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Abstract: This paper presents an active control design for the synchronization of two identical
Petrzela chaotic systems (Petrzela, J.; Gotthans, T. New chaotic dynamical system with a conic-shaped
equilibrium located on the plane structure. Applied Sciences. 2017, 7, 976) on master-slave
configuration. For the active control, the parameters of both systems are assumed to be a priori
known, the control law by means of the dynamic of the error synchronization is designed to guarantee
the convergence to zero of error states and the synchronization process is verified by numerical
simulation. By taking advantage of the execution and implementation facilities of microcontroller
based chaotic systems in digital devices, the active controller is implemented in a 32 bits ARM
microcontroller. The experimental results were obtained by using the fourth order Runge-Kutta
numerical method to integrate the differential equations of the controller, where the results were
measured with a digital oscilloscope.

Keywords: active control; synchronization of master-slave configuration; implementation
microcontroller-based; Petrzela chaotic system

1. Introduction

In recent decades, chaotic systems have been studied due to their nonlinear dynamic properties
and for the possible applications they have in different fields of science. This began due to the work
of references [1,2] in which they showed that synchronization of chaotic systems is possible; this
development has been utilized in areas such as secure communications [3–5], cryptography [6,7],
medical applications, mechanisms, and robotics [8–15]. Some of the synchronization schemes that have
been successfully developed and applied include linear and nonlinear feedback control [16–25], where
a Lyapunov candidate function V is proposed in such a way that the control law selected from the first
derivative of V must be defined as negative [25]. Adaptable control [16–19,26,27] is of interest for the
synchronization of chaotic systems because of the presence of unknown parameters since the learning
laws are continuously updated for maintaining the performance of the system. Other controls are also
applied, for example the control by state feedback [28–34], feedback control with delays [35–38] or
active control [39–42] which works by considering the error synchronization, here the nonlinearities
are eliminated, and the dynamic error equations are decoupled. Finally, synchronization has been
used through neural networks [43].

It is often thought that chaotic systems have a combination of several chair-type equilibrium
points that produce the evolution of the chaotic attractor. However, systems with infinite points
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of equilibrium can be observed, located along a line [44,45], surface [46], or in closed curves [47]
which fall into a new category of chaotic systems with a hidden attractor. In general, to be able
to use chaotic systems in engineering applications, it is necessary to have a real implementation of
them by means of analog electronic devices [48,49] or embedded systems [50]. The implementation
of chaotic systems in embedded devices such as microcontrollers [50–53], digital signal processors
(DSP), or field programmable gate array (FPGA) [4,54–56], have advantages in comparison with the
implementation of circuits with analog components such as operational amplifiers and multipliers.
Some of the advantages include a higher velocity of implementation, high computational power, low
power consumption and precision because the resistors and capacitors have tolerance problems, which
do not greatly change their value with respect to temperature [50]. In addition, working with digital
devices allows us to specify delays in the implementation, opening the possibility of investigating
differential equations with chaotic delays [55,57]. Authors in reference [52] perform the synchronization
of Genesio & Tesi multi-scroll chaotic systems by neural network identifier into a microcontroller
Arduino UNO®. One advantage of this method is that the plant model to be synchronized and its
parameters are unknown. Although a small error value persists, the synchronization holds the error
signals bounded in a very small region.

In robotic, the chaotic systems applications are focused on mobile robotic and collaborative
systems. For mobile robotics applications, robots are used for exploration and search for civil and
military applications. The tasks they perform are target identifications, robot positioning on the ground,
or updating maps. In the monitoring of security systems, chaotic paths are induced to the mobile in
such a way that knowing its future position become unpredictable. In search and rescue applications
(natural disasters), the robot must navigate in highly irregular and erratic environments, using chaotic
motion planning techniques to ensure a quick search in the entire workspace. Therefore, the possibility
of proposing navigation paths based on chaotic systems and their implementation in analog and
embedded electronic systems remains open [12–14].

Considering the above, this article presents the design and implementation of an active controller
in a 32-bit microcontroller for the synchronization in a master-slave configuration of the Petrzela chaotic
system. To the best knowledge of the authors, this type of synchronization and neither this type of
control has been used for this new system. Then, the article is organized as follows: Section 2 describes
the characteristics of the chaotic system, Section 3 explains the active control and demonstrates by
means of numerical simulations the successful synchronization of the dynamic system. In Section 4
the results of the microcontroller implementation are discussed and the conclusions of the paper
are provided.

