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Abstract: We present a new algorithm for the approximate evaluation of the inverse square root for
single-precision floating-point numbers. This is a modification of the famous fast inverse square
root code. We use the same “magic constant” to compute the seed solution, but then, we apply
Newton–Raphson corrections with modified coefficients. As compared to the original fast inverse
square root code, the new algorithm is two-times more accurate in the case of one Newton–Raphson
correction and almost seven-times more accurate in the case of two corrections. We discuss relative
errors within our analytical approach and perform numerical tests of our algorithm for all numbers
of the type float.
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1. Introduction

Floating-point arithmetic has became widely used in many applications such as 3D graphics,
scientific computing and signal processing [1–5], implemented both in hardware and software [6–10].
Many algorithms can be used to approximate elementary functions [1,2,10–18]. The inverse square root
function (x → 1/

√
x) is of particular importance because it is widely used in 3D computer graphics,

especially in lightning reflections [19–21], and has many other applications; see [22–36]. All of these
algorithms require an initial seed to start the approximation. The more accurate is the initial seed, the
fewer iterations are needed. Usually, the initial seed is obtained from a look-up table (LUT), which is
memory consuming.

In this paper, we consider an algorithm for computing the inverse square root using the so-called
magic constant instead of an LUT [37–40]. The zeroth approximation (initial seed) for the inverse square
root of a given floating-point number is obtained by a logical right shift by one bit and subtracting
this result from an specially-chosen integer (“magic constant”). Both operations are performed on
bits of the floating-point number interpreted as an integer. Then, a more accurate value is produced
by a certain number (usually one or two) of standard Newton–Raphson iterations. The following
code realizes the fast inverse square root algorithm in the case of single-precision IEEE Standard 754
floating-point numbers (type float).

The code InvSqrt (see Algorithm 1) consists of two main parts. Lines 4 and 5 produce in a very
inexpensive way a quite good zeroth approximation of the inverse square root of a given positive
floating-point number x. Lines 6 and 7 apply the Newton–Raphson corrections twice (often, a version
with just one iteration is used, as well). Originally, R was proposed as 0x5F3759DF; see [37,38].
More details, together with a derivation of a better magic constant, are given in Section 2.
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Algorithm 1: InvSqrt.

1. float InvSqrt(float x){
2. float halfnumber = 0.5f*x;
3. int i = *(int*) &x;
4. i = R - (i>>1);
5. y = *(float*) &i;
6. y = y*(1.5f - halfnumber*y*y);
7. y = y*(1.5f - halfnumber*y*y);
8. return y ;
9. }

InvSqrt is characterized by a high speed, more that three-times higher than computing the inverse
square root using library functions. This property was discussed in detail in [41]. The errors of the fast
inverse square root algorithm depend on the choice of the “magic constant” R. In several theoretical
papers [38,41–44] (see also Eberly’s monograph [19]), attempts were made to determine analytically
the optimal value of the magic constant (i.e., to minimize errors). In general, this optimal value
can depend on the number of iterations, which is a general phenomenon [45]. The derivation and
comprehensive mathematical description of all the steps of the fast inverse square root algorithm were
given in our recent paper [46]. We found the optimum value of the magic constant by minimizing the
final maximum relative error.

In the present paper, we develop our analytical approach to construct an improved algorithm
(InvSqrt1) for fast computing of the inverse square root; see Algorithm 2 in Section 4. The proposed
modification does not increase the speed of data processing, but increases, in a significant way, the
accuracy of the output. In both codes, InvSqrt and InvSqrt1, magic constants serve as a low-cost way of
generating a reasonably accurate first approximation of the inverse square root. These magic constants
turn out to be the same. The main novelty of the new algorithm is in the second part of the code, which
is changed significantly. In fact, we propose a modification of the Newton–Raphson formulae, which
has a similar computational cost, but improve the accuracy by several fold.

