≤ λ ≤ λmax =

√(
H0
Hc

)2
− 1

|PD(N, 1)| =

√
10

Amax
10 −1

|PD(N, 1)| , PD(N, 1) = PDmax (3)

For the calculation of the filter order N, as (4) cannot be solved analytically for N, can be
determined either from the nomograph in [3] or from the inequality

∣∣∣∣ PDmax

PD(N, Ωs)

∣∣∣∣ ≤ g =

√√√√√√
(

H0
Hc

)2
− 1(

H0
Hs

)2
− 1

=

√√√√10
Amax

10 − 1

10
Amin

10 − 1
(4)

Figure 1. Choices of ripple factor λ, for NPascal = 7.

In the above inequality, the only unknown is N therefore, order N can be calculated using a
numerical software tool (e.g., Mathcad, MATLAB, etc.). As it has been shown in [3], under the best
case scenario, the order of the Pascal polynomial is the same with the order of the Chebyshev one
(especially for low order filters) while under the worst case scenario it will be NCheb + 2.

The transfer function of the filter can be derived from the squared magnitude response |H(jω)|2

H(s)H(−s) =
N(s)N(−s)
D(s)D(−s)

= |G(jΩ)|2Ω=−js =
H2

0

1 + λ2P2
D(N, Ω)

∣∣∣
Ω=−js

(5)

Since Equation (5) is a polynomial approximation, the filter transfer function is expected to be
all-pole, given that the numerator will not have any finite zeros. The poles of the transfer function
cannot be calculated analytically and again a numerical software tool should be used; the poles of
the filter, however, must be selected as the roots lying on the left half s-plane (Hurwitz polynomial).
The transfer function of the Pascal approximation can be expressed in the form
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H(s) =
H0

λ·|AN|

(s + sR)
h

N−h
2

∏
k=1

(
s2 + 2Re(sk) + |sk|2

) , h = mod(N, 2) (6)

where AN is the leading coefficient of the polynomial PD and can be calculated from the Equation (3)

AN =
(−1)N

N!

(
N + 1

2
ΩD

)N
(7)

A more detailed version of this paper is presented in [5], where the tables that have been created,
are depicting the normalized values of passive elements for N = 2–9 for a variety of values of Amax.

2. Calculations of the Pascal Function Coefficients

In contrast to the most popular approximations used in the design of electric filters, the Pascal
polynomials are not orthogonal. This feature results in some difficulties in the calculation of the coefficients
of the polynomial. As a result of non-orthogonality, a recursive method (Christoffel–Darboux formula)
cannot be used to calculate the coefficients of the polynomials. In this paper, a novel method is
proposed to calculate all the coefficients of the Pascal polynomial.

The leading coefficient can be calculated directly from Equation (7). The key step for the calculation
of the rest of them is to calculate the basic terms, as in the equation

Basic Term(i) =
(

2i + 1 + h
2

)2
, i = 0, 1, . . . ,

(
N− h

2
− 1
)

(8)

The coefficients can then be calculated from the unique combinations of the basic terms, while

the unique combinations will be expressed as

(
N−h

2
k

)
, k = 1, 2, 3, . . . , N−h

2 (see Appendix A for the

calculation of the coefficients for N = 8). The equation below yields the remaining coefficients of the
Pascal function

AN−2k =
(−1)k+h

N!

(
N + 1

2
ΩD

)N−2k

∑
(

N−h
2
k

)
(9)

The lowest order coefficient can be calculated three alternative ways. The first alternative uses
Equation (9) with k = (N − h)/2, while the second is derived from [3]

Ah =
(−1)

N+h
2

N!

(
N + 1

2
ΩD

)h N−h
2

∏
k=1

(
N + 1

2
− k

)2
(10)

The third alternative is based on Equation (10). Instead of using a product the lowest coefficient
can be calculated using the Gamma function

Ah =
(−1)

N+h
2

N!