2. Petrzela Chaotic System

The chaotic system is presented with the following differential equations:

.
x = z

.
y = −ayz− bxz2

.
z = x + y2

− r
(1)

where a and b are the internal parameters of the system, they are used to observe different routes and
the evolution of the strange attractor, while r represents the displacement of the hyperbolic equilibrium
structure, it could be a fixed value.

Through the Jacobian matrix (2), it is possible to find the characteristic Equation (3) as a function
of points on a hyperbolic equilibrium structure;

J(x) =


0 0 1
−bz2

−az −ay− 2bxz
1 2y 0

, (2)
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∣∣∣(λI − J(x))
∣∣∣ =

∣∣∣∣∣∣∣∣∣

λ 0 −1

bz2 λ+ az ay + 2bxz
−1 −2y λ


∣∣∣∣∣∣∣∣∣,

= λ3 + azλ2 +
(
2ay2 + 4bxyz− 1

)
λ+ 2byz2

− az = 0,

(3)

Considering the equilibrium plane z = 0 and by using the parameterization curve, the following
simplified characteristic equation with its eigenvalues is obtained:

= λ3 +
(
2ay2

− 1
)
λ = λ

(
λ2 + 2ay2

− 1
)
= 0,

⇒ λ1 = 0;λ2,3 = ±
√

1− 2ay2,
(4)

In this case λ1 is always zero, λ2,3 are real with opposite signs when y < 1/
√

2a; it is a complex
conjugate imaginary pair if y > 1/

√
2a, and equal to zero if y = 1/

√
2a. Depending on the initial

conditions near the equilibrium, the system can be leads to periodic oscillations. In this case, there is a
coexistence of three types of solutions which are: limit cycles, chaos and unbounded. In addition, the
dynamic movement is invariant under changes of coordinates y↔ −y and z↔ −z .

Numerical Analysis of the Chaotic System

Two of the most used methods to resolve differential equations of chaotic systems are Euler 1st
order and Runge-Kutta 4th order numerical algorithms [4,50–56]. Euler is a straight-forward method,
quick and it is easy to code, although its accuracy is poor. The Runge-Kutta method is not as fast but
offers good computational performance and more accurate solutions than Euler method, because the
truncation error is reduced in higher orders methods. With the fourth order numerical Runge-Kutta
integration method the solution of the system (1) can be found, for an initial condition in which it was
considered; x0 = (0 0 0)T, a simulation time tmax = 150 s, a time step of ∆t = 0.01, and constant values
of a = 12, b = 0.4 and r = 1, the behavior of the Petrzela system is shown in Figure 1.
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Figure 1. (a) 3D projection of chaotic attractor system; (b) XY phase plane; (c) XZ phase plane; (d) YZ
phase plane.
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3. Synchronization with Active Control

In this section, the active control is applied to synchronize two identical chaotic systems type (1)
with different initial conditions between them. The aim of the synchronization is that the slave system
follows the dynamic behavior of the master system, which is achieved by applying an appropriate
control law u = [u1 u2 u3]

T to the slave system; therefore, the master system is given as follows:

.
xm = zm

.
ym = −aymzm − bxmz2

m.
zm = xm + y2

m − r
, (5)

The master slave is given by:

.
xs = zs + u1

.
ys = −ayszs − bxsz2

s + u2
.
zs = xs + y2

s − r + u3

, (6)

The synchronization process is performed by calculating the synchronization error e = [e1 e2 e3]
T,

which is defined as the difference between the state of the master system (5) and the state of the slave
system (6), represented by:

e1 = xs − xm

e2 = ys − ym

e3 = zs − zm

, (7)

By applying the derivative to the synchronization errors in (7) and substituting the Equations (5)
and (6), the dynamics of the synchronization error is obtained by:

.
e1 =

.
xs −

.
xm = zs + u1 − zm

.
e2 =

.
ys −

.
ym = −ayszs − bxsz2

s + u2 + aymzm + bxmz2
m.