2. Analytical Approach to the Algorithm InvSqrt

In this paper, we confine ourselves to positive single-precision floating-point numbers (type float).
Normal floating-point numbers can be represented as:

x = (1 + mx)2ex (1)

where mx ∈ [0, 1) and ex is an integer (note that this formula does not hold for subnormal numbers).
In the case of the IEEE-754 standard, a floating-point number is encoded by 32 bits. The first bit
corresponds to a sign (in our case, this bit is simply equal to zero); the next eight bits correspond to an
exponent ex; and the last 23 bits encode a mantissa mx. The integer encoded by these 32 bits, denoted
by Ix, is given by:

Ix = Nm(B + ex + mx) (2)

where Nm = 223 and B = 127 (thus B + ex = 1, 2, . . . , 254). Lines 3 and 5 of the InvSqrt code interpret a
number as an integer (2) or float (1), respectively. Lines 4, 6, and 7 of the code can be written as:

Iy0 = R− bIx/2c, y1 = 1
2 y0(3− y2

0x), y2 = 1
2 y1(3− y2

1x). (3)

The first equation produces, in a surprisingly simple way, a good zeroth approximation y0 of the
inverse square root y = 1/

√
x. Of course, this needs a very special form of R. In particular, in the

single precision case, we have eR = 63; see [46]. The next equations can be easily recognized as the



Computation 2019, 7, 41 3 of 14

Newton–Raphson corrections. We point out that the code InvSqrt is invariant with respect to the
scaling:

x → x̃ = 2−2nx, yk → ỹk = 2nyk (k = 0, 1, 2), (4)

like the equality y = 1/
√

x itself. Therefore, without loss of the generality, we can confine our analysis
to the interval:

Ã := [1, 4). (5)

The tilde will denote quantities defined on this interval. In [46], we showed that the function ỹ0 defined
by the first equation of (3) can be approximated with a very good accuracy by the piece-wise linear
function ỹ00 given by:

ỹ00(x̃, t) =



−1
4

x̃ +
3
4
+

1
8

t for x̃ ∈ [1, 2)

−1
8

x̃ +
1
2
+

1
8

t for x̃ ∈ [2, t)

− 1
16

x̃ +
1
2
+

1
16

t for x̃ ∈ [t, 4)

(6)

where:
t = 2 + 4mR + 2N−1

m , (7)

and mR := N−1
m R− bN−1

m Rc (mR is the mantissa of the floating-point number corresponding to R).
Note that the parameter t, defined by (7), is uniquely determined by R.

The only difference between y0 produced by the code InvSqrt and y00 given by (6) is the definition
of t, because t related to the code depends (although in a negligible way) on x. Namely,

|ỹ00 − ỹ0| 6
1
4

N−1
m = 2−25 ≈ 2.98× 10−8. (8)

Taking into account the invariance (4), we obtain:∣∣∣∣y00 − y0

y0

∣∣∣∣ 6 2−24 ≈ 5.96× 10−8. (9)

These estimates do not depend on t (in other words, they do not depend on R). The relative error of
the zeroth approximation (6) is given by:

δ̃0(x̃, t) =
√

x̃ ỹ00(x̃, t)− 1 (10)

This is a continuous function with local maxima at:

x̃I
0 = (6 + t)/6, x̃I I

0 = (4 + t)/3, x̃I I I
0 = (8 + t)/3, (11)

given respectively by:

δ̃0(x̃I
0, t) = −1 +

1
2

(
1 +

t
6

)3/2
,

δ̃0(x̃I I
0 , t) = −1 + 2

(
1
3

(
1 +

t
4

))3/2
,

δ̃0(x̃I I I
0 , t) = −1 +

(
2
3

(
1 +

t
8

))3/2
.

(12)
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In order to study the global extrema of δ̃0(x̃, t), we need also boundary values:

δ̃0(1, t) = δ̃0(4, t) =
1
8
(t− 4) , δ̃0(2, t) =

√
2

4

(
1 +

t
2

)
− 1, δ̃0(t, t) =

√
t

2
− 1, (13)

which are, in fact, local minima. Taking into account:

δ̃0(1, t)− δ̃0(t, t) =
1
8

(√
t− 2

)2
> 0 , δ̃0(2, t)− δ̃0(t, t) =

√
2

8

(√
t−
√

2
)2

> 0, (14)

we conclude that:
min
x̃∈Ã

δ̃0(x̃, t) = δ̃0(t, t) < 0. (15)

