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Abstract: Due to the complex physics of underwater explosion problems, it is difficult to derive
analytical solutions with accurate results. In this study, a machine-learning method to train a
back-propagation neural network for parameter prediction is presented for the first time in literature.
The specific problem is the response of a structure submerged in water subjected to shock loads
produced by an underwater explosion, with the detonation point being far away from the structure
so that the loading wave can be regarded as a planar shock wave. Two rigid parallel plates connected
by a linear spring and a linear dashpot that simulate structural stiffness and damping respectively,
represent the structure. Taking the Laplace transform of the governing equations, solving the
resulting equations, and then taking the inverse Laplace transform, the simplified problem is analyzed
theoretically. The coupled ordinary differential equations governing the motion of the system are also
solved numerically by the fourth order Runge–Kutta method and then verified by a finite element
method using Ansys/LSDYNA. The parametric training with the back-propagation neural network
algorithm was conducted to delineate the effects of structural stiffness and damping on the attenuation
of shock waves, the cavitation time, and the time of maximum momentum transfer. The prediction
results agree well with the validation and test sample results.
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1. Introduction

Taylor [1] presented a closed form solution for the response of an infinite rigid flat plate, with the
back face connected to a linear spring, the front face immersed in water, and exposed to an exponentially
decaying plane shock wave. It was shown that the peak momentum transmitted to a free-standing
plate decreases significantly with increasing fluid–structure interaction (FSI) effects.

Taylor’s analysis of the plane shock wave impinging upon an air-backed plate (ABP) was recently
extended to a submerged water-backed plate (WBP) by Liu and Young [2]. It is shown that the WBP
experiences lower pressure load, and thus has a lower peak momentum than an equivalent ABP. The
extension of Taylor’s work for air blast loading was accomplished in [3–5] where the importance
of nonlinear compressibility effects has been delineated [6]. Hutchinson and Xue [7,8] numerically
solved the FSI problem using the commercial software Ansys/LSDYNA [9] and accounted for the yield
strength of the core to improve the estimate of the momentum transmitted to a sandwich structure.

The time for the linear momentum of the plate to reach its peak value is shorter for the WBP than
that for the ABP, and cavitation is found to be almost inevitable for the ABP, but occurs for the WBP
only for a small range of values of the FSI parameter.
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In addition to Taylor-type models, other analytical works have investigated the dynamic response
of elastic shells subjected to underwater shock loading [10–16]. Here, the analysis of Taylor’s ABP
and Liu and Young’s WBP are extended to include the effects of structural stiffness and damping by
modelling the FSI problem as a system of two parallel infinite rigid flat plates interconnected by a
spring and a dashpot, with the right plate exposed to an exponentially decaying planar wave. The
whole system may be immersed in water, or only the left plate is immersed in water and the right plate
is exposed to air. The goal is to quantify the effects of structural strength on its deformations due to a
planar shock wave.

2. Formulation of the Problem

The problem, depicted schematically in Figure 1a, is analyzed. It shows a marine vessel partially
immersed in water and an explosive device detonated at a point far away from it. A simple model for
studying deformations of the marine vessel subjected to a shock wave produced by the detonation
of the explosive device is shown in Figure 1b. For estimating the effects of the structural stiffness
and its damping on the transmission and reflection of the incident wave, the problem is simplified
considerably by modelling the structure as two infinite parallel rigid plates interconnected by a linear
spring and a linear dashpot as shown in Figure 1. The incident wave and the wave reflected from the
left plate travel in water, but the wave emanating from the right plate may propagate either into water
or into air.
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2.1. Governing Equations

The mass per unit area of each plate is denoted by m= ρshs where ρs and hs are the mass density
(mass/volume) and thickness of the plate, respectively. We also use a rectangular Cartesian coordinate
system with the origin at the left plate to describe deformations of the system. A plane incident wave
traveling along the x-axis with pressure given by