e3 =
.
zs −

.
zm = xs + y2

s − r + u3 − xm − y2
m + r

(8)

Rearranging the terms to be expressed as a function of the errors, taken from (7), and substituting
yszs = (e2 + ym)(e3 + zm); xsz2

s = (e1 + xm)(e3 + zm)
2, Equation (8) is simplified to obtain the following:

.
e1 = e3 + u1

.
e2 = −be2

3xm − ae3ym − ae2zm − 2be1e3zm − 2be3xmzm − be1z2
m − ae2e3 − be1e2

3 + u2,
.
e3 = 2e2ym + e1 + e2

2 + u3

(9)

From this Equation (9), in order to eliminate the nonlinearities and to uncouple the equations of
the dynamics error, the control laws are deduced as follows:

u1 = −e3 − k1e1

u2 = be2
3xm + ae3ym + ae2zm + 2be1e3zm + 2be3xmzm + be1z2

m + ae2e3 + be1e2
3 − k2e2,

u3 = −2e2ym − e1 − e2
2 − k3e3

(10)

Substituting the control laws (10) in (9), the synchronization error dynamic is simplified as shown
in (11):

.
e1 = −k1e1
.
e2 = −k2e2
.
e3 = −k3e3

=


−k1 0 0

0 −k2 0
0 0 −k3




e1

e2

e3

 = Ke, (11)

A linear system is obtained as a function of the state errors e = [e1 e2 e3]
T. There are many possible

options for the selection of the gains k1, k2 and k3 that allows us to control the speed of convergence
and to make stabilization of the system possible (11). By using the characteristic matrix of the closed
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loop system, the gains can be selected in such a way that all the eigenvalues are negative real parts as
shown in (12).

det|λI −K| =


λ+ k1 0 0

0 λ+ k2 0
0 0 λ+ k3

,
= (λ+ k1)(λ+ k2)(λ+ k3)⇒ λ1 = −k1; λ2 = −k2; λ3 = −k3,

(12)

In this way, the state errors converge to zero e→ 0 , while the time tends to infinity t→∞ ,
implying that the chaotic systems (5) and (6) reach synchronization with the active control.

Stability Proof

The stability of the error dynamic (11) is determined by Lyapunov analysis. To achieve this, a
positive defined function is proposed:

V :=
1
2

e2
1 +

1
2

e2
2 +

1
2

e2
3, (13)

The first derivative is given by

.
V := e1

.
e1 + e2

.
e2 + e3

.
e3, (14)

Substituting (11) in (14) and making algebraic operations,

.
V := −k1e2

1 − k2e2
2 − k3e2

3, (15)

The objective is that
.

V be negative defined
.

V < 0 to guarantee the asymptotic convergence to
zero of the error synchronization. It can be seen in (15) that if k1 > 0, k2 > 0 and k3 > 0 then

.
V < 0

the objective will be achieved according with the stability theorem of Lyapunov. By another hand, if
k1 ≥

1
2 , k2 ≥

1
2 and k3 ≥

1
2 then the following inequality is correct

− k1e2
1 − k2e2

2 − k3e2
3 ≤ −

1
2

e2
1 −

1
2

e2
2 −

1
2

e2
3, (16)

In the right hand of the inequality (16), the same candidate Lyapunov function can be seen, but
this version is negative.

.
V ≤ −V, (17)

That shows than
.

V is bounded by the negative function of V. Solving the inequality (17) and
making some algebraic operations, the Equation (18) is obtained:

d
dt V ≤ −V,∫ V

V(0)
d(V)
−V ≤ −

∫ t
0 dτ,

ln V − ln V(0) ≤ −t,

V ≤ V(0)exp−t,

(18)

Therefore
e2

1 + e2
2 + e2

3 ≤
(
e2

1(0) + e2
2(0) + e2

3(0)
)
e−t, (19)

By applying square root to both members of (19)

e ≤ e(0)exp−
1
2 t, (20)
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where ‖e‖ is the Euclidean norm of e = [e1 e2 e3]
T. In this way, the exponential converge of error

synchronization is guaranteed.

