
computation

Article

Coordinate Scaling in Time-Independent
Excited-State Density Functional Theory for
Coulomb Systems

Ágnes Nagy

Department of Theoretical Physics, University of Debrecen, H–4010 Debrecen, Hungary; anagy@phys.unideb.hu

Received: 26 September 2019; Accepted: 11 October 2019; Published: 13 October 2019
����������
�������

Abstract: A time-independent density functional theory for excited states of Coulomb systems has
recently been proposed in a series of papers. It has been revealed that the Coulomb density determines
not only its Hamiltonian, but the degree of excitation as well. A universal functional valid for any
excited state has been constructed. The excited-state Kohn–Sham equations bear resemblance to those
of the ground-state theory. In this paper, it is studied how the excited-state functionals behave under
coordinate scaling. A few relations for the scaled exchange, correlation, exchange-correlation, and
kinetic functionals are presented. These relations are expected to be advantageous for designing
approximate functionals.
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1. Introduction

Density functional theory (DFT) was originally developed for the ground state [1,2]. The first
exact theories were the subspace theory of Theophilou [3] and the ensemble theory of Gross, Oliveira,
and Kohn [4]. Later, it turned out that it is possible to construct a theory for a single excited state,
e.g., utilizing the density of the given state and the external potential [5,6]. It has been shown that
in case of Coulomb systems the density of the given state is enough to characterize the state [7,8].
A time-independent density functional theory for excited states of Coulomb systems has recently been
proposed in a series of papers [9–11]. It has been revealed that the Coulomb density determines not
only its Hamiltonian but the degree of excitation as well. A universal functional valid for any excited
state has been constructed. The excited-state Kohn–Sham equations bear resemblance to those of the
ground-state theory. Even the generalization for degenerate excited states has been done.

The exact form of the exchange-correlation functional is not known even for the ground state.
One needs approximation to perform calculations. It turned out that exact relations are useful in
constructing approximate functionals for the ground state. It is supposed that this statement is true for
excited states as well. Via coordinate scaling, one can derive exact constraints that the excited-state
functionals should satisfy. These relations are expected to be advantageous for designing approximate
forms of excited-state functionals. Coordinate scaling has proved to be very important in DFT. It was
first proposed by Ghosh and Parr [12] and Levy and Perdew [13]. Later, a lot of valuable relations were
derived via coordinate scaling (see, e.g., [14–26]). For example, Liu and Parr [24] proposed a linear
combination of homogeneous functionals of different specific degrees in coordinate scaling for the
correlation energy. In this paper, some exact scaling expressions are derived within the new theory.
These expressions are the same as in the ground-state theory.

The paper is organized as follows: In Section 2 the excited-state DFT for Coulomb systems [9–11]
is summarized. Section 3 presents a few exact relations for the scaled exchange, correlation,
exchange-correlation, and kinetic functionals. Section 4 is dedicated to discussion.
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2. Excited-State DFT for Coulomb Systems

Coulomb systems are very common, as atoms, molecules, and solids are all Coulomb systems.
The Hamiltonian can be written as

Ĥ = T̂ + V̂ee +
N

∑
i=1

vCoul(ri) , (1)

where T̂ and V̂ee are the kinetic energy and the electron-electron energy operators, respectively.

vCoul(r) = −
M

∑
β=1

Zβ

|r− Rβ|
, (2)

where Rβ denotes the position of the nucleus β with charge Zβ and M is the number of nuclei. The
density of the Coulomb system is sufficient in principle to determine all of its properties. The cusps
of the density tell us where the nuclei are and what the atomic numbers are and the integral of the
density yields the number of electrons. It is true for excites states as well and excited-state theory can
be formulated utilizing this statement [7,8]. It has been proved that the electron density of a Coulomb
system cannot be a stationary state density for any other Coulomb external potential and two different
excited states cannot have the same electron density [9].

Construct now the fuctional

FCoul [n] = Ek[n]−
∫

n(r)vCoul [n; r]dr, (3)

where n is the density of a stationary state of any Coulomb system. However, there is no known
way to decide whether a given density is Coulombic or not (without constructing the external
potential and solving the Schrödinger equation). Therefore, it is better to define a functional F
for all electron densities.