Because δ̃0(x̃I I I
0 , t) < 0 for t ∈ (2, 4), the global maximum is one of the remaining local maxima:

max
x̃∈Ã

δ̃0(x̃, t) = max{δ̃0(x̃I
0, t), δ̃0(x̃I I

0 , t)}. (16)

Therefore,
max
x∈Ã
|δ̃0(x̃, t)| = max{|δ̃0(t, t)|, δ̃0(x̃I

0, t), δ̃0(x̃I I
0 , t)}. (17)

In order to minimize this value with respect to t, i.e., to find tr
0 such that:

max
x∈Ã
|δ̃0(x̃, tr

0)| < max
x∈Ã
|δ̃0(x̃, t)| for t 6= tr

0, (18)

we observe that |δ̃0(t, t)| is a decreasing function of t, while both maxima (δ̃0(x̃I
0, t) and δ̃0(x̃I I

0 , t)) are
increasing functions. Therefore, it is sufficient to find t = tI

0 and t = tI I
0 such that:

|δ̃0(tI
0, tI

0)| = δ̃0(x̃I
0, tI

0) , |δ̃0(tI I
0 , tI I

0 )| = δ̃0(x̃I I
0 , tI I

0 ), (19)

and to choose the greater of these two values. In [46], we showed that:

|δ̃0(tI
0, tI

0)| < |δ̃0(tI I
0 , tI I

0 )|. (20)

Therefore, tr
0 = tI I

0 , and:

δ̃0 max := min
t∈(2,4)

(
max
x∈Ã
|δ̃0(x̃, t)|

)
= |δ̃0(tr

0, tr
0)|. (21)

The following numerical values result from these calculations [46]:

tr
0 ≈ 3.7309796, R0 = 0x5F37642F, δ̃0 max ≈ 0.03421281. (22)

Newton–Raphson corrections for the zeroth approximation (ỹ00) will be denoted by ỹ0k (k = 1, 2, . . .).
In particular, we have:

ỹ01(x̃, t) = 1
2 ỹ00(x̃, t)(3− ỹ2

00(x̃, t) x̃),

ỹ02(x̃, t) = 1
2 ỹ01(x̃, t)(3− ỹ2

01(x̃, t) x̃).
(23)

and the corresponding relative error functions will be denoted by δ̃k(x̃, t):

δ̃k(x̃, t) :=
ỹ0k(x̃, t)− ỹ

ỹ
=
√

x̃ỹ0k(x̃, t)− 1, (k = 0, 1, 2, . . .), (24)

where we included also the case k = 0; see (10). The obtained approximations of the inverse square root
depend on the parameter t directly related to the magic constant R. The value of this parameter can be
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estimated by analyzing the relative error of ỹ0k(x̃, t) with respect to 1/
√

x̃. As the best estimation, we
consider t = t(r)k minimizing the relative error δ̃k(x̃, t):

∀
t 6=t(r)k

(
δ̃k max ≡ max

x̃∈Ã
|δ̃k(x̃, t(r)k )| < max

x̃∈Ã
|δ̃k(x̃, t)|

)
. (25)

We point out that in general, the optimum value of the magic constant can depend on the number of
Newton–Raphson corrections. Calculations carried out in [46] gave the following results:

tr
1 = tr

2 = 3.7298003, Rr
1 = Rr

2 = 0x5F375A86,

δ̃1 max ≈ 1.75118× 10−3, δ̃2 max ≈ 4.60× 10−6.
(26)

We omit the details of the computations except one important point. Using (24) to express ỹ0k by δ̃k
and
√

x̃, we can rewrite (23) as:

δ̃k(x̃, t) = −1
2

δ̃2
k−1(x̃, t)(3 + δ̃k−1(x̃, t)), (k = 1, 2, . . .). (27)

The quadratic dependence on δ̃k−1 means that every Newton–Raphson correction improves the
accuracy by several orders of magnitude (until the machine precision is reached); compare (26).

The Formula (27) suggests another way of improving the accuracy because the functions δ̃k are
always non-positive for any k > 1. Roughly speaking, we are going to shift the graph of δ̃k upwards
by an appropriate modification of the Newton–Raphson formula. In the next section, we describe the
general idea of this modification.

