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Abstract: An algorithm for the efficient computation of molecular electrostatic potential is reported.
It is based on the partition/expansion of density into (pseudo) atomic fragments with the method
of Deformed Atoms in Molecules, which allows to compute the potential as a sum of atomic
contributions. These contributions are expressed as a series of irregular spherical harmonics
times effective multipole moments and inverse multipole moments, including short-range terms.
The problem is split into two steps. The first one consists of the partition/expansion of density
accompanied by the computation of multipole moments, and its cost depends on the size of the basis
set used in the computation of electron density within the Linear Combination of Atomic Orbitals
framework. The second one is the actual computation of the electrostatic potential from the quantities
calculated in the first step, and its cost depends on the number of computation points. For a precision
in the electrostatic potential of six decimal figures, the algorithm leads to a dramatic reduction of the
computation time with respect to the calculation from electron density matrix and integrals involving
basis set functions.

Keywords: molecular electrostatic potential; electron density; atoms in molecules; noncovalent
interactions; chemical reactivity

1. Introduction

Despite of its undeniable success in the description of chemical structure and reactivity, the
language of chemistry is largely grounded on concepts with loose theoretical foundations. Concepts
like bond, atomic charges, orbitals, hybridization, resonance, delocalization, hyperconjugation and
many others cannot be directly measured in physical experiments or expressed more precisely in the
jargon of quantum mechanics, they are not observables.

The proposal of G.N Lewis [1], in the early twenties of last century, to explain all the previous
work made on the study of the molecular structure was recognized from the very beginning as an
outstanding contribution to the field. Because of the weak arguments that supported his model, his
work was promptly followed by attempts to overcome its theoretical shortcomings by providing a
more rigorous foundation based on the recently discovered quantum mechanics. In these attempts,
many concepts were proposed to underpin Lewis ideas by pioneers like Coulson, Pauling, Hückel and
Mulliken, just to mention some of the most conspicuous figures. Their early efforts to accommodate
the complex and sometimes elusive chemical facts in the frame provided by the new emerging physics
were driven in part by the available computational capabilities, that were very reduced at the time.

Thus, what at first was an admirable exercise of imagination in its origin has led to a burden
of new concepts in an attempt to grasp the increasing knowledge on the complexity of the chemical
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world. The effect of this multiplication of concepts has been keenly illustrated by P. Politzer in the case
of the interpretation of a well established concept in chemistry as is hydrogen bonding. Numerous
interpretations have been given depending on the circumstances and the authors’ preferences. As
Politzer humorously quotes, hydrogen bonding “has been dissected into classical and nonclassical,
proper and improper (immoral?), blue-shifted and red-shifted, dihydrogen, anti-hydrogen (rebellious?),
resonance-assisted, polarization-assisted, and more” [2].

Without wishing to understate the usefulness and achievements of the somehow imprecise
concepts in which chemical language is currently built, it is worth recalling that there are two physically
well grounded observables that are most useful in describing the realm of chemistry: the electron
density and the electrostatic potential.

In the Born–Oppenheimer envisioning of molecular structure [3], molecular electron density
(MED) can be regarded as a mathematical description of the electron cloud surrounding the nuclei in
the molecule. As it is a function defined in 3D space, it can be displayed and easily connected with
intuition, and faithful approximations can be obtained with current computational methods at a low
or moderate cost, depending on the system’s size. Although the importance of MED was realized very
early, it remained long time as an auxiliary quantity for computing other properties like atom and bond
charges [4] or to reinforce the analysis based on wave function and its related concepts in the Linear
Combination of Atomic Orbitals (LCAO) framework, such as orbitals, hybridization and the like.
The recognition of its usefulness as a powerful tool for analysis of molecular structure had to wait to
R. Bader’s work [5,6], who changed the focus considering MED as a very central property for chemical
interpretation, as an alternative to the well stablished orbital analysis. Since then, the topological
analysis of MED has unceasingly gained popularity among theoretical chemists, and currently, it has
become a well established tool that is customarily used in the interpretation of the chemical structure
and reactivity.