Pi(x, t) = P0e−(t−x/c)/θ (1)

strikes the left flat rigid plate ΩL at time t = 0; c is the speed of sound in water; P0 is the peak pressure
and θ is the pressure decay time. The plate can freely travel along the x-axis (which is from left to
right side). The wave is partly reflected back into water and is partly transmitted to the right plate
through the spring and the dashpot. Thus, the net pressure on ΩL equals the sum of the pressure
Pi

L(t) = P0e−
t
θ from the incident wave and the pressure

Pr
L(t) = P0φ(t) (2)
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from the reflected wave. The function φ(t) is to be determined. Let u(t),
.
u(t), and

..
u(t) be the

displacement, the velocity, and the acceleration, respectively, in the x-direction of ΩL. Assuming
that water particles stay in contact with ΩL, then the water particles touching the plate also have an
x-displacement equal to u(t). The mass and the linear momentum balance near ΩL result in the particle
velocity:

.
u(t) =

P0

ρc

[
e−t/θ

−φ(t)
]

(3)

Combining (2) and (3) yields
PL(t) = 2P0e−t/θ

− ρc
.
u(t) (4)

for the net pressure acting on the left plate. If the left rigid plate was fixed, then the incident wave
would be fully reflected, and the resultant pressure on it would be twice the pressure of the incident
wave. However, the axial translation of the plate due to its connection to the right plate via a damper
and a spring leads to a partial reflection of the incident wave, and the pressure reduction as compared
to that on a fixed surface is ρc

.
u(t). Similarly, the mass and the moment balance near the right rigid

plate ΩR gives
.
u(t) =

PR(t)
ρc

(5)

where PR(t) is the pressure on the surface of ΩR not connected to the spring and the dashpot. Equations
of motion of the left and the right plates are

m1
..
u1(t) = 2P0e−t/θ

−
ϕ1m1

2θ
.
u1(t) − Fck, m2

..
u2(t) =

ϕ2m2

2θ
.
u2(t) + Fck (6)

where

Fck = Cdamp
( .
u1(t) −

.
u2(t)

)
+ k(u1(t) − u2(t))and φ1 = 2ρcθ/m1, φ2 = 2ρcθ/m2 (7)

subscripts 1 and 2 denote quantities for the left and the right rigid plates, respectively. Cdamp and k are
the damping coefficient and the spring stiffness, respectively. Matrix forms (6) and (7) can be written
as the following system of coupled ordinary linear differential equations.

[
m1

0
0

m2

]{ ..
u1(t)
..
u2(t)

}
+

[
Cdamp
−Cdamp

−Cdamp
Cdamp

]{ .
u1(t)
.
u2(t)

}
+

[
k
−k

−k
k

]{
u1(t)
u2(t)

}
=

{
2P0e−t/θ

−
ϕ1m1

2θ
.
u1(t)

−
ϕ2m2

2θ
.
u2(t)

}
(8)

2.2. Analytical Solution

The Laplace transform of function u(t) by U(s) is defined by

L û(s) = U(s) =
∫
∞

0 e−stu(t)dtL û(s) = U(s) =
∫
∞

0 e−stu(t)dtL û(s) = U(s)
=

∫
∞

0 e−stu(t)dt
(9)

Taking the Laplace transform of (8), the resulting equations for U1(s) and U2(s) are solved as:

U1(s) =
2P0

[
m2s2 +

(
Cdamp +

ϕ2m2
2θ

)
s + k

]{[
m1s2 +

(
Cdamp +

ϕ1m1
2θ

)
s + k

]
·

(
m2s2 +

ϕ2m2
2θ s

)
+

(
Cdamps + k

)(
m1s2 +

ϕ1m1
2θ s

)}(
s + 1

θ

) (10a)

U2(s) =
2P0

(
Cdamps + k

){[
m1s2 +

(
Cdamp +

ϕ1m1
2θ

)
s + k

]
·

(
m2s2 +

ϕ2m2
2θ s

)
+

(
Cdamps + k

)(
m1s2 +

ϕ1m1
2θ s

)}(
s + 1

θ

) (10b)
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By taking the Laplace transform with the formula

û(t) = L−1[U(s)] =
1

2πi

∫ γ+i∞

γ−i∞
estU(s)ds (11)

the expressions for the displacement, the velocity, and the acceleration are obtained.