Define first a bifunctional

F[n, nCoul ] = min
Ψ→n

{〈Ψ|ΨCoul
l [nCoul ]〉=0}k−1

l=1

〈Ψ|T̂ + V̂ee|Ψ〉 . (4)

The minimization of the kinetic plus electron-electron energies is done with the constraint that
each wave function gives the excited-state density n and is orthogonal to the first k− 1 eigenfunctions
of the Coulomb system fixed by nCoul . Assume that there exists a unique Coulomb density that is
closest to the (non-Coulomb) density n. If there are several Coulomb densities that are the same
distance from n, the one leading to the smallest F in Equation (4), is selected.

FCoul
ε [n] = min

nCoul
F[n, nCoul ]; ||nCoul − n|| ≤ ε. (5)

ε is supposed to be large enough to ensure the existence of at least one stationary state Coulomb
density in the distance smaller than ε. Finally, we take the F with the smallest ε:

FCoul [n] = FCoul
εmin

[n]. (6)

Turn now to the non-interacting kinetic energy

Ts[nCoul ] = min
Φ→nCoul

{〈Φ|Φl [nCoul ]〉=0}k−1
l=1

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉 . (7)
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According to this definition the ground-state density n0
1 of the non-interacting system should be as

close as possible to the ground-state density of the original Coulomb system nCoul
1 . Then a bifunctional

is defined as

TCoul
s [n, nCoul ] = min

Φ→n
{〈Φ|Φl [nCoul ]〉=0}k−1

l=1

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉 . (8)

After similar steps as above we are led to

TCoul
s,ε [n] = min

nCoul
TCoul

s [n, nCoul ]; (9)

where

||nCoul − n|| ≤ ε. (10)

The final expression of the definition of the non-interacting kinetic energy is

TCoul
s [n] = TCoul

s,εmin
[n]. (11)

Kohn–Sham equations can also be derived[
−1

2
∇2 + wCoul([n], r)

]
φi = εiφi, (12)

where the Kohn–Sham potential

wCoul([n], r) = vCoul([n], r) + vCoul
J ([n], r) + vCoul

xc ([n], r) (13)

is the sum of the external, the classical Coulomb and the exchange-correlation potentials. The density
has the form

n =
I

∑
i=1

gi|φi|2, (14)

where the occupation numbers gi are 0, 1 or 2 for a non-degenerate system. I denotes the orbital having
the highest orbital energy with non-zero occupation number.

3. Coordinate Scaling

The (uniform) coordinate scaling means that the coordinates ri are changed into αri, where α is
any real constant. The wave function and the density scale as Φα

n(r1, . . . , rN) = α3N/2Φ(αr1, . . . , αrN)

and nα(r) = α3n(αr), respectively.
One can derive a lot of scaling relations. Here, only a few are considered. These are expected to

be important. Certainly, there are other significant scaling expressions that are not presented here.
The classical Coulomb energy

JCoul [n] =
1
2

∫ n(r1)n(r2)

|r1 − r2|
dr1dr2 (15)

scales as usual

JCoul [nλ] = λJCoul [n] (16)
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with α = λ−1. The exchange energy can be expressed with the average of V̂ee

ECoul
x [n] = 〈Φ|V̂ee|Φ〉 − JCoul [n]. (17)

Note that in Equation (17) Φ is the non-interacting wave function defined by the steps described
above (Equations (7)–(11)). One can readily see that

ECoul
x [nλ] = λECoul

x [n]. (18)

Similarly, the non-interacting kinetic energy TCoul
s [n] scales as

TCoul
s [nλ] = λ2TCoul

s [n]. (19)

Turning to the scaling of the exchange-correlation energy, it is worth studying the operator T̂ +