3. Modified Newton–Raphson Formulas

The Formula (27) shows that errors introduced by Newton–Raphson corrections are nonpositive,
i.e., they take values in intervals [−δ̃k max, 0], where k = 1, 2, . . .. Therefore, it is natural to introduce a
correction term into the Newton–Raphson formulas (23). We expect that the corrections will be roughly
half of the maximal relative error. Instead of the maximal error, we introduce two parameters, d1 and
d2. Thus, we get modified Newton–Raphson formulas:

ỹ11(x̃, t, d1) = 2−1ỹ00(x̃, t)(3− ỹ2
00(x̃, t) x̃) +

d1

2
√

x̃
,

ỹ12(x̃, t, d1, d2) = 2−1ỹ11(x̃, t, d1)(3− ỹ2
11(x̃, t, d1) x̃) +

d2

2
√

x̃
,

(28)

where zeroth approximation is assumed in the form (6). In the following section, the term 1/
√

x̃ will be
replaced by some approximations of ỹ, transforming (28) into a computer code. In order to estimate a
possible gain in accuracy, in this section, we temporarily assume that ỹ is the exact value of the inverse
square root. The corresponding error functions,

δ̃
′′
k (x̃, t, d1, . . . , dk) =

√
x̃ ỹ1k(x̃, t, d1, . . . , dk)− 1, k ∈ {0, 1, 2, . . .}, (29)

(where ỹ10(x̃, t) := ỹ00(x̃, t)), satisfy:

δ̃
′′
k = −1

2
δ̃
′′2
k−1(3 + δ̃

′′
k−1) +

dk
2

, (30)

where: δ̃
′′
0 (x̃, t) = δ̃0(x̃, t). Note that:

δ̃
′′
1 (x̃, t, d1) = δ̃1(x̃, t) +

1
2

d1. (31)
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In order to simplify notation, we usually will suppress the explicit dependence on dj. We will write,
for instance, δ̃

′′
2 (x̃, t) instead of δ̃

′′
2 (x̃, t, d1, d2).

The corrections of the form (28) will decrease relative errors in comparison with the results of
earlier papers [38,46]. We have three free parameters (d1, d2, and t) to be determined by minimizing
the maximal error (in principle, the new parameterization can give a new estimation of the parameter
t). By analogy to (25), we are going to find t = t(0) minimizing the error of the first correction (25):

∀t 6=t(0) max
x̃∈Ã
|δ̃′′1 (x̃, t(0))| < max

x̃∈Ã
|δ̃′′1 (x̃, t)|, (32)

where, as usual, Ã = [1, 4].
The first of Equation (30) implies that for any t, the maximal value of δ̃

′′
1 (x̃, t) equals 1

2 d1 and
is attained at zeros of δ̃

′′
0 (x̃, t). Using the results of Section 2, including (15), (16), (20), and (21), we

conclude that the minimum value of δ̃
′′
1 (x̃, t) is attained either for x̃ = t or for x̃ = xI I

0 (where there is
the second maximum of δ̃

′′
0 (x̃, t)), i.e.,

min
x̃∈Ã

δ̃
′′
1 (x̃, t) = min

{
δ̃
′′
1 (t, t), δ̃

′′
1 (xI I

0 , t)
}

(33)

Minimization of |δ̃′′1 (x̃, t)| can be done with respect to t and with respect to d1 (these operations
obviously commute), which corresponds to:

max
x̃∈Ã

δ̃
′′
1 (x̃, t(0))︸ ︷︷ ︸

δ̃
′′
1 max

= −min
x̃∈Ã

δ̃
′′
1 (x̃, t(0)). (34)

Taking into account:

max
x̃∈Ã

δ̃
′′
1 (x̃, t(0)) =

d1

2
, min

x̃∈Ã
δ̃
′′
1 (x̃, t(0)) = δ̃

′′
1 (t

(0), t(0)) = −δ̃1 max +
d1

2
, (35)

we get from (34):

δ̃
′′
1 max =

1
2

d1 =
1
2

δ̃1 max ' 8.7559× 10−4, (36)

where:

δ̃1 max := min
t∈(2,4)

(
max
x∈Ã
|δ̃1(x̃, t)|

)
. (37)

and the numerical value of δ̃1 max is given by (26). These conditions are satisfied for:

t(0) = t(r)1 ' 3.7298003. (38)

In order to minimize the relative error of the second correction, we use equation analogous to (34):

max
x̃∈Ã

δ̃
′′
2 (x̃, t(0))︸ ︷︷ ︸

δ̃
′′
2 max

= −min
x̃∈Ã

δ̃
′′
2 (x̃, t(0)), (39)

where from (30), we have:

max
x̃∈Ã

δ̃
′′
2 (x̃, t(0)) =

d2

2
, min

x̃∈Ã
δ̃
′′
2 (x̃, t(0)) = −1

2
δ̃
′′2
1 max

(
3 + δ̃

′′
1 max

)
+

d2

2
. (40)

Hence:
δ̃
′′
2 max =

1
4

δ̃
′′2
1 max

(
3 + δ̃

′′
1 max

)
. (41)
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Expressing this result in terms of formerly computed δ̃1 max and δ̃2 max, we obtain:

δ̃
′′
2 max =

1
8

δ̃2 max +
3

32
δ̃3

1 max ' 5.75164× 10−7 ' δ̃2 max

7.99
, (42)

where:
δ̃2 max =

1
2

δ̃2
1 max(3− δ̃1 max).

Therefore, the above modification of Newton–Raphson formulas decreases the relative error two
times after one iteration and almost eight times after two iterations as compared to the standard
InvSqrt algorithm.

In order to implement this idea in the form of a computer code, we have to replace the unknown
1/
√

x̃ (i.e., ỹ) on the right-hand sides of (28) by some numerical approximations.

4. New Algorithm with Higher Accuracy

Approximating 1/
√

x̃ in Formulas (28) by values on the left-hand sides, we transform (28) into:

ỹ21 =
1
2

ỹ20(3− ỹ2
20 x̃) +

1
2

d1ỹ21,

ỹ22 =
1
2

ỹ21(3− ỹ2
21 x̃) +

1
2

d2ỹ22,
(43)

where ỹ2k (k = 1, 2, . . .) depend on x̃, t and dj (for 1 6 j 6 k). We assume ỹ20 ≡ ỹ00, i.e., the zeroth
approximation is still given by (6). We can see that ỹ21 and ỹ22 can be explicitly expressed by ỹ20 and
ỹ21, respectively.

Parameters d1 and d2 have to be determined by minimization of the maximum error. We define
error functions in the usual way:

∆(1)
k =

ỹ2k − ỹ
ỹ

=
√

x̃ ỹ2k − 1 . (44)

Substituting (44) into (43), we get:

∆(1)
1 (x̃, t, d1) =

d1

2− d1
− 1

2− d1
δ̃2

0(x̃, t)(3 + δ̃0(x̃, t)) =
d1 + 2δ̃1(x̃, t)

2− d1
, (45)

∆(1)
2 (x̃, t, d,d2) =

d2

2− d2
− 1

2− d2

(
∆(1)

1 (x̃, t, d1)
)2 (

3 + ∆(1)
1 (x̃, t, d1)

)
. (46)

The equation (45) expresses ∆(1)
1 (x̃, t, d1) as a linear function of the nonpositive function δ̃1(x̃, t) with

coefficients depending on the parameter d1. The optimum parameters t and d1 will be estimated by
the procedure described in Section 3. First, we minimize the amplitude of the relative error function,
i.e., we find t(1) such that:

max
x̃∈Ã

∆(1)
1 (x̃, t(1))−min

x̃∈Ã
∆(1)

1 (x̃, t(1)) 6 max
x̃∈Ã

∆(1)
1 (x̃, t)−min

x̃∈Ã
∆(1)

1 (x̃, t) (47)

for all t 6= t(1). Second, we determine d(1)1 such that:

max
x̃∈Ã

∆(1)
1 (x̃, t(1), d(1)1 ) = −min

x̃∈Ã
∆(1)