The case of molecular electrostatic potential (MESP) is somehow comparable to that of MED,
with the added difficulty of the cost of its faithful computation in large systems. Former works on the
application of MESP to chemical facts [7–9] highlighted the possibilities of MESP in the interpretation
of reactivity. The analysis of MESP in molecular surfaces and the exploration of the relations between
its values with thermochemical properties by Politzer and Murray [10–12] have proved to be useful
tools for systematization and prediction of such properties. Besides, the introduction of the concepts
of sigma and pi holes by these authors has been very valuable in the interpretation of molecular
interactions between closed shell systems [13,14]. Furthermore, the outstanding contributions by
S. Gadre et al [15–21] on the topological analysis of MESP have added new insight on the structure
and properties of molecules and molecular aggregates. However, albeit this analysis of MESP topology
is breaking through in current research, its application to large systems is being hindered by the cost
of computing accurate values of MESP and its derivatives. Thus, the introduction of more efficient
procedures like that proposed herein has greatly facilitated this type of studies, and several works
using the new algorithms have appeared in recent literature [22–25].

In this work, we report details on the algorithms used for the efficient calculation of MESP
in large systems, based on the Deformed Atoms in Molecules (DAM) partition/expansion [26] of
MED. This procedure allows us to split the problem in two separate steps, one dealing with the MED
partition/expansion itself, and another corresponding to the actual computation of MESP [27]. As it
will be shown, the cost of the first step is independent of the number of MESP computation points,
and the second is independent of the number of basis set functions in the calculation. This separation
is crucial for the high performance of the method.

The article is organized as follows. In the next section, the theoretical foundations of the
method are outlined, only essential equations are given and the remaining ones are collected in
the supplementary file (SF) accompanying this work. The third section is devoted to the description
of the algorithms’ implementation, and is split in two subsections collecting the algorithms for the
two steps of the procedure. Again, subordinate equations and technical details are addressed in SF.
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Several results on performance and accuracy are presented in the fourth section and, finally, significant
conclusions are drawn from these results.

2. Method

The algorithm for the efficient evaluation of MESP reported here is based on DAM [26] partition of
electron density. In this partition the molecular density is expressed as a sum of atomic contributions:

ρ(r) = ∑
A

ρA(rA) (1)

where the densities of the (pseudo)atomic fragments, ρA(rA), are obtained with a least-deformation
criterion based on the fast convergence of the long-range multipole expansion of the electrostatic
potential [28]. In practice, in the Linear Combination of Atomic Orbitals framework (LCAO), in which
DAM is formulated, this fast convergence is achieved by assigning the one-center distributions,
i.e., products of pairs of basis functions centered at the same point χA

a (rA) χA
a′(rA), to their

pertaining atoms, A, and partitioning the two-center distributions, χA
a (rA) χB

b (rB), between their
respective centers:

χA
a (rA) χB

b (rB) = dA
ab(rA) + dB

ab(rB) (2)

In this work, we will deal with basis functions, χ, consisting of Gaussian contracted functions
(CGTO), which are most used in molecular calculations.

Contracted Gaussian functions, χ
(CGTO)
LM , are linear combinations of primitive Gaussian functions,

gLM(ξ, r):

χ
(CGTO)
LM (r) =

NG

∑
i=1

ci gLM,i(r) (3)

where NG is the number of primitive functions (length of the contraction), index i runs over the
primitive functions in the contraction, and the expansion coefficients, ci, are chosen so that the radial
part of the contraction remains normalized. Primitive Gaussians on their side are defined as:

gLM(ξ, r) = N r (GTO)
ξ rL e−ξ r2 NΩ

LM zM
L (θ, φ) (4)

and the same angular part is taken for all the primitives in a given contraction. Thus, the contracted
functions can be written as:

χ
(CGTO)
LM (r) =

[
NG

∑
i=1

ci N
r (GTO)
ξi

e−ξi r2

]
rL NΩ

LM zM
L (θ, φ) (5)

where N r
ξi

and NΩ
LM are radial and angular normalization constants defined by:

N r (GTO)
ξ = 2L+1

√
ξL

(2L + 1)!!