αV̂ee, because the scaled wave function Ψα
n(r1, . . . , rN) yields n and minimizes 〈T̂ + αV̂ee〉, as described

in Equations (4)–(6). ECoul,α
xc [n] is defined as

ECoul,α
xc [n] = 〈Ψα|T̂ + αV̂ee|Ψα〉 − αJCoul [n]− TCoul

s [n], (20)

where α = 1 gives the exchange-correlation energy ECoul
xc [n], functional derivative of which appears in

the Kohn–Sham potential (13). Then we immediately arrive at

ECoul,α
xc [n] = α2ECoul

xc [nλ], α = λ−1, (21)

The correlation energy correcponding to the coupling constant α is defined in the same way as in
the ground-state DFT (see, e.g., Equation (8) in [18])

ECoul,α
c [n] = 〈Ψα|T̂ + αV̂ee|Ψα〉 − 〈Ψ0|T̂ + αV̂ee|Ψ0〉, (22)

where Ψ0 = Φ is the non-interacting wave function. Taking into account the scaling of the
exchange-correlation (Equation (21)) and exchange (Equation (18)) energies, we are led to the relation

ECoul,α
c [nλ] = α2ECoul

c [nλ]. (23)

From Equation (20) we immediatelly obtain

lim
α→0

λ−1ECoul
xc [nλ] = min

nCoul
min
Ψ→n

{〈Ψ|ΨCoul
l [nCoul ]〉=0}k−1

l=1

〈Ψ|V̂ee|Ψ〉 − JCoul [n] . (24)

Finally, consider the Hamiltonian with the coupling constant α

Ĥα = T̂ + αV̂ee +
N

∑
i=1

wCoul,α(ri). (25)

wCoul,α is defined by keeping the density n fixed. Note that wCoul,α=1 = vCoul is the external potential
of the original interacting Coulomb system (see Equation (2)) and wCoul,α=0 = wCoul is the Kohn–Sham
potential. Following the derivation in Reference [18], we arrive at the scaling expression:

wCoul,α([n], r) = wCoul,0([n], r)− α

[
vCoul

J ([n], r) + vCoul
x ([n], r) + α

δECoul
c ([nλ]

δn(r)

]
. (26)

The most interesting term in Equation (26) is last one. It mirrors the highly complicated nature of
the correlation energy funcional.
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4. Discussion

In this paper Coulomb systems are considered, that is, the external potential is given by
Equation (2). It is emphasized that only the true, original interacting external potential has the
Coulomb form. The non-interacting potential, that is, the Kohn–Sham potential, does not have the
structure of Equation (2). The superscript Coul in wCoul in Equation (13) indicates that wCoul is the
Kohn–Sham potential constructed to describe a Coulomb system. It has to be also underlined that the
external potential with coupling constant α does not have the shape of Equation (2) unless α = 1.

Unfortunately, the exact exchange-correlation functional is unknown. It is undiscovered even
for the ground state. It is also unexplored in the excited-state theory of Coulomb systems presented
here. However, it is needed for calculations. In the original ground-state DFT, several approximations
are available for computation. Exact relations that the exact exchange-correlation functional satisfies
proved to be useful in the construction of certain approximate functionals (see, e.g., [27].) The same
benefit is expected in this excited-state theory. Here, some coordinate scaling relations are presented
that are supposed to be helpful in modeling excited-state functionals.

We defined FCoul [n] that depend only on the density. It is valid for any excited state and for the
ground state, too. We do not need different functionals for different excited states. One FCoul [n] is
sufficient for any state of a Coulomb system. However, it might happen that FCoul [n] is discontinous.
Therefore, functionals FCoul

k [n] that depend on the level of excitation, k, have also been defined.
Discontinuities are less likely in FCoul

k [n] (see details in [9]). Here, it is supposed that FCoul [n] and all
other functionals defined here are well-behaved.

The coordinate scaling relations presented here are the same that were found previously for the
ground state. It is not surprising because this theory is valid for both ground and excited states. We
hope that an approximation suitable both for ground and excited states will be found in the future.

In conclusion, some exact relations are derived by means of coordinate scaling in the DFT theory
of Coulomb systems. These relations are the same as in the ground-state DFT. Approximation valid
both for ground and excited states is expected to be constructed later.
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