1 (x̃, t(1), d(1)1 ) . (48)

Thus, we have:

max
x̃∈Ã
|∆(1)

1 (x̃, t(1), d(1)1 )| 6 max
x̃∈Ã
|∆(1)

1 (x̃, t, d1)| (49)



Computation 2019, 7, 41 8 of 14

for all real d1 and t ∈ (2, 4). ∆(1)
1 (x̃, t) is an increasing function of δ̃1(x̃, t); hence:

−
d(1)1 − 2 maxx̃∈Ã |δ̃1(x̃, t(1)1 )|

2− d(1)1

=
d(1)1

2− d(1)1

, (50)

which is satisfied for:

d(1)1 = max
x̃∈Ã
|δ̃1(x̃, t(1)1 )| = δ̃1 max. (51)

Thus, we can find the maximum error of the first correction ∆(1)
1 (x̃, t(1)1 ) (presented in Figure 1):

max
x̃∈Ã
|∆(1)

1 (x̃, t(1))| =
maxx̃∈Ã |δ̃1(x̃, t(1))|

2−maxx̃∈Ã |δ̃1(x̃, t(1))|
, (52)

which assumes the minimum value for t(1) = t(r)1 :

∆(1)
1 max =

maxx̃∈Ã |δ̃1(x̃, t(r)1 )|
2−maxx̃∈Ã |δ̃1(x̃, t(r)1 )|

=
δ̃1 max

2− δ̃1 max
' 8.7636× 10−4 ' δ̃1 max

2.00
. (53)

This result practically coincides with δ̃
′′
1 max given by (36).

Analogously, we can determine the value of d(1)2 (assuming that t = t(1) is fixed):

−
d(1)2 −maxx̃∈Ã |∆

(1)2
1 (x̃, t(1))(3 + ∆(1)

1 (x̃, t(1)))|
2− d(1)2

=
d(1)2

2− d(1)2

. (54)

Now, the deepest minimum comes from the global maximum:

max
x̃∈Ã
|∆(1)2

1 (x̃, t(1))(3 + ∆(1)
1 (x̃, t(1)))| =

2δ̃2
1 max(3− δ̃1 max)

(2− δ̃1 max)3
. (55)

Therefore, we get:

d(1)2 =
δ̃2

1 max(3− δ̃1 max)

(2− δ̃1 max)3
' 1.15234× 10−6, (56)

and the maximum error of the second correction is given by:

∆(1)
2 max =

d(1)2

2− d(1)2

' 5.76173× 10−7 ' δ̃2 max

7.98
, (57)

which is very close to the value of δ̃
′′
2 max given by (42).
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Figure 1. Graph of the function ∆(1)
1 (x̃, t(1)).

Thus, we have obtained the algorithm InvSqrt1, see Algorithm 2, which looks like InvSqrt with
modified values of the numerical coefficients.

Algorithm 2: InvSqrt1.

1. float InvSqrt1(float x){
2. float simhalfnumber = 0.500438180f*x;
3. int i = *(int*) &x;
4. i = 0x5F375A86 - (i>>1);
5. y = *(float*) &i;
6. y = y*(1.50131454f - simhalfnumber*y*y);
7. y = y*(1.50000086f - 0.999124984f*simhalfnumber*y*y);
8. return y ;
9. }

Comparing InvSqrt1 with InvSqrt, we easily see that the number of algebraic operations in
InvSqrt1 is greater by one (an additional multiplication in Line 7, corresponding to the second iteration
of the modified Newton–Raphson procedure). We point out that the magic constants for InvSqrt and
InvSqrt1 are the same.

5. Numerical Experiments

The new algorithm InvSqrt1 was tested on the processor Intel Core i5-3470 using the compiler
TDM-GCC 4.9.2 32-bit. Using the same hardware for testing the code InvSqrt, we obtained practically
the same values of errors as those obtained by Lomont [38]. The same results were obtained also on
Intel i7-5700. In this section, we analyze the rounding errors for the code InvSqrt1.