[
(2 ξ)3

π

]1/4

(6)

NΩ
LM =

[
(2L + 1) (L− |M|)!

2 (1 + δM0) π (L + |M|)!

]1/2

(7)

and zM
L (θ, φ) are unnormalized real spherical harmonics given by:

zM
L (θ, φ) = (−1)M P|M|L (cos θ)

{
cos Mφ (M ≥ 0)
sin |M|φ (M < 0)

(8)

where P|M|L (z) are the corresponding associated Legendre functions (see Equation 8.751.1 at [29]).
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For two-center densities, gA
00(ξA, rA) gB

00(ξB, rB), consisting of pairs of spherical primitive
Gaussians (L = 0) centered at two different points, A and B, it has been proved [28] that the best
convergence in the long-range potential is achieved by assigning the whole density to the center with
higher exponent ξ or, in case of equal exponents, by assigning one half to each center. This result
reminds the nearest-site algorithm reported by A. Stone and M. Alderton [30], but without considering
expansions at the bond center.

When applying this criterion to densities made of pairs of spherical contracted functions, the
products of primitives become assigned to one center or another depending on their exponents, yielding
a partition that can be regarded as a more realistic version of the Mulliken partition (see Figure 1).

Figure 1. Partition of two-center electron densities, χAχB, into atomic fragments dA
ab, dB

ab: (a) DAM,
(b) Mulliken.

For distributions consisting of nonspherical functions (L 6= 0), the partition is applied to
the products of brackets of Equation (5), and the remaining terms are translated to the centers as
described below.

The next step in the procedure is to expand the densities of the atomic fragments thus obtained as
a series of radial factors times unnormalized real regular solid harmonics (hereafter regular harmonics,
for short), namely:

ρA(rA) =
∞

∑
l=0

l

∑
m=−l

zm
l (rA) ρA

lm(rA) (9)

where the regular harmonics, zm
l (r), are related to unnormalized real spherical harmonics by:

zm
l (r) = rl zm

l (θ, φ) (10)

The partition of density given in Equation (1) combined with the expansion (9) allows us to write
the electrostatic potential as[27]:

V(r) =
N

∑
A=1

{
ζA
rA
−

∞

∑
l=0

l

∑
m=−l

zm
l (rA)

[
QA

lm(rA)

r2l+1
A

+ qA
lm(rA)

]}
(11)

in terms of atomic nuclei charges, ζA, effective multipoles, Qlm(r), and inverse multipoles, qlm(r):

QA
lm(r) =

(l − |m|)!
(l + |m|)!

∫
r′<r

dr′ zm
l (r
′) ρA(r′) =

4 π

2l + 1

∫ r

0
dr′ r′2l+2

ρA
lm(r

′) (12)

qA
lm(r) =

(l − |m|)!
(l + |m|)!

∫
r′>r

dr′
zm

l (r
′)

r′2l+1 ρA(r′) =
4 π

2l + 1

∫ ∞

r
dr′ r′ ρA

lm(r
′) (13)

In this way, the molecular electrostatic potential results in a sum of atomic contributions and the
short/long-range separation can be carried out at the atomic level. Thus in the long-range region, the
effective multipoles can be accurately replaced by point multipoles:
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QA
lm = lim

r→∞
QA

lm(r) =
4 π

2l + 1

∫ ∞

0
dr′ r′2l+2

ρA
lm(r

′) (14)

and the inverse multipoles do vanish: limr→∞ qA
lm(r) = 0.

As it will be shown below, this is a most useful feature when dealing with large systems because
a huge fraction of the atomic contributions to MESP can be computed from only the long range terms
even in the regions where molecular short-range potential is necessary. This apparent paradox comes from
the fact that, in these systems, the molecular short-range at a given point usually involves a reduced
number of atomic short-range contributions coming from atoms in the neighborhood of the point,
the remaining contributions being of long-range type.