2.3. Numerical Solution

Equation (8) is also solved numerically using the fourth order Runge–Kutta method. Setting
.
q =

[ .
u1

.
u2

..
u1

..
u2

]T
; then a first order ordinary differential equation (ODE), for q =

[
u1 u2

.
u1

.
u2

]T
is

written as follows:
.
u1(t)
.
u2(t)
..
u1(t)
..
u2(t)

 =


0 0 1 0
0 0 0 1

−

(
Cdamp +

φ1m1
2θ

)
/m1 Cdamp/m1 −k/m1 k/m1

Cdamp/m2 −

(
Cdamp +

φ2m2
2θ

)
/m2 k/m2 −k/m2




u1(t)
u2(t)
.
u1(t)
.
u2(t)

+


0
0

2P0e−t/θ

0

 (12)

3. Results of Structural Response

In order to investigate the influence of different parameters on the fluid–structure interaction (FSI)
problem, the following are set: ρ = 1000 kg/m3, c = 1400 m/s, m1 = m2 = 80 kg/m2, P0 = 10 MPa, and
decay time θ = 0.1 ms. Thus, φ1 = 2ρcθ/m1 = 3.5, φ2 = 2ρcθ/m2 = 3.5. Values of variables indicated in
the Figures are in MKS (Meter-Kg-Seconds) units.

Figure 2a shows the effect of varying the structural stiffness k and the damping Cdamp on the time
histories of the displacement of the left plate. As expected, increasing the values of k and Cdamp led to
the peak plate deflection and the speed of the left plate decreasing. For values of k and Cdamp greater
than 109, the structural response was equivalent to that of a rigid body of mass equal to m1 + m2,
whereas values of k used herein were representative of those for a structure.
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Figure 2. Time histories of (a) the displacement of the left plate for different values of Cdamp and k, and
(b) the pressure PL

w on the left plate, PR
w on the right plate, and the internal force/area, FCK.

Time histories of the resultant pressure on the left and the right plates, and the interaction pressure
between them, are exhibited in Figure 2b. At t = 0.13 ms, the resultant pressure on the left plate equals
zero, implying that the fluid will separate from the plate, or equivalent cavitation will set in unless the
fluid can support the tensile pressure. In the results shown in Figure 2b, the fluid is assumed not to
separate from the plate.

Time histories of the x-velocity and the x-acceleration of the left plate depicted in Figure 3 reveal
that upon impact, the speed increased rapidly to its peak value in about 0.06 ms, and then gradually
decreased. The time at which the speed took its maximum value was not influenced by the values of k
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and Cdamp. However, these parameters strongly affected the magnitude of the maximum speed of the
left plate. Different values of k and Cdamp had relatively little effect on the acceleration of the left plate.
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Figure 3. For different values of Cdamp and k, time histories of (a) the speed, and (b) the acceleration of
the left plate.

To ensure the accuracy of the inverse Laplace transform technique, we compared (Figure 4) the
time histories of the x-displacement and the x-velocity of the left and the right plates, computed by the
Laplace transform method with those values obtained from the Runge–Kutta method. It is evident
that the two sets of results coincide with each other.
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Figure 4. Comparison of analytical and numerical solutions for time histories of (a) the displacement
and (b) the velocity of the two plates.

The water was assumed to separate from the plate when the pressure (or the normal traction)
between the two decreases to zero, and the time of separation was defined as the cavitation time τc.
The dependence of τc on the values of k and Cdamp is evidenced in Figure 5. For k and Cdamp equal to
105, τc decreased rather rapidly with an increase in the value of φ1, but for k and Cdamp equal to 107 or
higher, τc seemed to approach a constant value of 0.21 ms for φ1 greater than 1.5.



