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Abstract: The immersed boundary method has attracted considerable interest in the last few years.
The method is a computational cheap alternative to represent the boundaries of a geometrically
complex body, while using a cartesian mesh, by adding a force term in the momentum equation.
The advantage of this is that bodies of any arbitrary shape can be added without grid restructuring,
a procedure which is often time-consuming. Furthermore, multiple bodies may be simulated,
and relative motion of those bodies may be accomplished at reasonable computational cost.
The numerical platform in development has a parallel distributed-memory implementation to solve
the Navier-Stokes equations. The Finite Volume Method is used in the spatial discretization where
the diffusive terms are approximated by the central difference method. The temporal discretization
is accomplished using the Adams-Bashforth method. Both temporal and spatial discretizations are
second-order accurate. The Velocity-pressure coupling is done using the fractional-step method
of two steps. The present work applies the immersed boundary method to simulate a Newtonian
laminar flow through a three-dimensional sudden contraction. Results are compared to published
literature. Flow patterns upstream and downstream of the contraction region are analysed at various
Reynolds number in the range 44 ≤ ReD ≤ 993 for the large tube and 87 ≤ ReD ≤ 1956 for the small
tube, considerating a contraction ratio of β = 1.97. Comparison between numerical and experimental
velocity profiles has shown good agreement.

Keywords: computational fluid dynamics; immersed boundary method; sudden contraction

1. Introduction

During the last few decades, a lot of effort has been spent by the scientific community working
in the field of fluid dynamics, to address two crucial but conflicting key issues in the science of
computational fluid dynamics, the need to model increasingly complex boundary conditions and
highly accurate results in the least amount of time [1].

The great majority of engineering fluid flow problems are characterized by complex geometries
which are often associated with the presence of solid, moving or flexible walls.

The conventional approach to discretize and solve most flows in engineering practice involving
complex geometries is not readily fit for Cartesian grids. In complicated geometries, the choice of
the grid is not at all trivial. The grid is subject to constraints imposed by the discretization method.
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In order to be able to deal with complex boundary conditions, whole families of numerical techniques
and special methods have been developed. One such method, which is widely used, consists in
representing the geometry with body-fitted coordinates. Curvilinear grids, non-orthogonal grids and
non-structured grids are three different approaches within this strategy. Also, the grid generation for
complex geometries is an issue, consuming a large amount of user time especially when commercial
codes are not employed.

Recently, new numerical methodologies have appeared allowing the inclusion of geometrically
complex boundary conditions without increasing considerably the computational cost and complexity
of the computational grids. One such method is the immersed boundary (IB) method which allows the
solution of the differential equations involving complex geometry on simple meshes by introducing
forcing conditions on certain surfaces corresponding to the physical location of the complex boundaries.
The simulations are then performed on a much simpler domain such as Cartesian meshes [2–10].
Mittal and Iaccarino [7] made a good review of the various ways of dealing with IB methods.

Peskin [2,3] reported, at the beginning of the 1970s, simulations of the blood flow in
the heart/mitral-valve system assuming a very low Reynolds number and 2D flow. Similar
three-dimensional flows that also included the contractile and elastic nature of the boundary were
considered successively by Peskin [11] and McQueen and Peskin [12,13]. In Peskin’s formulation,
the incompressible Navier-Stokes equations are solved on uniform Cartesian grids and the elastic
fibers of the heart walls are immersed in the flow where fluid and fibers exert time varying forces
on one another. A Lagrangian coordinate system moving with the local fluid velocity is attached
to the fibers and tracks their location in space. The information about the position of the fibers and
their forcing on the fluid is transferred to the Eulerian underlying mesh where the flow solution is
obtained. In this procedure, the resulting forcing consists of delta functions located on the first cells
external to the immersed body which, therefore, cannot be adequately represented on a finite size mesh.
For this reason, a smooth transition between the external fluid and internal body cells is introduced
which is equivalent to spreading the delta function over a narrow band across the boundary [14].
Since Peskin introduced this method, numerous modifications and refinements have been proposed
and several variants of this approach now exist, such as, the Physical Virtual Model [6], the Direct
Forcing [8], and more recently, the Multi-direct Forcing [10].