(
N + 1

2
ΩD

)h
 Γ

(
N+1

2

)
Γ
(

N+1
2 −

N−h
2

)
2

(11)

The number of terms of every coefficient can be calculated from the Pascal triangle. Indeed,
a Pascal triangle is formed by the either the even or the odd columns in Table 1. Alternatively,
the number of terms can be obtained by the binomial coefficient as expressed below [5]

Number of Terms Ax =

(
N−h

2
i

)
, x = N− 2i, i = 0, 1, . . . ,

N− h
2

(12)
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Table 1. Number of terms of the polynomial Pascal for every coefficient (N = 2–9).

N 2 3 4 5 6 7 8 9

A0 1 1 1 1
A1 1 1 1 1
A2 1 2 3 4
A3 1 2 3 4
A4 1 3 6
A5 1 3 6
A6 1 4
A7 1 4
A8 1
A9 1

Sum 2 2 4 4 8 8 16 16

Table 1 tabulates the number of terms of every coefficient for N = 2 to 9; it must be noted that the
leading coefficient and the lowest order coefficient (Ak) will always have only one term.

The sum of the terms of every coefficient is equal to 2(
N−h

2 ). It must be mentioned that the ratio
of the modified Pascal polynomial (PD) over PD(N, 1) = PDmax for N = 2 to 3, yields the CN(Ω) of
Chebyshev [5].

3. Passive Filter Design through the Pascal Approximation

The passive filter design has the form of the doubly resistively terminated two-port LC circuit, as
shown in Figure 2.
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The passive filters have two more specifications than the active filters, namely RS and RL.
Specifications are typically given in the form of effective attenuation A(Ω)

A(Ω) = 10 log
(

Pmax

P2(Ω)

)
= 20 log

(
1
2

√
RL

Rs

∣∣∣∣ E(jΩ)

V2(jΩ)

∣∣∣∣
)

= 20 log

(
1
2

√
RL

Rs

1
|H(jΩ)|

)
(13)

where Pmax is the maximum power the source can deliver and P2(Ω) is the average power of the
load (RL). Effective attenuation A(Ω) is assumed to have only positive values; it becomes zero at the
frequencies of maximum power transfer.

The attenuation at dc (Ω = 0) is given by

A(0) = A0 = 20 log
(

Rs + RL

2
√

RLRs

)
(dB) (14)
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The above equation is zero only when Rs = RL and assumes only positives values for the other
cases. The attenuation function A (Ω) for all approximations must have A (0) = A0 for the design of
the passive doubly resistively terminated LC low-pass filter. The Pascal attenuation is given from [4]

APascal(Ω) = A0 − 20(1− h) log
(√

1 + λmax2PD(N, 0)2
)
+ 20 log

(√
1 + λmax2PD(N, Ω)2

)
(15)

Figures 3 and 4 depict the passband region of a Pascal filter for order N = 6 and 7 respectively. From
Equation (15) we can make some assumptions on the minimum and maximum passband attenuation.

N odd

 A0 + 20 log
(√

1 + λmax2PD(N, Ω)2
)

A0

N Even

 A0 − δA + 20 log
(√

1 + λmax2PD(N, Ω)2
)

, δA = 20 log
(√

1 + λmax2PD(N, 0)2
)

A0 − δA

The attenuation function from Equation (1) must be made equal to APascal (Ω). If we modify the
squared magnitude response

|H(jΩ)|2 =

RL
Rs+RL

(
1 + λmax

2P2
D(N, 0)

∣∣∣)1−h

1 + λmax2P2
D(N, Ω)

∣∣∣ (16)

The reflection coefficient function ρ(s) can be determined from Feldkeller’s equation, [6,7]

ρ(s)ρ(−s) = 1− 4Rs

RL
H(s)H(−s) = 1− 4Rs

RL
|H(jΩ)|2Ω2=−s2 (17)
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The reflection coefficient function obeys two major rules:

1. The poles of ρ(s) must be a Hurwitz polynomial, i.e., the poles must lie on the left half plane of s
and ρ(−s) must have the other poles

2. There are no restrictions on the location of the zeros to be implemented to Zin(s).

After having obtained ρ(s) by Feldkeller equation, the input impedance, Zin(s), can be expressed
as [2,6–8]

Zin(s) = ±1− ρ(s)
1 + ρ(s)

(18)

After the calculation of Zin(s), the synthesis of the passive filter ladder can begin by removing the
poles at infinity. The procedure of removing poles at infinity requires a positive real function (Zin(s)),
which the degree of numerator is greater by one from the order of denominator. The passive normalized
element is exported from the division between the coefficients of highest order of numerator and
denominator. This process is recursively repeated for all next elements, up to the filter order N [6–8].

4. Even Order Pascal Filters

For even order filter design through the Pascal approximation, the same restriction as in the
Chebyshev approximation case holds, namely, Rs = RL. Indeed, if, Rs = RL then A0 is zero and the
attenuation for some frequencies is below 0 (the Attenuation by definition takes on only non-negative
values). To overcome this problem, the order of the filter must be increased by one. In this paper,
the term ‘direct design’, inherited from [4], will be used to imply that no order increase will be made
and the filter can be synthesized in the usual manner.

Another problem arises when δA > A0 i.e., when RS1 < Rs < Rs2. In that case, the filter cannot
be directly designed. The design of the filter is then achieved with lower ripple at passband area.
To find the range for which the filter cannot be designed directly, the roots must be calculated from the
equation [4]

A0 = 20 log
(

Rs+RL
2
√

RsRL

)
= 20 log

(√
1 + λmax2PD(N, 0)2

)
Rs1,2 = 1 + 2λmax

2PD(N, 0)2 ± 2λmaxPD(N, 0)
√

1 + λmax2PD(N, 0)2
(19)
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If the Rs obtained by the specifications lies in the forbidden range, the maximum ripple (Amax0)
that can be realized for even order passive Pascal filter, and provided that the specification Amin is
lower than the maximum stopband specification Amin0, can be determined from [4]

A0 = 20 log
(√

1 + λmax2PD(N, 0)2
)
⇔ Amax0 = 10 log

(
(Rs − 1)2PDmax

2

4RsPD(N, 0)2 + 1

)
, RL = 1 (20)

∣∣∣ Pmax
PD(N,Ωs)

∣∣∣ = √ 10
Amax0

10 −1

10
Amin0

10 −1
⇔ 10

Amin0
10 − 1 = Amin0 = 10 log

(
(Rs−1)2PD(N,Ωs)

2

4RsPD(N,0)2 + 1
)

(21)

Conversely to the Chebyshev approximation case, the Pascal approximation offers the advantage
that the forbidden range depends on the two constants (Amax, N).

In order to give a summary of the passive filter design with Pascal Approximation, the following
steps are listed:

For N odd:

Filter design is straightforward.

For N even:

If Rs= RL by specs, then NPascal= NPascal + 1
If Rs 6= RL (A0 > 0), then Rs1 <s<s2

If Amax >max0 & Amin0 >min then, design the passive filter with new attenuation specifications,
Amax= Amax0 & Amin = Amin0,
If Amax0 >max then, NPascal= NPascal + 1
If Amax >max0 & Amin >min0 then, NPascal= NPascal + 1
For Rs <s1 or Rs2 <s, design directly the passive filter.