4. Numerical Results

This section presents the numerical simulation of the master-slave configuration for the systems
(5) and (6). Figure 2a shows the attractor of the master system with initial condition xm0 = (0 0 0)T,
while the attractor of the slave system is shown in Figure 2b, which considers xs0 = (−0.2− 0.6 0.2)T.
Both work during a simulation time of tmax = 150 s, with a time step of ∆t = 0.01, as well as constants
of a = 12, b = 0.4 and r = 1.
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Figure 2. Chaotic attractor for master and slave systems; (a) 3D master attractor system; (b) 3D slave
attractor system.

Using the control laws of (10) and solving the system (11) of the synchronization error dynamics
for k1 = 2, k2 = 5 and k3 = 5, Figure 3 shows the synchronization process between the states of the
master and slave systems. During the first seconds t ≤ 4 s, it is observed how the evolution of each
state is different, after four seconds t > 4 s the control laws are activated, then the states of slave
system begins to follow the states of the master system, achieving synchronization in approximately
2 s (t = 6 s).

The right side of Figure 3a–c is like a zoomed-in version to more clearly visualize when the
synchronization process begins.
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Figure 3. Synchronization process between master-slave systems by numerical simulation;
(a) Synchronization process for first state; (b) Synchronization process for second state; (c) Synchronization
process for third state.

In Figure 4, while t ≤ 4 s the synchronization errors have chaotic behavior, when t > 4 s the control
laws begin to work, and the errors converge to zero.

In Figure 5 the input controls are shown, the value of u = [u1 u2 u3]
T = 0 for t ≤ 4 s. Once t > 4 s

the input control tends to zero.
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5. Hardware Implementation

The active controller was implemented in the Arduino DUE® board, based on the Atmel SAM3X8E
ARM® Cortex®-M3 CPU (manufactured by Arduino, made in Italy), because is open source. That
has a processing speed up to 84 MHz. The main feature to choose the microcontroller was the two
digital to analog converter peripherals DAC0 and DAC1 with 12 bits of resolution, in addition to its
attractive cost benefit outcomes compared to FPGA or DSP devices. The hardware used for the active
controller implementation is shown in Figure 6. For the synchronization process of the Petrzela systems,
the synchronization error and the control law are calculated; later, the master and slave differential
equations are solved by the Runge-Kutta method and are sent from the DAC’s to the oscilloscope.

Computation 2019, 7, x FOR PEER REVIEW 8 of 16 

 

5. Hardware Implementation 

The active controller was implemented in the Arduino DUE® board, based on the Atmel 
SAM3X8E ARM® Cortex®-M3 CPU (manufactured by Arduino, made in Italy), because is open 
source. That has a processing speed up to 84 MHz. The main feature to choose the microcontroller 
was the two digital to analog converter peripherals DAC0 and DAC1 with 12 bits of resolution, in 
addition to its attractive cost benefit outcomes compared to FPGA or DSP devices. The hardware 
used for the active controller implementation is shown in Figure 6. For the synchronization process 
of the Petrzela systems, the synchronization error and the control law are calculated; later, the master 
and slave differential equations are solved by the Runge-Kutta method and are sent from the DAC’s 
to the oscilloscope. 

 
Figure 6. Hardware of microcontroller based active controller implementation. 

To perform the implementation of the chaotic systems (5) and (6), the differential equations must 
be discretized, as is shown in Equation (21). The code is programmed inside the ARM microcontroller 
with its own language, which is based in processing programming language that is similar to C++. 
Arduino uses the IEEE 754 single precision floating point, one bit is used for the sign, eight bits are 
used for the exponent and, 23 bits are used as the fraction that allows 6-7 decimal digits of precision. 
But for the user, the operations are performed automatically. 