These methods have been used successfully in a variety of flow configurations within
finite-difference [6], finite-volume methods [15,16] and Fourier pseudo-spectral [17], to more complex
applications involving the simulation of the flow field past a pick-up truck considering a turbulent
flow [18]. These methods have produced good results with smaller computational cost than other
more conventional methods using non-orthogonal or non-structured grids [14,19]. The immersed
boundary method for turbulent flow simulations around complex configurations is illustrated by
Iaccario [14]. Sedimentation of hundreds of particles using the immersed boundary method was
studied by Wang et al. [10]. Despite the continuous improvement in the immersed boundary methods,
the main drawback of these methods is their relatively lack of accuracy near the walls, which is
caused by the relatively small number of grid points used to define them [6,20,21]. This issue has been
addressed by using a mesh which is locally refined [22].

From a conceptual viewpoint, the immersed boundary method allows the specification of a
particular boundary condition in the flow through the addition of a source term to the Navier-Stokes
equations. The embedded interface is represented by an arbitrary Lagrangian mesh whereas the flow
domain is usually discretised by a Eulerian orthogonal grid. An interpolation function transfers the
information from one domain to the other and back. This domain independence allows immersed
boundaries to easily displace and/or deform relatively to the fixed grid representing the flow. The way
the forcing term is evaluated and the interpolation function is defined, characterizes the different
variants of IB formulations.

Fluid flows through a sudden contraction are common in many engineering applications such as
piping systems, polymer processes, extrusion, molding and drilling process for oil and gas. This kind
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of flow is associated with sudden pressure drop and recirculation in the upstream and downstream
regions of the contraction plane. The amount of work done in this field in the last 60 years, gives it a
place of importance in the fundamental understanding of fluid flow and fluid mechanics in subject
configurations. A deep literature review was done by Pienaar [23] on this topic.

Even though the geometry is simple, these entry flows show complex flow patterns [24]. When a
fluid flows through a sudden contraction, a stationary flow vortex is present in the corner of the
upstream tube and the contraction plane. It reduces the available flow area and the fluid accelerates
and results in a partially developed velocity profile at the entrance of the downstream tube. In turbulent
flow there is a marked drop in pressure as the fluid passes through the contraction. The pressure
loss is due to an increase in velocity and the loss of energy in turbulence. There is a rise in pressure
at the upstream corner of the contraction due to streamline curvature so that the centrifugal action
causes the pressure at the pipe wall to be greater than in the center of the stream. The streamlines
continue to curve downstream of the contraction to form a cross section where a minimum pressure
and maximum velocity are obtained. This region is known as the vena contracta. The contracted
flowing stream is surrounded by fluid that is in a state of turbulence but has very little forward
motion. Downstream of the vena contracta the flow stream expands, the velocity decreases and the
pressure rises [23]. Associated with these changes in pressure loss are increased erosion rates as well
as increased heat and mass transfer rates in the regions where separated flow occurs.

Flow in pipes with sudden contraction in cross sectional area has been extensively studied.
A large number of publications provide some experimental data on integral flow properties such
as wall pressure drop, flow redevelopment length after the contraction, and general information
on the mean flow pattern obtained mostly from flow visualization studies. The development of
experimental non-intrusive techniques has allowed to obtain information about the kinematic of fluid
flow, like velocity profiles, turbulence intensities, and other important variables.

Durst et al. [25] conducted a numerical and experimental study of laminar flow in a pipe with a
sudden contraction of β = 1.87. The numerical approach was performed by solving the governing
two-dimensional, elliptic, partial differential equation by the finite-difference scheme. The flow was
considered to be axisymmetric and stationary and the grid distribution in the calculation domain was
non-uniform in both the longitudinal and radial coordinate directions. The experimental investigations
were carried out through the Laser Doppler Anemometry (LDA) measurements. Tests allowed
to obtain velocity profiles along the upstream and downstream regions of the contraction plane.
The numerical tests provided information about the vortex region, including the length of flow
separation in the concave and convex corners of the plane of contraction. Comparison between
numerical and experimental results yielded good agreements for most of flow field.