5. Design Examples

5.1. Example 1

The first example designs a low-pass filter, given the normalized specifications {Amax = 3 dB,
Amin = 55 dB , Ωs = 2 , Rs = 0.5 , RL = 1}. The Pascal order N is calculated from Equation (4)
which yields NPascal = 6, the order of the Chebyshev approximation is the same as that of the Pascal
approximation and δA is 0.183 (A0 > δA). The ripple factor λmax is 42.5 as calculated from Equation (3).
In order to design the passive filter with λmax at ΩS, the attenuation is greater than A0 + AMin − δA
and A0 is 0.512. The forbidden range of RS for the Chebyshev approximation can be calculated from
Equation (7)

Rs1,2 = 2 · 10
Amax

10 − 1± 2
√

10
Amax

10

(
10

Amax
10 − 1

)
which yields Rs1 = 0.1721 and Rs2 = 5.8089. For the Pascal approximation as in Equation (19) also
produces the order of the filter, it yields Rs1 Pascal = 0.6711 and Rs2 Pascal = 1.5012. For the specified
RS the filter can be directly designed by the Pascal approximation. On the other hand, through the
Chebyshev approximation, the filter has to be designed with reduced ripple in passband. From the
tables given in [5] with passband ripple Amax = 3 dB, the normalized values of passive elements of
the Pascal approximation can be obtained as in first and third lines of the Table 2. The next step is to
de-normalize the passive elements with Fc = 500 MHz, R0 = 50 Ohm (second and fifth lines in Table 2)
and then to simulate the passive filter which is presented in Figure 5 with the use of an appropriate
software tool, e.g., ADS 2011.
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Table 2. Normalized and de-normalized values of passive elements for Pascal N = 6 and Amax = 3 dB [8].

Rs = 0.5 RL = 1 L1 = 1.6625687 C2 = 2.0386647

Rs = 25 Ω RL = 50 Ω L1 = 26.4606 nH C2 = 12.9785 pF

L3 = 1.6446552 C4 = 1.947702 L5 = 1.8076952 C6 = 1.397581

L3 = 26.1755 nH C4 = 12.39946 pF L5 = 28.77036 nH C6 = 8.897275 pF
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Figure 6 verifies that the experimental one (red continuous line) coincides with high accuracy
to the theoretical ones (grey dotted color), thus the procedure of removing the poles at infinity from
Equation (8) has been successfully completed and the next step is to simulate the passive filter.

Computation 2018, 6, x FOR PEER REVIEW  9 of 13 

 

 
Figure 6. Passband of the Pascal Filter. 

The proximity between the experimental model, obtained through simulation and the 
theoretical model. In theory, the attenuation at 500 MHz must be equal to 

328.3AδA
RR2

RR
log20AδAA max

Ls

Ls
max0 =−+













 +
=−+   

The value obtained by simulation is −3.328 (it must be highlighted that these values are of 
opposite signs, because ADS simulate Gain rather than Attenuation, so it holds A(Ω) = −G(Ω) [2]). 
The other parameter that should be checked is the attenuation at the edge of the stopband ΩsxFc. 
Both the model value and the simulated value (as presented in Figure 7) for the gain are −58.787 and 
from the mathematical program is exactly the same. As the design has opted for maximum ripple 
factor λmax, the gain is expected to be less than A0 + Amin − δΑ = 55.328. 

 
Figure 7. Simulation of low-pass filter in ADS 2011. 

5.2. Example 2 

The second design example assumes that the normalized specifications given are: 

max min s s L{A 0.5dB, A 55 dB, 2, R R 1}= = Ω = = = .The order N of Pascal approximation is calculated from 
Equation (4) yields NPascal = 7, while the order of the Chebyshev approximation is same. The ripple 

Figure 6. Passband of the Pascal Filter.