3. The Algorithm

The algorithm for the evaluation of the electrostatic potential in large molecular systems, according
to the method described in the previous section, consists of two main steps, which are executed in
sequence. First, a partition of the molecular density must be carried out with the DAM procedure
followed by the expansion of the atomic fragments and the computation of effective and inverse
multipoles. Second, once the partition/expansion has been made, the electrostatic potential is
computed in the desired points with the aid of Equation (11).

It is worth noticing that the first step depends on the size of the basis set used in the computation of
molecular density, but it is independent of the number of points where the MESP has to be computed.
On the other hand, the second step depends on the number of points for computation, but it is
independent of the basis set size.

This decoupling of processes depending on the system size (number of basis functions) from
those depending on the number of MESP computation points, combined with the short/long-range
separation at atomic level, makes the procedure reported here most efficient to deal with large systems,
provided that the MESP is to be evaluated in a not too reduced number of points.

3.1. Algorithm for Molecular Density Partition/Expansion

According to DAM partition criterion, the density of atomic fragment at A is given by:

ρA(r) = ∑
a,a′∈A

χA
a (rA) χA

a′(rA) + ∑
B 6=A

∑
a∈a

∑
b∈B

dA
ab(rA) (15)

where, for two-center CGTO distributions:

dA
ab =

NGa

∑
i

NGb

∑
j

Θ(ξa
i − ξb

j ) ci cj ga
i (ξ

a
i , rA) gb

j (ξ
b
j , rB) (16)

Θ(x) being the step function:

Θ(x) =


0 x < 0
1/2 x = 0
1 x > 0

(17)

As our purpose is to express the fragments dA
ab in coordinates referred to center A and the second

primitive in each term of Equation (16) is centered at B, it is necessary to translate the functions gb
j to

center A. The translation of the exponential factor in gb
j can be made in terms of Bessel I functions as

proposed by Kaufmann and Baumeister [31]. Working in an aligned frame, with A placed at the origin
and B lying on the z axis, i.e., RA = (0, 0, 0), RB = (0, 0, RB), the translation formula reads:

e−ξb
j |r−RB |2 = e−ξb

j (r
2+R2

B)
∞

∑
l=0

(2l + 1)
√

π

4 ξb
j r RB

Il+1/2(2ξb
j rRB) Pl(cos θ) (18)
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where RB ≡ |RB|, Il+1/2(z) are the corresponding Bessel functions (see [29] 8.467) and Pl(z) are the
Legendre polynomials (ibid 8.91).

On the other hand, the remaining factor, which is in essence the regular harmonic zMB
LB

(r)
(apart from a constant factor), can be translated to center A by well known formulas [32]. In the
aligned frame, the formula reads:

zm
l (r− R) =

l

∑
k=|m|

(
l + |m|
k + |m|

)
(−R)l−k zm

k (r) (19)

Once the functions are referred to center A, the one-center products of regular harmonics,
appearing both in the one-center and in the translated two-center distributions, are decomposed
in terms of regular harmonics as described in section, Decomposition of products of regular harmonics,
in SF. The final radial factors are identified as the quantities that multiply the corresponding regular
harmonics resultant from the decomposition.

In practice, the algorithm proceeds as follows:

1. The interval 0 ≤ r ≤ 20 bohr is partitioned in ninterv subintervals with boundaries corresponding
to previously selected values of r that will be noted as λi, i = 0, 1, ... ninterv (currently ninterv = 30,
see SF for details).

2. For each interval, the variable r is mapped onto the interval [−1, 1] according to:

t ≡ 2
r− λi−1

λi − λi−1
− 1 (20)

and a set of values of t is chosen as the zeroes of the Chebyshev T polynomial of order n (currently
n = 30) given by (see [33] 22.16.4):

tk = − cos[π (k− 1/2)/n] k = 1, ...n (21)

3. For each center, A, of the system, one-center distributions are expanded as:

χA
a (rA) χA

a′(rA) = ∑
l

∑
m

f La ,Ma ;La′ ,Ma′
lm (r) zm

l (r) (22)

As described in section, Expansion of one-center distributions, of SF. The radial factors are evaluated
in the tabulation points rj,i = (tj + 1) (λi − λi−1)/2 + λi−1, multiplied by the ρaa′ element of the
density matrix, and accumulated.