MASTER  𝑥 = 𝑓 (𝑡, 𝑥 , 𝑦 , 𝑧 ) = 𝑧𝑦 = 𝑔 (𝑡, 𝑥 , 𝑦 , 𝑧 ) = −𝑎𝑦 𝑧 − 𝑏𝑥 𝑧𝑧 = 𝛿 (𝑡, 𝑥 , 𝑦 , 𝑧 ) = 𝑥 + 𝑦 − 𝑟  

SLAVE  𝑥 = 𝑓 (𝑡, 𝑥 , 𝑦 , 𝑧 , 𝑢 ) = 𝑧 + 𝑢𝑦 = 𝑔 (𝑡, 𝑥 , 𝑦 , 𝑧 , 𝑢 ) = −𝑎𝑦 𝑧 − 𝑏𝑥 𝑧 +𝑢𝑧 = 𝛿 (𝑡, 𝑥 , 𝑦 , 𝑧 , 𝑢 ) = 𝑥 + 𝑦 − 𝑟 + 𝑢  𝑒 (𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘) 𝑒 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) 𝑒 (𝑘) = 𝑧 (𝑘) − 𝑧 (𝑘) 
 𝑢 (𝑘) = −𝑒 (𝑘) − 𝑘 (𝑘)𝑒 (𝑘) 𝑢 (𝑘) =  𝑏𝑒 (𝑘)𝑥 (𝑘) + 𝑎𝑒 (𝑘)𝑦 (𝑘) +𝑎𝑒 (𝑘)𝑧 (𝑘) + 2𝑏𝑒 (𝑘)𝑒 (𝑘)𝑧 (𝑘) + 2𝑏𝑒 (𝑘)𝑥 (𝑘)𝑧 (𝑘) +𝑏𝑒 (𝑘)𝑧 (𝑘) + 𝑎𝑒 (𝑘)𝑒 (𝑘) + 𝑏𝑒 (𝑘)𝑒 (𝑘) −  𝑘 (𝑘)𝑒 (𝑘)  𝑢 (𝑘) = −2𝑒 (𝑘)𝑦 (𝑘) − 𝑒 (𝑘) − 𝑒 (𝑘) − 𝑘 (𝑘)𝑒 (𝑘)  
 

 𝑥1 = 𝑥 (𝑘)𝑦1 = 𝑦 (𝑘)𝑧1 = 𝑧 (𝑘)𝑘1𝑥 = 𝑓 (𝑥1 , 𝑦1 , 𝑧1 , 𝑢 )𝑘1𝑦 = 𝑔 (𝑥1 , 𝑦1 , 𝑧1 , 𝑢 )𝑘1𝑧 = 𝛿 (𝑥1 , 𝑦1 , 𝑧1 , 𝑢 )
 

𝑥2 = 𝑥 (𝑘) + (∆ 2⁄ )𝑘1𝑥𝑦2 = 𝑦 (𝑘) + (∆ 2⁄ )𝑘1𝑦𝑧2 = 𝑧 (𝑘) + (∆ 2⁄ )𝑘1𝑧𝑘2𝑥 = 𝑓 (𝑥2 , 𝑦2 , 𝑧2 , 𝑢 )𝑘2𝑦 = 𝑔 (𝑥2 , 𝑦2 , 𝑧2 , 𝑢 )𝑘2𝑧 = 𝛿 (𝑥2 , 𝑦2 , 𝑧2 , 𝑢 )
 

𝑥3 = 𝑥 (𝑘) + (∆ 2⁄ )𝑘2𝑥𝑦3 = 𝑦 (𝑘) + (∆ 2⁄ )𝑘2𝑦𝑧3 = 𝑧 (𝑘) + (∆ 2⁄ )𝑘2𝑧𝑘3𝑥 = 𝑓 (𝑥3 , 𝑦3 , 𝑧3 , 𝑢 )𝑘3𝑦 = 𝑔 (𝑥3 , 𝑦3 , 𝑧3 , 𝑢 )𝑘3𝑧 = 𝛿 (𝑥3 , 𝑦3 , 𝑧3 , 𝑢 )
 

(21) 

Figure 6. Hardware of microcontroller based active controller implementation.

To perform the implementation of the chaotic systems (5) and (6), the differential equations must
be discretized, as is shown in Equation (21). The code is programmed inside the ARM microcontroller
with its own language, which is based in processing programming language that is similar to C++.
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Arduino uses the IEEE 754 single precision floating point, one bit is used for the sign, eight bits are
used for the exponent and, 23 bits are used as the fraction that allows 6-7 decimal digits of precision.
But for the user, the operations are performed automatically.