The proximity between the experimental model, obtained through simulation and the theoretical
model. In theory, the attenuation at 500 MHz must be equal to

A0 + Amax − δA = 20 log
(

Rs + RL

2
√

RsRL

)
+ Amax − δA = 3.328
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The value obtained by simulation is −3.328 (it must be highlighted that these values are of
opposite signs, because ADS simulate Gain rather than Attenuation, so it holds A(Ω) = −G(Ω) [2]).
The other parameter that should be checked is the attenuation at the edge of the stopband ΩsxFc. Both
the model value and the simulated value (as presented in Figure 7) for the gain are −58.787 and from
the mathematical program is exactly the same. As the design has opted for maximum ripple factor
λmax, the gain is expected to be less than A0 + Amin − δA = 55.328.
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5.2. Example 2

The second design example assumes that the normalized specifications given are: {Amax = 0.5 dB,
Amin = 55 dB, Ωs = 2 , Rs = RL = 1}. The order N of Pascal approximation is calculated from
Equation (4) yields NPascal = 7, while the order of the Chebyshev approximation is same. The ripple
factor λmax is 18.369 as calculated from Equation (3). For this example it has been selected to design the
passive filter with λmax at Ωs; the gain is therefore less than A0 − Amin. The tables of [5] provide the
normalized values of passive elements for the Pascal approximation, while those for the Chebyshev
approximation can be obtained from [6]. Table 3 presents the normalized values of passive elements
of Pascal approximation for order N = 7, in first and third lines. A minimum-inductance ladder is
selected here, thus implementation will be less bulky and less expensive than constructing it with
the method of minimum capacitance [7]. The next step is to de-normalize the passive elements with
Fc = 500 MHz, R0 = 50 Ohm as Table 3 presents in the second and fourth lines for 7th order Pascal filter.
The last step is the filter design using the ADS 2011 software as presented in Figure 8.

Table 3. Normalized and de-normalized values of passive elements for Pascal N = 7 and Amax = 0.5 dB [5].

Rs = RL = 1 C1 = 1.060450 L2 = 1.688734 C3 = 1.904941
Rs = RL = 50 Ω C1 = 6.751037 pF L2 = 26.87703 nH C3 = 12.12723 pF

L4 = 1.73878 C5 = 1.90494 L6 = 1.688734 C7 = 1.060450
L4 = 27.6736 nH C5 = 12.12723 pF L6 = 26.87703 nH C7 = 6.751037 pF
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Figure 8. Low-pass Pascal filter with de- normalized passive elements, in ADS 2011.

Figure 9 verifies that the theoretical model (blue dotted line) coincides with the experimental
(red continuous line). The grey dotted line shows the passband attenuation of Chebyshev
approximation. The normalized values of the passive elements are founded by removing the poles at
infinity from Equation (18).
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Once again, the experimental results coincide with the theoretical ones with high accuracy.
In theory, the attenuation at 500 MHz must be equal to

A0 + Amax = 20 log
(

Rs + RL

2
√

RsRL

)
+ Amax = 0.5

The value obtained by simulation is−0.5 as presented in Figure 10 (m2 point), which is the precise
theoretically obtained value. The other parameter to be checked is the attenuation at the edge of the
stopband Ωs*Fc. Both the model value and the simulated value for the attenuation are −58.756. As this
design has opted for maximum ripple factor λmax, the gain is expected to be less than A0 + Amin = 55 dB.
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The value obtained by simulation is −0.5 as presented in Figure 10 (m2 point), which is the 
precise theoretically obtained value. The other parameter to be checked is the attenuation at the edge 
of the stopband Ωs*Fc. Both the model value and the simulated value for the attenuation are −58.756. 
As this design has opted for maximum ripple factor λmax, the gain is expected to be less than A0 + Amin 
= 55 dB. 
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6. Conclusions

The Pascal all-pole approximation exhibits a non equiripple attenuation in the passband. On the
other hand, the Chebyshev approximation has equiripple magnitude passband. In this work, it has
been proven and presented that the ratio of the modified Pascal polynomial PD over PDmax yields the
Cn of Chebyshev, for orders N = 2 to 3.

The Pascal approximation has two drawbacks, the calculation of the order (N) has to be done
with the assistance of a numerical program and the location of the poles cannot be derived analytically.
The filter order and the poles of for a N > 3 had to be calculated by numerical methods (software).