4. Likewise, for each center, A, a loop over all the remaining centers B 6= A is performed. In this
loop, for each center B, all the fragments dA

ab coming from two-center distributions with one
function at A and the other at B, and attributted to center A, are expanded in an aligned frame as
a series of regular solid harmonics times radial factors

dA
ab = ∑

l
∑
m

f La ,Ma ;Lb ,Mb
lm (r) zm

l (r) (23)

as described in section, One-center expansion of two-center fragments, of SF. The radial factors are
evaluated in the tabulation points rj,i = (tj + 1) (λi − λi−1)/2 + λi−1, multiplied by the ρ̃ab
element of the density matrix, which has been previously rotated to the aligned frame (that is
what the tilde means) and accumulated in the aligned frame. Next, the locally accumulated radial
factors (i.e., for fixed B) are rotated back to the molecular frame, and the resultant radial factors
are further accumulated together with those coming from the one-center distributions and with
the radial factors of other pairs of centers to yield the full radial factor ρA

lm(rA) of Equation (9).
Details on rotations of both density matrix and radial factors are given in section, Rotations, in SF.
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5. The tabulations of the ρA
lm(rA) radial factors are used to decide whether they are negligible or not

and, for non-negligible factors, to carry out a numerical projection on Chebyshev T polynomials
of variable t in each interval r ∈ [λi−1, λi]. This projection yields the corresponding piecewise
expansion of ρA

lm(rA). Details of this expansion are given in section Expansion of atomic radial
factors in SF. Thus, the final expansion in the i-th interval takes the form:

ρi,A
lm (rA) ' e−ζi rA

ni

∑
k=0

c(i)k (l, m) Tk(t), rA ∈ [λi−1, λi] (24)

where t is a function of rA, as defined in (20), and the exponential factor is introduced when
ρA

00(rA) (leading term in expansion (9)) decays steeply in the interval (see SF for details); otherwise,
ζi = 0 is taken. The number of polynomials taken in the expansion at the i-th interval, ni, is
determined on the fly by analyzing the convergence of the projections. The expansion coefficients,
c(i)k (l, m), of non-negligible factors are stored in a buffer. An array with a set of suitable pointers
to address the coefficients is also generated and stored.

6. Once the radial factors of expansion have been piecewise expanded, they are used to compute
the auxiliary partial integrals:

QA
lm(λi−1, rj,i) ≡

4 π

2l + 1

∫ rj,i

λi−1

dr′ r′2l+2
ρlm(r′), rj,i ∈ [λi−1, λi] (25)

qA
lm(λi, rj,i) ≡

4 π

2l + 1

∫ λi

rj,i

dr′ r′ ρlm(r′), rj,i ∈ [λi−1, λi] (26)

in the same tabulation points, rj,i, as used for the density, as well as the auxiliary constants:

QA
lm(λi) ≡

4 π

2l + 1

∫ λi

λi−1

dr′ r′2l+2
ρlm(r′) (27)

and

qA
lm(λi) ≡

4 π

2l + 1

∫ λi

λi−1

dr′ r′ ρlm(r′) (28)

Details are given in section, Effective multipoles from density expansion, in SF.
7. The tabulations of QA

lm(rj,i) and qA
lm(rj,i) are used to project these partial integrals onto Chebyshev

T polynomials in the same intervals as used for the radial factors of density. In this case,
no exponential factor is necessary:

QA
lm(λi, r) '

ni

∑
k=0

b(i)k (l, m) Tk(t), r ∈ [λi−1, λi] (29)

qA
lm(λi, r) '

ni

∑
k=0

d(i)k (l, m) Tk(t), r ∈ [λi−1, λi] (30)