Sanchez [26] investigated experimentally the Newtonian laminar flow through an axisymmetric
sudden contraction with β = 1.97. The experimental measurements are carried out with the Particle
Image Velocimetry technique (PIV-2D) to obtain the two-dimensional velocity field along the upstream
region for ReD = 185, 365, 568, 993 and 1266. Velocity profiles in the longitudinal and radial directions
along the upstream flow region of the contraction and flow pattern along the upstream region
were studied.

The goal of the present work is to apply IB method to simulate a Newtonian, incompressible
and laminar flow through a sudden contraction solving the governing three-dimensional, partial
differential equation in Cartesian meshes. The geometry of the present problem is simple, however
the entry flow shows complex flow patterns. Structured meshes are being used to show that the IB
method is an interesting alternative to deal with the sudden contraction case.
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2. Numerical Investigations

2.1. Mathematical Model

The equations of mass and momentum conservation (also known as the Navier-Stokes equations)
are used to model the cases simulated in this present work, considering an incompressible flow in a
Newtonian fluid. In Cartesian form, the continuity equation is given by,

∂uj

∂xj
= 0 (1)

while the momentum equation in the ‘i’ direction is given by,

∂ui
∂t

+
∂(uiuj)

∂xj
= −1

ρ

∂p
∂xi

+
∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj

∂xi

)]
+

fi
ρ

(2)

where xi is the i-th component of the position vector x, ui is the i-th component of the velocity vector u,
p is the pressure, ρ and ν are the density and the kinematic viscosity of the fluid and fi is the i-th
component of the force vector f which represent any external force acting on the fluid.

The immersed boundary method allows the specification of a particular boundary condition in the
flow through the addition of a source term fi in the momentum equations (Equation (2)). This source
term is calculated in the Lagrangian domain and transmitted to the Eulerian domain to account for the
presence of the boundary walls (geometry). The term fi is null in all Eulerian grid, except in volumes
neighbor to the Lagrangian markers. Mathematically the source term can be represent as:

~f (~x, t) =
∫

Γ
~F(~xk, t)δ(~x−~xk)d~xk (3)

where δ(x) is the auxiliary Dirac delta function, k denotes a Lagrangian variable and ~F(~xk, t) is the
Lagrangian force, which is determined in the points of the object interface.

2.2. Numerical Methods

The governing equations (Equations (1) and (2)) are discretized by the finite volume method,
where the advective-diffusive terms are discretized using the central differencing scheme, in a staggered
arrangement, as proposed by Patankar [27]. In a simple rectilinear mesh discretization, the components
u, v and w are positioned in the volume’s normal faces in x, y and z directions, respectively whereas
scalar values, such as pressure, are located at the volume center [28]. The pressure and velocity are
coupled using the explicit fractional time-step (second order accuracy) Adams-Bashforth method [29].
Thus, first the velocity field is estimated as u∗, in Equation (4).

u∗ − ut

∆t
=

3
2

At − 1
2

At−1 − 1
ρ
∇pt (4)

where t is the time instant and A contains the advective and diffusive terms. The velocity ut+1 is
estimated using:

ut+1 − u∗

∆t
= −1

ρ
∇p′ (5)

where the pressure fluctuation p′ is determined by the solution of a Poisson equation in the form of,

∇2 p′ =
ρ

∆t
∇ · u∗ (6)
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leading to the pressure pt+1 estimation through,

pt+1 = pt + p′ (7)

Computational Aspects

It’s worth mentioning the solution of Equation (6) is performed by the packages Epetra, AztecOO
and ML of framework Trilinos, which provides a free general implementation of scientific computational
tools in parallel, as libraries for linear algebra and solvers [30]. The method Generalized Minimum
Residual (GMRES) was used as predefined parameter for the AztecOO library, preconditioned through
the algebraic multigrid method (AMG), in the ML library [31]. To ensure load balancing, the library Zoltan
was employed and between the algorithms available for the load balancing, the recursive coordinate
bisection (RCB) was selected, since this method has shown low computational cost [32].