Computation 2019, 7, 58 6 of 11Computation 2019, 7, x FOR PEER REVIEW 6 of 12 

 

 
Figure 5. For different values of Cdamp and k, the dependence of the cavitation time on the non-
dimensional parameter φ1. 

The maximum impulse is given by 𝐼 = 2𝑃 𝑒𝑥𝑝( − 𝑡/𝜃)𝑑𝑡∞ , assuming that the system behaves 
as a rigid body. Equating impulse to the change in the linear momentum, we can find the ideal 
maximum velocity of the system if it were moving as a rigid body. For the present system, the 
maximum linear momentum can be found by computing the time history of (m1𝑢 (𝑡) + m2𝑢 (𝑡)). The 
ratio of the maximum momentum achieved to the maximum impulse equals the momentum 
transmission coefficient ζ, which is a quantitative measure of the interaction between the fluid and 
the structure, and takes values between 0 and 1. When the net pressure PT(t) decreases to zero at time 
τP, the plate will reach its peak response with momentum IP, where the net pressure acting on the 
system is the difference between PL(t) and PR(t), and can be estimated by: 𝑃 (𝑡) = 2𝑃 𝑒 − 𝜌𝑐𝑢(𝑡) = 0 (13) 

 (14) 

The dependence of the time for the peak pressure and the momentum transfer coefficient on the 
FSI parameter φ1 is shown in Figure 6a and 6b. The results reveal that the time of the peak pressure 
and values of the momentum transfer coefficient did not depend on the damping coefficient and the 
spring constant, since the peak pressure was from fluids from the wet surface of the vessel, and 
theoretically, in one dimension, dissipation was not a concern, so the energy was completely 
absorbed by the vessel no matter the stiffness value and viscosity value of the vessel. For all values 
of k and Cdamp considered here, the momentum transfer coefficient and time of the peak pressure 
decreased rather rapidly with an increase in the value of φ1. 

  
(a) (b) 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.10

0.15

0.20

0.25

0.30

0.35
 Cdamper=Kspring=103

 Cdamper=Kspring=105

 Cdamper=Kspring=106

 Cdamper=Kspring=107

 Cdamper=Kspring=109

 Cavitation Inception Time WBMSD

T 
(m

s)

φ1 =2ρcθ/m1

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

Fig.a

 τ
P (

m
s 

)

φ = 2ρθ/ m

 Cdamper=Kspring=103

 Cdamper=Kspring=105

 Cdamper=Kspring=106

 Cdamper=Kspring=107

 Cdamper=Kspring=109

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

 

Fig.b

φ = 2ρθ/ m

ζ

 Cdamper=Kspring=103

 Cdamper=Kspring=105

 Cdamper=Kspring=106

 Cdamper=Kspring=107

 Cdamper=Kspring=109

Figure 5. For different values of Cdamp and k, the dependence of the cavitation time on the
non-dimensional parameter φ1.

The maximum impulse is given by I =
∫
∞

0 2P0 exp(−t/θ)dt, assuming that the system behaves as
a rigid body. Equating impulse to the change in the linear momentum, we can find the ideal maximum
velocity of the system if it were moving as a rigid body. For the present system, the maximum
linear momentum can be found by computing the time history of (m1

.
u1(t) + m2

.
u2(t)). The ratio of

the maximum momentum achieved to the maximum impulse equals the momentum transmission
coefficient ζ, which is a quantitative measure of the interaction between the fluid and the structure,
and takes values between 0 and 1. When the net pressure PT(t) decreases to zero at time τP, the plate
will reach its peak response with momentum IP, where the net pressure acting on the system is the
difference between PL(t) and PR(t), and can be estimated by:

PL(t) = 2P0e−
t
θ − ρc

.
u(t) = 0 (13)

PW
R (t) = 2P0e−

t
θ −

[
ρc

.
u1(t) + ρc

.
u2(t)

]
= 0 (14)