MASTER
.
xm = fm(t, xm, ym, zm) = zm

.
ym = gm(t, xm, ym, zm) = −aymzm − bxmz2

m.
zm = δm(t, xm, ym, zm) = xm + y2

m − r
SLAVE

.
xs = fs(t, xs, ys, zs, u1) = zs + u1

.
ys = gs(t, xs, ys, zs, u2) = −ayszs − bxsz2

s + u2
.
zs = δs(t, xs, ys, zs, u3) = xs + y2

s − r + u3

e1(k) = xs(k) − xm(k)
e2(k) = ys(k) − ym(k)
e3(k) = zs(k) − zm(k)

u1(k) = −e3(k) − k1(k)e1(k)
u2(k) = be2

3(k)xm(k) + ae3(k)ym(k)+
ae2(k)zm(k) + 2be1(k)e3(k)zm(k) + 2be3(k)xm(k)zm(k)+

be1(k)z2
m(k) + ae2(k)e3(k) + be1(k)e2

3(k) − k2(k)e2(k)
u3(k) = −2e2(k)ym(k) − e1(k) − e2

2(k) − k3(k)e3(k)

x1m = xm(k)
y1m = ym(k)
z1m = zm(k)

k1xm = fm(x1m, y1m, z1m)

k1ym = gm(x1m, y1m, z1m)

k1zm = δm(x1m, y1m, z1m)

x2m = xm(k) + (∆t/2)k1xm

y2m = ym(k) + (∆t/2)k1ym

z2m = zm(k) + (∆t/2)k1zm

k2xm = fm(x2m, y2m, z2m)

k2ym = gm(x2m, y2m, z2m)

k2zm = δm(x2m, y2m, z2m)

x3m = xm(k) + (∆t/2)k2xm

y3m = ym(k) + (∆t/2)k2ym

z3m = zm(k) + (∆t/2)k2zm

k3xm = fm(x3m, y3m, z3m)

k3ym = gm(x3m, y3m, z3m)

k3zm = δm(x3m, y3m, z3m)

x4m = xm(k) + ∆tk3xm

y4m = ym(k) + ∆tk3ym

z4m = zm(k) + ∆tk3zm

k4xm = fm(x4m, y4m, z4m)

k4ym = gm(x4m, y4m, z4m)

k4zm = δm(x4m, y4m, z4m)

x1s = xs(k)
y1s = ys(k)
z1s = zs(k)

k1xs = fs(x1s, y1s, z1s, u1)

k1ys = gs(x1s, y1s, z1s, u2)

k1zs = δs(x1s, y1s, z1s, u3)

x2s = xs(k) + (∆t/2)k1xs

y2s = ys(k) + (∆t/2)k1ys

z2s = zs(k) + (∆t/2)k1zs

k2xs = fs(x2s, y2s, z2s, u1)

k2ys = gs(x2s, y2s, z2s, u2)

k2zs = δs(x2s, y2s, z2s, u3)

x3s = xs(k) + (∆t/2)k2xs

y3s = ys(k) + (∆t/2)k2ys

z3s = zs(k) + (∆t/2)k2zs

k3xs = fs(x3s, y3s, z3s, u1)

k3ys = gs(x3s, y3s, z3s, u2)

k3zs = δs(x3s, y3s, z3s, u3)

x4s = xs(k) + ∆tk3xs

y4s = ys(k) + ∆tk3ys

z4s = zs(k) + ∆tk3zs

k4xs = fs(x4s, y4s, z4s, u1)

k4ys = gs(x4s, y4s, z4s, u2)

k4zs = δs(x4s, y4s, z4s, u3)

xm(k + 1) = xm(k)+
(∆t/6)(k1xm + 2k2xm + 2k3xm + k4xm)

ym(k + 1) = ym(k)+
(∆t/6)(k1ym + 2k2ym + 2k3ym + k4ym)

zm(k + 1) = zm(k)+
(∆t/6)(k1zm + 2k2zm + 2k3zm + k4zm)

xs(k + 1) = xs(k) +(∆t/6)(k1xs

+2k2xs + 2k3xs+

k4xs)

ys(k + 1) = ys(k) +(∆t/6)(k1ys

+2k2ys + 2k3ys

+k4ys)

zs(k + 1) = zs(k) +(∆t/6)(k1zs

+2k2zs + 2k3zs

+k4zs)

(21)

The Figure 7 shows the flowchart of the code programmed into the microcontroller.
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Figure 7. Flowchart of the active controller program.