2.3. Immersed Boundary Method

The method Direct Forcing (MDF) was proposed by Uhlmann [8]. Other authors developed
variations of this method [10,33,34]. A force ~F(~xk, t) based on MDF method is imposed on
the Lagrangian markers to modify its velocity to be equal to the desired velocity uIBM at the
immersed boundary.

From Equation (2),

fi
ρ
=

∂ui
∂t

+
∂(ujui)

∂xj
+

1
ρ

∂p
∂xi
− ∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj

∂xi

)]
(8)

and,
Fki
ρ

=
∂uki
∂t

+
∂(ukjuki)

∂xkj
+

1
ρ

∂p
∂xki
− ∂

∂xkj

[
ν

(
∂uki
∂xkj

+
∂ukj

∂xki

)]
(9)

where the index k denotes a Lagrangian variable and Fki(xk, t) represents the Lagrangian force.
Applying the Euler temporal discretization from Equation (9), it becomes:

Fki
ρ

=
ut+∆t

ki − ut
ki

∆t
+ RHSt

ki (10)

where ∆t is the discrete interval and RHS is a composed by the advective, diffusive and pressure terms:

RHSt
ki =

∂(ukjuki)

∂xkj
+

1
ρ

∂p
∂xki
− ∂

∂xkj

[
ν

(
∂uki
∂xkj

+
∂ukj

∂xki

)]
(11)

Adding a temporal parameter, u∗ki, Equation (10) can be rewritten as,

Fki
ρ

=
ut+∆t

ki + u∗ki − u∗ki − ut
ki

∆t
+ RHSt

ki (12)

Equation (12) can be decomposed into two complementary equations:

u∗ki − ut
ki

∆t
+ RHSt

ki = 0 (13)

and,
Fki
ρ

=
ut+∆t

ki − u∗ki
∆t

=
uiIBM − u∗ki

∆t
(14)
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where uiIBM is the immersed boundary velocity. Under the effect of the Immersed Boundary force,
the velocity on the Lagrangian marker xk at time t + ∆t ut+∆t

ki can be modified to the desired
velocity uiIBM [10]. u∗ki is calculated using Equation (15). This variable is calculated using the
moving-least-squares reconstruction method (MLS) [35]. This method is employed to enforce the proper
boundary condition on all the Eulerian grid nodes influenced by the immersed body. First, it computes
the force function on the Lagrangian markers and then transfers this function to the Eulerian grid
nodes. In this work, the transfer operators were constructed using MLS shape functions with compact
support [36].

Using the MLS, u∗ki for each Lagrangian marker can be approximated in its support domain
as follows:

u∗ki(xk) =
m

∑
j=1

pj(xk)aj(xk) = pT(xk)a(xk) (15)

where p(xk) is the basis functions vector of length m, a(xk) is a vector of coefficients and xk is
the position of the Lagrangian marker. Adopting a linear basis, pT(xk) is an efficient choice and
would represents the field variation for all variables up to the accuracy of the spatial discretization
scheme employed.

pT(xk) = [1 xk yk zk] (16)

To obtain the coefficient vector, aj(xk) from the basis functions Equation (16), the following
weighted L2-norm is defined:

J =
np

∑
k=1

W(xk − x)
[

pT(x)a(xk)− u∗i
]2

(17)

where x is the position vector of the Eulerian node, W(xk − x) is a given weight function, np is the total
number of grid points in the interpolation scheme and ui is the i-th component of the velocity vector u
in the Eulerian domain. Minimizing J with respect to a(x) leads to the following set of equations:

A(xk)a(xk) = B(xk)u
∗
i

A(xk) =
np

∑
k=1

W(xk − x)p(x)pT(x) (18)

B(xk) = [W(x− x1)p(x1) ... W(x− xnp)p(xnp)]

The size of matrix A(xk) and B depend on the size of the basis vector, which is 4× 4 and 4× np,
respectively for the present study. Assuming the matrix A is not singular, we have:

a(xk) = A−1(xk)B(xk)u
∗
i (19)

Combining Equations (15) and (19) leads to,

u∗ki(xk) =
np

∑
k=1

φ(x)u∗i = φT(x)ui (20)

where Φ(x) = p(xk)
[

A−1(xk)B(xk)
]

is a column vector with length np, containing the shape function
values. Cubic splines are used for the weight function, W(xk − x), which can be written as:

W(xk − x) =


2/3− 4r2

k + 4r3
k , if rk ≤ 0, 5

4/3− 4rk + 4r2
k − 4/3r3

k , if 0, 5 ≥ rk ≤ 1

0, if rk > 1
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where rI = |xk − x|/Hi and Hi is a half length of a rectangular box centered at the location of the
marker. These functions are monotonically decreasing and are sufficiently smooth in the support
domain. The resulting shape functions reproduce exactly the linear polynomial contained in their basis

and possess the partition of unity property
np
∑

k=1
φ(x) = 1. Also, the field approximation is continuous

on the global domain as the MLS shape functions are compatible.
u∗ki is calculated using Equation (20) which is then substituted into Equation (14) to obtain the

volume force Fki. To transfer this force to the Eulerian domain associated with each marker, the same
shape functions used in the interpolation procedure can be used if properly scaled by a factor e f .
The final forces on the Eulerian grid can be written as:

fi =
nk

∑
k=1

e f kφFki (21)

where fi is the volume force in the Eulerian domain due to the contribution of the nk Lagrangian
markers. To properly rescale the shape functions it is required that the total force acting on the fluid is
not changed by the transfer:

n

∑
I=1

fi∆V =
nk

∑
k=1

Fki∆Vk (22)

where ∆V = (dx · dy · dz) is the volume associated with the Eulerian grid point and Vk = Ak · hk is the

volume associated with the Lagrangian maker, with hk = 1
3

n
∑

I=1
φI(dx · dy · dz). The total number of

forced grid points and the total of Lagrangian markers are n and nk respectively.
From the average Eulerian grid volume associated with the Lagrangian marker V, the scaling

factor e f k is defined as:

e f k =
Vk

V
(23)

Using the Eulerian forcing function from Equation (21) it is possible to update the estimated
velocity from the Adams-Bashforth equation (Equation (4)) in order to insert the boundary conditions
on the immersed body. Thus the new estimated velocity field can be written as:

u∗i = u∗i + fi∆t (24)

The resulting approximate velocity field, u∗i , which is not divergence-free, can be projected into a
divergence-free space by applying a correction of the form as showed in Equation (5).

3. Problem Description

The problem consists in a numerically investigation of an Newtonian laminar flow in a
three-dimensional sudden contraction. Fluid flow through a sudden contraction is shown in Figure 1.
The Cartesian coordinates system (x,y,z) is adopted for the Eulerian domain. To minimize the Eulerian
domain size which is 0.25× 0.25× 0.7 m in x, y and z direction respectively, a parabolic inlet profile
was implemented [37] showing a fully developed behaviour in the upstream region with a bulk
velocity U1. The upstream pipe has an inner diameter of D = 0.239 m and a length of LD = 0.4 m,
and the downstream section is a pipe with a diameter d = 0.1215 m and a length of Ld = 0.3 m with a
bulk velocity U2. Important parameters related to the study of fluid flow through a contraction are:
the contraction ratio, β = D/d and the upstream Reynolds number, ReD = ρU1D/ν. The contraction
ratio adopted in this present work is β = 1.97 [26]. The density of the fluid ρ = 1.0 kg/m3 and the
kinematic viscosity was varied to set the Reynolds number.
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Figure 1. Schematic representation of problem definition for a sudden contraction. Adapted from [26].

The boundary conditions applied for the computations were as follows:

Inlet : u = Umax

[
1−

(
r

RD

)2
]

Oulet :
∂u
∂z

=
∂v
∂z

=
∂w
∂z

= 0

walls : u = v = w = 0

Based on mass conservation, in control volume form, the relation between the velocity and the
Reynold number upstream and downstream are defined as:

U2 = U1β2 (25)

Red = ReDβ (26)

The Lagrangian markers which represent the sudden contraction surface are imported from any
mesh generation software which returns waveform object format. Figure 2 shows the Lagrangian
markers which represent the three-dimensional surface of the sudden contraction associated with a
Eulerian plane.