The dependence of the time for the peak pressure and the momentum transfer coefficient on the
FSI parameter φ1 is shown in Figure 6a,b. The results reveal that the time of the peak pressure and
values of the momentum transfer coefficient did not depend on the damping coefficient and the spring
constant, since the peak pressure was from fluids from the wet surface of the vessel, and theoretically,
in one dimension, dissipation was not a concern, so the energy was completely absorbed by the vessel
no matter the stiffness value and viscosity value of the vessel. For all values of k and Cdamp considered
here, the momentum transfer coefficient and time of the peak pressure decreased rather rapidly with
an increase in the value of φ1.
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4. Parameter Prediction by BPNN

The back-propagation neural network (BPNN) was first introduced by Rumelhart and Hintonis [17],
and then used for image recognition [18–20], parameter prediction [21] and optimising data
fusion, [22,23]. The feed-forward back-propagation neural network was designed to train the matrix
of input data of this problem, such as the stiffness, fluid–structure factor, and damping coefficients.
To improve networks’ adaptation and generalisation ability, the architecture of the network model is
constructed in the Matlab neural network training tool (nntraintool), as shown in Figure 7.
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A three-layer feed-forward network with scaled conjugate gradient back propagation can classify
vectors arbitrarily well, given enough neurons in its two hidden layers with a maximum epoch of 1000.
The result was that the subjective choice of structural parameters was significantly reduced. Table 1
shows the parameters of BPNN predictions.

Table 1. BPNN and structure parameters for calculation.

Algorithm Layers Epoch Stiffness k Damping C FSI Parameter φ

Gradient Descent
with Momentum

Input

500

103 103

0.2 to 20
Hidden layer 1 105 105

Hidden layer 1 106 106

Output layer 107 107

For the cavitation inception time τc, the matrix of the viscous coefficient of the dashpot, stiffness,
and the FSI parameter φ1= 2ρcθ/m1 were counted as input layer parameters. It took 500 iterations
for the results, achieving training loss no more than 0.0104%, which is acceptable accuracy. Figure 8a
shows that the training results coincided with the validation results. Furthermore, Figure 8b shows
that the BPNN prediction results agreed with the analytical solution.Computation 2019, 7, x FOR PEER REVIEW 8 of 12 
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The training results of peak momentum time τP are shown in Figure 9. The deviation happens on
the initial value of the FSI parameter φ, which shows that a small mass has more training loss.

Computation 2019, 7, x FOR PEER REVIEW 8 of 12 

 

  
(a) (b) 

Figure 8. Training process performance curve (a) and comparison of the BP neural network prediction 
with the analytical results (b). 

The training results of peak momentum time τP are shown in Figure 9. The deviation happens 
on the initial value of the FSI parameter φ, which shows that a small mass has more training loss. 

  
(a) (b) 

Figure 9. Training process performance curve (a) and comparison of the peak momentum time τP 
with the prediction results (b). 

The training results of the momentum transfer coefficient vs. the FSI parameter φ1=2ρcθ/m1 are 
shown in Figure 10. The training curve shows excellent agreement with the validation and test sample 
results. The momentum transfer coefficient exhibits more deviation when training with small mass 
parameters. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.10

0.15

0.20

0.25

0.30

0.35
 Cdamper=Kspring=103

 Cdamper=Kspring=105

 Cdamper=Kspring=106

 Cdamper=Kspring=107

 BP Neural Network prediction

 Cavitation Inception Time WBMSD

T 
(m

s)

φ1 =2ρcθ/m1

Figure 9. Training process performance curve (a) and comparison of the peak momentum time τP with
the prediction results (b).