Applying algorithm InvSqrt1, we obtain relative errors InvSqrt1(x̃) characterized by “oscillations”
with a center slightly shifted with respect to the analytical approximate solution ỹ22(x̃, t(1)); see
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Figure 2. The observed blur can be expressed by a relative deviation of the numerical result from
ỹ22(x̃):

ε(1)(x̃) =
InvSqrt1(x̃)− ỹ22(x̃, t(1))

ỹ22(x̃, t(1))
. (58)

The values of this error are distributed symmetrically around the mean value 〈ε(1)〉:

〈ε(1)〉 = 2−1N−1
m ∑

x∈[1,4)
ε(1)(x̃) = −1.398× 10−8 (59)

enclosing the range:
ε(1)(x̃) ∈ [−9.676× 10−8, 6.805× 10−8], (60)

see Figure 3. The blur parameters of the function ε(1)(x̃, t) show that the main source of the difference
between analytical and numerical results is the use of precision float and, in particular, rounding of
constant parameters of the function InvSqrt1. We point out that in this case, the amplitude of the error
oscillations is about 40% greater than the amplitude of oscillations of (ỹ00 − ỹ0)/ỹ0 (i.e., in the case of
InvSqrt); see the right part of Figure 2 in [46]. It is worth noting that for the first Newton–Raphson
correction, the blur is of the same order, but due to a much higher error value in this case, its effect
is negligible (i.e., Figure 1 would be practically the same with or without the blur). The maximum
numerical errors practically coincide with the analytical result (53), i.e.,

∆(1)
1,N min ≈ −8.76× 10−4 , ∆(1)

1,N max ≈ 8.76× 10−4 . (61)

In the case of the second Newton–Raphson correction, we compared results produced by InvSqrt1
with exact values of the inverse square root for all numbers x of the type float such that ex ∈ [−126, 128).
The range of errors was the same for all these intervals (except ex = −126):

∆(1)
2;N(x) = sqrt(x) ∗ InvSqrt1(x)− 1. ∈ (−6.62× 10−7, 6.35× 10−7) . (62)

For ex = −126, the interval of errors was slightly wider: (−6.72× 10−7, 6.49× 10−7), which can be
explained by the fact that the analysis presented in this paper is not applicable to subnormal numbers;
see (1). Therefore, our tests showed that relative errors for all numbers of the type float belong to the
interval (∆(1)

2,N min, ∆(1)
2,N max), where:

∆(1)
2,N min ≈ −6.72× 10−7, ∆(1)

2,N max ≈ 6.49× 10−7 . (63)

These values are significantly higher than the analytical result (5.76× 10−7) (see (57)), but are still
much lower than the analogous error for the algorithm InvSqrt (4.60× 10−6; see [46]).
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Figure 2. Solid lines represent function ∆(1)
2 (x̃, t(1)). Its vertical shifts by ±6× 10−8 are denoted by

dashed lines. Finally, dots represent relative errors for 4000 random values x ∈ (2−126, 2128) produced
by algorithm InvSqrt1.

Figure 3. Relative error ε(1) arising during the float approximation of corrections ỹ22(x̃, t). Dots
represent errors determined for 2000 random values x̃ ∈ [1, 4). Solid lines represent maximum (maxi)
and minimum (mini) values of relative errors (intervals [1, 2) and [2, 4) were divided into 64 equal
intervals, and then, extremum values were determined in all these intervals).

6. Conclusions

In this paper, we presented a modification of the famous code InvSqrt for fast computation of the
inverse square root of single-precision floating-point numbers. The new code had the same magic
constant, but the second part (which consisted of Newton–Raphson iterations) was modified. In the
case of one Newton–Raphson iteration, the new code InvSqrt1 had the same computational cost as
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InvSqrt and was two-times more accurate. In the case of two iterations, the computational cost of the
new code was only slightly higher, but its accuracy was higher by almost seven times.

The main idea of our work consisted of modifying coefficients in the Newton–Raphson method
and demanding that the maximal error be as small as possible. Such modifications can be constructed
if the distribution of errors for Newton–Raphson corrections is not symmetric (like in the case of the
inverse square root, when they are non-positive functions).

Author Contributions: Conceptualization, L.V.M.; formal analysis, C.J.W.; investigation, C.J.W., L.V.M., and
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editing, J.L.C.
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