A novel method to calculate all the coefficients of the Pascal approximation polynomial has been
proposed and tested through simulation in this paper, the results between the theoretical and the
simulated values not only converge on given specifications, but they are the results are identical, with
a high accuracy (of nine decimals, as tested). So, an analytical pattern has been established to derive
the coefficients of the Pascal function. For all other cases, a numerical software tool is necessary in
order to find the roots of the filter, which must lie on the left half of the complex plane.

The passive design in general, has similar difficulties in the design of odd or even-order passive
filters. The superiority of the Pascal approximation, however, is that the forbidden range for Rs is
much narrower than the Chebyshev approximation for even-order passive filters design. This is owing
to the fact that Equation (20) depends not only from the passband ripple, but from the order of the filter
as well. In contrary, on the Chebyshev design the forbidden range depends solely from the passband
ripple; which results in the forbidden range being wider than the Pascal.

Indirectly, through the examples presented in this paper, the values of the normalized elements
have been acquired from created tables for a given order and a given Amax. The same tables have been
created by Zverev but not for the Pascal approximation. The roll-off of the Chebyshev is steeper than
the Pascal approximation.
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Appendix A

The leading coefficient can be calculated directly from (7), because will calculate the coefficients
of N = 8 and from [3] we can get the constant ΩD for N = 8 ΩD is 0.79978194 and the value of h is
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zero. The basic terms will be determined from (8) i = 0, 1, . . . ,
(

N−h
2 − 1

)
= 0, 1, 2, 3 Basic Term(i) =(

2i+1+h
2

)2
=
(

1
2

)2
,
( 3

2
)2

,
( 5

2
)2

,
( 7

2
)2

.
From (9), we will calculate the AN−2 = A6 coefficient and k = 1.
The other coefficients will be calculated with the unique combinations of basic terms of calculations

of A4 k = 2.
First will compute the unique combinations of basic terms for k = 2, the number of terms of the

specific coefficient can be calculated from the binomial coefficients yields(
N−h

2
k

)
=

(
4
2

)
= 6

∑
(

N−h
2
k

)
=

(
1
2

)2( 3
2

)2

+

(
1
2

)2( 5
2

)2

+

(
1
2

)2( 7
2

)2

+

(
3
2

)2( 5
2

)2

+

(
3
2

)2( 7
2

)2

+

(
5
2

)2( 7
2

)2

= 123.375

Easily now we can calculate A4 from the Equation (10), yielding

A4 =
(−1)2

N!

(
N + 1

2
ΩD

)4
(

N−h
2
k

)
= 0.5133849

The same procedure will be used for the A2 k = 3:

(
N−h

2
k

)
=

(
4
3

)
= 4

∑
(

N−h
2
k

)
=

(
1
2

)2(3
2

)2(5
2

)2
+

(
1
2

)2(3
2

)2(7
2

)2
+

(
1
2

)2(5
2

)2(7
2

)2
= 201.813

A2 =
(−1)3

N!

(
N + 1

2
ΩD

)2
(

N−h
2
k

)
= −0.0648329

for the last coefficient, we can calculate three equal ways

1. K = 4,

(
N−h

2
k

)
=

(
4
4

)
= 1, ∑

(
N−h

2
k

)
=
(

1
2

)2( 3
2
)2( 5

2
)2( 7

2
)2

= 43.066,

2. A0 = (−1)4

N!

(
N+1

2 ΩD

)0
(

N−h
2
k

)
= 1.0681152 × 10−3

3. Using the Equation (10) A0 = (−1)
N+h

2

N!

(
N+1

2 ΩD

)h
N−h

2
∏

k=1

(
N+1

2 − k
)2

= 1.0681152× 10−3

4. Or using the gamma function

5. A0 = (−1)
N+h

2

N!

(
N+1

2 ΩD

)h
[

Γ(N+1
2 )

Γ(N+1
2 −

N−h
2 )

]2
= 1.0681152× 10−3
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