Figure 2. Sudden contraction representation through the IB method.

4. Results and Discussion

In this work, flow patterns upstream and downstream of the contraction region are analysed at
various Reynolds number in the range 44 ≤ ReD ≤ 993 for the large tube and 87 ≤ ReD ≤ 1956 for the
small tube. Grid independence was judged by comparing the results with other works [25,26]. It was
found that a grid density of 90× 90× 252 is sufficient to provide a profile in the contraction that is
independent of the grid density, as shown in the Appendix A.

A stationary flow vortex is present in the corner of the upstream tube just before the contraction
plane. This reduces the available flow area forcing the fluid to accelerate which results in a partially
developed velocity profile at the entrance of the downstream tube. The upstream influence of sudden
contraction is limited to a region smaller than 0.6D. This is in agreement with the work by Sanchez [26].
As shown in Figure 3, the downstream pipe length was not long enough to ensure the velocity
redevelops into a parabolic profile.
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Figure 3. Axial velocity profiles through the centreline at various Reynolds numbers.

The velocity profile at the inlet of the downstream pipe changes with Reynolds number.
This velocity profile shows velocity maxima close to the pipe walls (velocity overshoot) and a flat
distribution of velocity in the center part of the pipe. Despite this occurrence, there is a redevelopment
of the profile until reaching the fully developed parabolic distributions. The velocity overshoot is
associated with strong, axial positive pressure gradients and the resultant separation region which
occur locally in the near wall region of the smaller pipe and just downstream of the plane of
contraction [25]. The depth of the concavity increases with Re and 1/β [23]. Durst et al. [25] reported
that both the experiments and computations show these velocity overshoots for Reynolds number
ReD ≥ 125 and β = 1.87. As shown in Figure 4, for the present contraction ratio, β = 1.97, these velocity
overshoots are present when ReD ≥ 87. The effect of the concavity is the reason the axial velocity at
center line decreases as Reynolds number increases, as seen in Figure 3.

Durst et al. [25] stated that the velocity overshoot does not exist in the plane of contraction but
develops immediately downstream of it; however, the present results show velocity overshoot profiles at
the contraction plane and immediately downstream of it, as well.

Figure 4. Velocity profiles at the contraction plane showing velocity overshoots.

The streamlines continue to curve downstream of the contraction to form a cross section where a
minimum pressure and maximum velocity are obtained. This region is known as the vena contracta.
The contracted flowing stream is surrounded by fluid that has very little forward motion. Downstream
of the vena contracta the flow stream expands, the velocity decreases and the pressure rises [23].
Associated with these changes in pressure are increased erosion rates as well as increased heat and
mass transfer rates in the regions where flow separation occurs. From the range of Reynolds numbers
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simulated, the presence of the vena contracta was notice at ReD = 993, where a maximum velocity
and minimum pressure are obtained downstream of the contraction at the position z/D ≈ 0.25
(Figures 3 and 5a), respectively. Expanded views on the pressure field at ReD = 993, associated with
streamlines were also used to visualize the presence of the vena contracta, which is shown in Figure 5e.
Durst et al. [25] found the existence of the vena contracta for ReD ≥ 300 when β = 1.87. Based on other
works [38,39] it is possible to conclude that as the contraction ratio increases, the Reynolds number
to obtain the vena contracta increases as well. Regarding the pressure losses caused by the sudden
contraction, for the Reynolds numbers studied the results are given in Figure 5b. This figure also
reproduces data by Astarita and Greco [40], Sylvester and Rosen [38], Durst et al. [25] and Sanchez [26].
There are the same tendency of all works, as Reynolds number increases, the dimensionless pressure
loss decreases. The pressure fields at Re = 365 and 993 are shown in Figure 5c,d, respectively.

Where ∆pcon is obtained through the pressure gradient extrapolation of fully developed flow in
the downstream and upstream region of the contraction plane [41] and the dimensionless pressure
loss is defined as

∆p∗con =
∆pcon

ρU2
2 /2

(27)

The upstream region obtained from Sanchez [26] (Figure 6a) is compared to the present result in
the same region at ReD = 365 (Figure 6b) for the velocity magnitude ~V/U1, adimensionalized with the
upstream bulk velocity U1, on a plane containing the centerline. There is a good agreement between
the studies, although the experimental work from Sanchez [26] was not able to capture the stationary
vortex in the upstream region by the streamlines, due to the low velocity tracer particles used in PIV
technique which tend to adhere to the pipe, a common problem in regions of vortex formation.