The training results of the momentum transfer coefficient vs. the FSI parameter φ1 = 2ρcθ/m1

are shown in Figure 10. The training curve shows excellent agreement with the validation and test
sample results. The momentum transfer coefficient exhibits more deviation when training with small
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5. Finite Element Analysis

The commercial code LSDYNA was used to calculate the problems of Taylor’s model, as well as
the generalized model. In LSDYNA, solid elements were used to model the bar in the configuration
shown in Figure 11. On the cross section of the fluid bar, the solid elements were 0.2 m × 0.2 m squares,
and the x-direction length of the elements was within 1 m of each side of the rigid plate. To model the
problem as one dimensional, the nodes on the fluid bar were constrained so that only the motion in the
x-direction was allowed. The calculation of the one-dimensional shock-wave is shown in Figure 12 and
the wet surface pressure of different plate masses subjected to the underwater shockwave is shown in
Figure 13.
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Figure 12. The one-dimensional shock wave calculation (pressure contours) of Taylor’s Problem
using LSDYNA.
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Figure 13. The wet surface pressure of different plate masses subjected to the underwater shockwave
(Taylor’s model).

The analytical solution (Taylor, 1949) to a rigid plate floating at water level subjected to the
underwater shock waves was compared with a numerical solution by the LSDYNA code. The problem
was modelled as two columns of fluid connected to the two faces of one rigid plate. Each column had
a length of one meter, and the materials in the model were water on the left and air on the right. Planar
shock wave loads were assigned to the left end of the column, with all nodes moving in one direction
along the x-axis. The results of the rigid plate’s motion are shown in Figure 14.
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6. Conclusions

The architecture of the BPNN for parametric predictions of underwater explosion problems
based on analytical and numerical results was proposed and validated in this study. Taylor’s analysis
of the motion of a rigid plate has been extended, with one side exposed to water and the other to
air, to the case of two rigid parallel plates interconnected by a spring and a dashpot. The system
was immersed in water with an exponentially decaying plane wave striking the left plate at normal
incidence. The motions of the two plates as a function of their masses, spring stiffnesses, and their
damping coefficients, were computed. Assuming that the fluid cannot support any tensile pressure, the
cavitation time, the dependence of the momentum transfer coefficient, and the cavitation time upon the
fluid–structure parameter were quantified. For more complicated problems, we can further advance
the machine-learning model using finite element method for training purposes. The machine-learning
model can significantly reduce the computational resources required for three dimensional simulations
of underwater explosions.

Author Contributions: Conceptualization, D.D.; Data curation, M.Z.; Formal analysis, L.L.; Methodology, D.D.
and X.Y.; Supervision, D.D. and X.Y.; Writing—original draft, M.Z.; Writing—review & editing, D.D. and X.Y.

Conflicts of Interest: There is no conflict of interest.

References

1. Taylor, G.I. The Pressure and Impulse of Submarine Explosion Waves on Plates; The National Archives: Richmond,
UK, 1941; pp. 287–303.

2. Liu, Z.; Young, Y.L. Transient Response of a Submerged Plate Subject to Underwater Shock Loading: An
Analytical Perspective. J. Appl. Mech. 2008, 75, 1–5. [CrossRef]

3. Kambouchev, N.; Noels, L.; Radovitzky, R. Nonlinear Compressibility Effects in Fluid-Structure Interaction
and Their Implications on the Air-Blast Loading of Structures. J. Appl. Phys. 2006, 100, 063519. [CrossRef]

http://dx.doi.org/10.1115/1.2871129
http://dx.doi.org/10.1063/1.2349483


Computation 2019, 7, 58 11 of 11

4. Kambouchev, N.; Radovitzky, R. Fluid-Structure Interaction Effects in the Dynamic Response of Free-Standing
Plates to Uniform Shock Loading. ASME J. Appl. Mech. 2007, 74, 1042–1046. [CrossRef]

5. Kambouchev, N.; Noels, L.; Radovitzky, R. Numerical Simulation of the Fluid-Structure Interaction Between
Air Blast Waves and Free-Standing Plates. Comput. Struct. 2007, 85, 923–931. [CrossRef]

6. Tan, P.J.; Reid, S.R.; Harrigan, J.J. Discussion: The Resistance of Clamped Sandwich Beams to Shock Loading.
ASME J. Appl. Mech. 2005, 72, 978–979. [CrossRef]

7. Hutchinson, J.W.; Xue, Z. Metal Sandwich Plates Optimized for Pressure Impulses. Int. J. Mech. Sci. 2005, 47,
545–569. [CrossRef]

8. Schechter, R.S.; Bort, R.L. The Response of Two Fluid-Coupled Plates to an Incident Pressure Pulse; Technical
Report No. 4647; Naval Research Laboratory: Washington, DC, USA, 1981.