Experimental Results

As the digital to analog converter of the microcontroller has an operation range of 0.5 to 2.7 V, the
simulation and experimental results will be different in amplitude, except for states xm and xs whose
values are inside the operating range of the microcontroller. If we want the same amplitude values
that the numerical simulations, it would be necessary to add an external operational amplification
stage for every state.

The state values of master and slave systems and synchronization error were scaled by software
to avoid the amplification stage. The discrete Equations (21) remain the same, the values are only
scaled before to be sent to the DAC’s to be seen in the oscilloscope, as it is shown in Table 1. In such a
way, the equations in (21) are not modified. The scale value for each state or error is selected according
to the minimum and maximum value obtained by simulation.

For the experimental tests, the next values were taking in account a = 12, b = 0.4, r = 1 with
initial conditions xm(0) = 0, ym(0) = 0, zm(0) = 0 and xs(0) = −0.2, ys(0) = −0.6, zs(0) = 0.2. In
Figure 8a–c the images of synchronization process are shown in a Tektronix TDS 1001B oscilloscope.
During t ≤ 4 s the behavior of both systems is different due to initial conditions, after t > 4 s the
synchronization process begins. The states xm and xs shown in Figure 8a has the same amplitude in
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experimental and numerical. The values of ym, ys and zm, zs are shown in Figure 8b,c, they do not have
the same amplitude that values obtained by simulation, but they have the same behavior.

Table 1. Scaling values of the experimental test using map function.

oxm(k) = map(xm(k) ∗ 1, −70.0, 21.0, 0.0, 4095.0)

oxs(k) = map(xs(k) ∗ 1, −70.0, 21.0, 0.0, 4095.0)

oym(k) = map(ym(k) ∗ 10, −42.0, 50.6, 0.0, 4095.0)

oys(k) = map(ys(k) ∗ 10, −42.0, 50.6, 0.0, 4095.0)

ozm(k) = map(zm(k) ∗ 40, −52.0, 52.0, 0.0, 4095.0)

ozs(k) = map(zs(k) ∗ 40, −52.0, 52.0, 0.0, 4095.0)

oe1(k) = map(e1(k) ∗ 50, −15.50, 22.0, 0.0, 4095.0)

oe2(k) = map(e2(k) ∗ 20, −124.0, 00.0, 0.0, 4095.0)

oe3(k) = map(e3(k) ∗ 60, −60.0, 86.4, 0.0, 4095.0)

All signals have an offset due to the DAC operating range, it cannot be zero. The main idea of
this experimental test is to see the feasibility to implement the active controller in a microcontroller,
analyzing the synchronization behavior of the chaotic system and the performance of the active
controller. For implementing the active controller in a real application, the offset produced by the DAC
must be eliminated, and the state values of the chaotic differential equations must be scaled by using
an external stage of operational amplifiers.
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Figure 8. Synchronization process between master-slave systems by experimental result;
(a) Synchronization process for first state; (b) Synchronization process for second state; (c) Synchronization
process for third state.

Finally, in Figure 9 is shown the behavior of the synchronization error obtained experimentally in
the oscilloscope, by comparing this with the synchronization errors obtained in Figure 4 by simulation,
it is possible to see that they have the same behavior, which implies that the synchronization process of
the master-slave systems is achieved by the active control. The synchronization times after the control
laws begin to work and the error values tend to zero are approximately ste1 = 1s; ste2 = 0.8s; ste3 = 0.9s.
Regarding to the time evolution of synchronization errors in Figure 9, all signals have offset due to the
DAC operating range, the authors only placed the error signals in the center of the oscilloscope screen
to see the behavior.
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6. Conclusions

In this paper, an active controller was designed for the synchronization of the chaotic system of
Petrzela. By using Lyapunov analysis, the exponential convergence to zero of the synchronization
error was demonstrated. The gains used for k1, k2 and k3 were selected by trial and error to guarantee
system stability and, the feasibility of the controller was realized by numerical simulation and for the
hardware implementation in a 32 bits ARM microcontroller. For future work, the controller can be
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