Figure 6c,d show the axial and radial velocity contour plot and streamlines on a plane containing
the centreline at ReD = 365 and steady state conditions for both regions, upstream and downstream.
It is possible to visualize the presence of the stationary vortex (separation region) in the upstream
region just before the contraction. Streamlines are smooth throughout the domain due to the laminar
nature of the flow field.

The radial velocity is imposed null at the domain entrance and show only large values in the
immediate vicinity of the plane of contraction in its corners.

Flow pattern through the streamlines and the velocity vector for some planes are shown in
Figure 7 (three-dimensional domain). In both figures it is possible to visualise the flow adaptation
to pass through the sudden contraction, first, in the entrance of the domain the flow has a parabolic
profile, then under influence of sudden contraction (smaller than 0.6) the flow adapt to pass through
the sudden contraction, where the profile becomes thinner having higher velocity in the center region
and lower velocity close to the wall. In the downstream region, the profile is adapting to achieve fully
developed velocity profile showing higher velocity when compared to the upstream region due to
smaller diameter.
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(a) (b)

(c) (d)

(e)

Figure 5. Pressure (a) distribution along the centreline at various ReD, (b) pressure loss, (c) pressure
fields at ReD = 365, (d) pressure field at ReD = 993 and (e) vena contracta evidence at ReD = 993 (zoom
in on the pressure field).

Figure 8 compares velocity profiles upstream and downstream of the contraction with other
published literature. Durst et al. [25] conducted an experimental study of laminar flow in a pipe with
a sudden contraction of β = 1.87 and ReD = 372 (slightly different Reynolds number from this work).
The experimental investigations were carried out using LDA techniques in both regions, upstream and
downstream. Sanchez [26] investigated flow along the upstream flow region of a sudden contraction
having β = 1.97 and ReD = 365 through experimental techniques using PIV-2D methods.

Even though the positions z/D = −0.288 and z/D = −0.236 are under the influence of the
sudden contraction, this influence is quite weak, having a good agreement between the present result
and the reference works (Figure 8a,b). Nearer to the sudden contraction, the influence increases,
as shown at the position z/D = −0.079 (Figure 8c), where there is a good agreement between the cases
where the contraction ratio and Reynolds number have the same values [26] and the same tendency
with the Durst et al. [25] which has lower contraction ratio and slightly different Reynolds number.
The difference results between the present work and Durst et al. [25] relies on the contraction ratio and
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Reynolds number difference, once the present work has a higher contraction ratio it is expected higher
velocity (Equation (26)).

To ensure axisymmetry a second profile on a line located ninety degree from the original one is
also plotted in Figure 8c. This shows an identical result, implying axisymmetric behavior.

Figure 8d present a profile near to the sudden contraction (z/D = −0.0026), showing agreement
between the results of the present paper and Sanchez [26], although there is a slight difference between
the axial velocity profiles. Durst et al. [25] has shown the same tendency, as well. Once in the
downstream region the only reference is Durst et al. [25], it is possible to visualize the same tendency
for both position, z/D = 0.049 (Figure 8e) and z/D = 0.784 (Figure 8f). In the first position the
presence of the velocity overshoot is clearly observed and for the second position, a redevelopment of
the profile to reach the fully developed parabolic distributions is observed.

(a) (b)

(c) (d)

Figure 6. Streamline for ReD = 365 (a) upstream region for velocity magnitude [26], (b) upstream
regions for velocity magnitude (present work), (c) both regions for axial velocity and (d) both regions
for radial velocity.