9. Hallquist, J.O. LS-DYNA THEORETICAL MANUAL; California, Livermore Software Technology Corporation:
Livermore, CA, USA, 1998.

10. Mindlin, R.D.; Bleich, H.H. Response of an Elastic Cylindrical Shell to a Transverse Step Shock Wave. ASME
J. Appl. Mech. 1953, 26, 189–195.

11. Haywood, J.H. Response of an Elastic Cylindrical Shell to a Pressure Pulse. Q. J. Mech. Appl. Math. 1958, 11,
129–141. [CrossRef]

12. Huang, H. Transient Interaction of Plane Acoustic Waves with a Spherical Elastic Shell. J. Acoust. Soc. Am.
1969, 45, 661–670. [CrossRef]

13. Huang, H. An Exact Analysis of the Transient Interaction of Acoustic Plane Waves with a Cylindrical Elastic
Shell. ASME J. Appl. Mech. 1970, 37, 1091–1099. [CrossRef]

14. Huang, H. Transient Response of Two Fluid-Coupled Spherical Elastic Shells to an Incident Pressure Pulse. J.
Acoust. Soc. Am. 1979, 65, 881–887. [CrossRef]

15. Zhang, P.; Geers, T. Excitation of a Fluid-Filled, Submerged Spherical Shell by a Transient Acoustic Wave. J.
Acoust. Soc. Am. 1993, 93, 696–705. [CrossRef]

16. Jones-Oliveira, J. Transient Analytic and Numerical Results for the Fluid-Solid Interaction of Prolate
Spheroidal Shells. J. Acoust. Soc. Am. 1996, 99, 392–407. [CrossRef]

17. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533–536. [CrossRef]

18. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. arXiv 2014, arXiv:1409.4842.

19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In
Proceedings of the International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015.

20. Veit, A.; Wilber, M.J.; Belongie, S. Residual networks behave like ensembles of relatively shallow networks.
In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; pp. 550–558.

21. Dai, Y.C.; Huang, D.K.; Xu, J.W. Optimization of Characteristic Parameters of Pipeline Crack Identification
Based on BP Neural Network. Adv. Mater. Res. 2014, 926–930, 3442–3446. [CrossRef]

22. Mao, Z.; Zhang, Z.R.; Lu, Y.L. The Data Fusion in Multi-Sensors Grain Information Monitoring System Based
on Improved BP Neural Networks. Appl. Mech. Mater. 2013, 263–266, 269–276. [CrossRef]

23. Lu, Y.Y. Performance Study of BP Neural Network Based on PK Algorithm. Comput. Syst. Appl. 2019, 28,
173–177.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1115/1.2712230
http://dx.doi.org/10.1016/j.compstruc.2006.11.005
http://dx.doi.org/10.1115/1.2040452
http://dx.doi.org/10.1016/j.ijmecsci.2004.10.012
http://dx.doi.org/10.1093/qjmam/11.2.129
http://dx.doi.org/10.1121/1.1911437
http://dx.doi.org/10.1115/1.3408664
http://dx.doi.org/10.1121/1.382590
http://dx.doi.org/10.1121/1.405433
http://dx.doi.org/10.1121/1.414551
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.4028/www.scientific.net/AMR.926-930.3442
http://dx.doi.org/10.4028/www.scientific.net/AMM.263-266.269
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Formulation of the Problem 
	Governing Equations 
	Analytical Solution 
	Numerical Solution 

	Results of Structural Response 
	Parameter Prediction by BPNN 
	Finite Element Analysis 
	Conclusions 
	References