The numbers of polynomials in the intervals, ni, are the same as in the corresponding radial
factors. In this way, the pointers defined for addressing density expansion coefficients, c(i)k (l, m),

can be used also for coefficients b(i)k (l, m) and d(i)k (l, m) of Equations (29) and (30).
8. Atomic point multipoles of Equation (14) are obtained by:
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QA
lm =

ninterv

∑
i=1

QA
lm(λi) (31)

where the sum runs over the intervals.
9. Molecular geometry and data corresponding to the tabulation of radial factors are stored in an

external binary file with extension damqt, ready to be used for computation of DAM expansion
of density. In particular, the following information is stored: number of atoms, number of basis
functions and number of shell functions, atomic number and Cartesian coordinates of nuclei,
basis set, length of expansion (9) (lmax), and for each center A: pointers to expansion coefficients
of radial factors, fitting exponents, ζi, and expansion coefficients, c(i)k (l, m).

10. Atomic multipole moments QA
lm, auxiliary quantities QA

lm(λi) and qA
lm(λi), and expansion

coefficients b(i)k (l, m) and d(i)k (l, m) are stored in another external binary file with extension
dmqtv. Since the pointers to bk and dk are the same as those used for ak by construction, they do
not require to be stored again.

3.2. Algorithm for Electrostatic Potential Expansion

Once the files containing the information on MED partition/expansion and the auxiliary
quantities for MESP have been generated, MESP can be computed at any desired points using this
information. This step is completely independent of the first one, so that the computation can be
made as many times as necessary and in different sets of points without requiring repetition of the
partition/expansion process.

To compute the MESP, the following algorithm is employed:

1. MED partition/expansion data stored in file damqt are read and stored in memory.
2. MESP auxiliary data are read from dmqtv, stored in memory and used for computing further

auxiliary quantities. In particular, partial accumulated sums:

Qi,A
lm =

i

∑
k=0

QA
lm(λk) i = 1, 2, ... ninterv (32)

and

qi,A
lm =

ninterv

∑
k=i

qA
lm(λk) i = 1, 2, ... ninterv (33)

are computed and stored too.
3. A double loop over atoms (outer) and tabulation intervals (inner) is performed to determine the

length of expansion (11) in each interval and the long-range radius for the atom. This radius
is chosen as the lower limit of the interval i, λi−1, for which qi,A

lm is lower than a user defined
long-range threshold.

4. Next, MESP is computed, running over the atoms, with Equation (11). For points placed in the
long-range region, lr, of atom A, the contribution to MESP, VA

lr (rA), is computed in terms of the
corresponding atomic point multipoles QA

lm as:

VA
lr (rA) =

ζA
rA
−

∞

∑
l=0

l

∑
m=−l

zm
l (rA)

QA
lm

r2l+1
A

(34)

For points placed in the short-range region, sr, the contribution is computed by means of:
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VA
sr (rA) =

ζA
rA
−

∞

∑
l=0

l

∑
m=−l

zm
l (rA)

[
QA

lm(rA)

r2l+1
A

+ qA
lm(rA)

]
(35)

and the quantities QA
lm(rA) and qA

lm(rA) are obtained in terms of Qi,A
lm and qi+1,A

lm of Equations (32)
and (33), i being the index of the interval such that λi ≤ rA < λi+1, plus the expansions (29) and
(30) for the integrals in the interval [λi, rA] and [rA, λi+1], respectively.

In all cases, the regular solid harmonics are fast and accurately computed by recursion, as
described in section, Recurrence relations of regular solid harmonics, of SF. In the short-range case,
eqs (29) and (30) are evaluated with the coefficients bk and dk previously retrieved from file dmqtv
and stored in memory, and with the Chebyshev polynomials computed by recursion, as shown
in section, Recurrence relations of Chebyshev polynomials, of SF.

5. If MESP derivatives are wanted, they can be computed together with MESP and using the same
auxiliary quantities[34]. The procedure is quoted in section, Computing MESP derivatives, in SF.

6. Data on basis set and density matrix are only necessary if computation of MESP in terms of
nuclear attraction integrals and density matrix, without DAM partition/expansion, is required.
As this is an expensive procedure, its usage should be restricted to those cases in which a reference
is necessary for testing the accuracy of the algorithm reported here.