(a) (b)

Figure 7. Flow visualization in the 3D domain at ReD = 365. (a) Streamline for different positions and
(b) velocity vector for different positions.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison of numerical and experimental non-dimensional axial velocity profiles
for ReD = 365 (a) z/D = −0.288, (b) z/D = −0.236, (c) z/D = −0.079, (d) z/D = −0.026,
(e) z/D = +0.049 and (f) z/D = +0.784.
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The percentage error of the maximum dimensionless axial velocity between the present results
and Sanchez [26] at ReD = 365 and β = 1.97 presented in Table 1, has maximum error within 1.7%.
Experimental uncertainty analysis was not performed by Sanchez [26] to compare this error, properly.

Table 1. Percentage error in maximum velocity at ReD = 365 and β = 1.97 for some positions (z/D).

z/D
u/U

Present Sanchez [26] Error (%)

−0.288 2.26 2.28 0.88
−0.236 2.41 2.40 0.26
−0.079 3.37 3.31 1.70
−0.026 3.85 3.81 1.08

Where the percentage error is defined as

error(%) = | (u/U)NUM − (u/U)EXP
(u/U)NUM

| × 100 (28)

5. Conclusions

In this paper, Newtonian laminar flow through a three-dimensional sudden contraction, having a
contraction ratio of β = 1.97, was numerically investigated using the immersed-boundary (IB) method.
A structured grid in Cartesian coordinate was employed for the Eulerian domain and the sudden
contraction surface was represented by the Lagrangian markers. The numerical implementation of
Cartesian coordinates is simpler than the body-fitted coordinates. The IB method was able to represent
the sudden contraction well, compared to other published literature. The present results show:

The upstream influence of sudden contraction is limited to a region smaller than 0.6D.
For Reynolds number in excess of ReD ≥ 87 the profiles of the axial velocity component show a

characteristic velocity overshoot.
From the range of Reynolds numbers simulated, the presence of the vena contracta was notice

at ReD = 993, where a minimum pressure and maximum velocity are obtained downstream of the
contraction. Preliminary tests confirm it remains for higher Reynolds number.

Regarding the pressure losses caused by the sudden contraction, as Reynolds number increases,
the dimensionless pressure loss decreases.

There was good agreement when comparing the profiles from the current simulation with
published experimental data, showing the IB method is an interesting alternative to deal with the
sudden contraction.
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Appendix A

In this section, the influence of mesh resolution on the results is analysed at ReD = 365 by changing
the grid density, i.e., 60× 60× 168, 70× 70× 196, 80× 80× 224 and 90× 90× 252. The Eulerian
domain size is 0.25× 0.25× 0.7 m in x, y and z direction, respectively. The dimensionless axial velocity
profiles are presented in Figure A1 showing that the results become independent of the grid as the
refinement is increased.

(a) (b)

(c) (d)

Figure A1. Grid independency at ReD = 365 (a) z/D = −0.288, (b) z/D = −0.104, (c) z/D = −0.079
and (d) z/D = +0.784.

Table A1 presents a comparison between the axial velocity for each position (z/D) and mesh
resolution at centerline (r/D = 0) in order to check the percentage error related to the finest
mesh (90 × 90 × 252). When the refinement takes place the error decreases showing an error
within 0.8% in the results using the mesh 80 × 80 × 224 compared to the results using the mesh
90× 90× 252. Also, the solutions were extrapolated on the finest two grids by using the Richardson
extrapolation procedure.



Computation 2018, 6, 50 16 of 17

Table A1. Axial velocity and percentage error at ReD = 365, β = 1.97 and r/D = 0.

Mesh
z/D = −0.288 z/D = −0.104 z/D = −0.079 z/D = 0.784

u/U Error (%) u/U Error (%) u/U Error (%) u/U Error (%)

60× 60× 168 2.3318 3.2474 3.3511 6.0494 3.5898 6.5112 5.7598 7.6615
70× 70× 196 2.3134 2.4358 3.3024 4.5076 3.5332 4.8333 5.6672 5.9315
80× 80× 224 2.2595 0.0465 3.1744 0.4573 3.3884 0.5364 5.3928 0.8019
90× 90× 252 2.2584 0.0000 3.1600 0.0000 3.3703 0.0000 5.3450 0.0000
Richardson extr. 2.2545 - 3.1056 - 3.2023 - 5.1650 -
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