4. Results

To test the performance of the method, we have started by analizing the accuracy of the results
attained with the current algorithm. For this purpose, we have computed MESP values for benzene
molecule in a set of equally spaced points corresponding to a 129× 129× 129 grid in the octant defined
by: x, y, z ∈ [0, 20] (length in bohr). These results have been compared with the MESP exact values,
Vexact, computed using the electron density matrix and the integrals involving basis set functions:

Vexact(rC) =
nbasis

∑
r=1

r

∑
s=1

(2− δrs) ρrs

∫
dr

χr(r) χs(r)
|r− rC|

(36)

where ρrs are the elements of the density matrix, and nbasis stands for the number of basis functions,
χr, in the LCAO calculation.

The results of this comparison are reported in Table 1 for four different lengths in expansion (9),
namely: lmax = 5, 10, 15, 20. The highest absolute error, ∆max, and the root mean square error, rmse,
in the grid points significantly decrease with the length of multipole expansion, and they suggest
that an expansion with lmax = 10 is sufficiently precise for most practical applications. Nevertheless,
higher precision can be attained for more demanding applications like topological analysis at a very
moderate cost.

Table 1. Precision of MESP computed with the current algorithm.

lmax 5 10 15 20

∆max
a 0.189× 10−2 0.305× 10−4 0.954× 10−6 0.119× 10−6

rmse b 0.379× 10−4 0.264× 10−6 0.274× 10−8 0.164× 10−9

High prec c 660 1,239,142 1,996,569 2,097,390
a Highest absolute error. b Root mean square error. c Number of grid points with more than eleven accurate
decimal figures.

Remarkably, for expansions with lmax = 10 or higher, a great amount of points are computed with
a high number of accurate decimal figures (twelve or more) as is shown in the last row of Table 1. This
can be explained because short-range contributions in most points of the grid (those lying outside
the molecular volume) are very small or even negligible, and precision is greatly determined by the
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convergence of the long-range expansion, i.e., the number of terms in (9), the accuracy in the radial
factors playing a minor role.

In this regard, it is interesting to check how the algorithm performs in those points in which
short-range terms are important. For this purpose, the number of points with a number of decimal
accurate figures is plotted in Figure 2 for the four expansions. As it can be seen, the number of points
addressed in the curve corresponding to lmax = 5 is significantly greater than in the remaining curves.
This is due to the insufficient convergence of the long-range MESP in this case, as mentioned before. In
the remaining curves, the convergence in the long-range MESP has been achieved to a great extent, and
the precision is mainly determined by the short-range terms. As the curves show, also in these cases
the precision readily increases with the length of the expansion in two senses: a steady augment of the
number of correct decimal figures in the least precise points is observed, and a significant decrease in
the number of points for a given precision occurs. Raw data used for the figure can be found in section,
Precision of MESP calculation, in SF.

Figure 2. MESP precision.

The computation wall-clock time with Equation (36) was 5600 seconds, and 2.9, 6.6, 16.2 and 28.0 s
for the respective expansions. On the other hand, DAM partition/expansion step with lmax = 20 took
only 2.2 s for benzene density computed with Dunning’s cc-pVDZ basis set [35]. These times were
measured on a laptop with processor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz, running an
MPI parallel version of the codes compiled with gfortran, and using 4 processors. Although the
calculation was made at HF level, it is important to stress that the computational cost of the full
algorithm is independent of the computational level of the molecular density. This is so because the
partition/expansion step only depends on the number of elements of the density matrix (i.e., the square
of the basis set size), and the MESP computation only depends on the length of expansion (9) and the
number of atoms in the system.

It is fairly evident that the algorithm based on DAM yields results that can be sufficient for
most practical purposes at a computational time that, in this case, is between two and three orders of
magnitude lower than the time required for computation from density matrix and integrals. This is so
in a rather small system in which the short-range atomic contributions in the selected grid are about
20% of the total contributions, for a long-range threshold equal to 10−7 taken in cases of lmax = 5, 10,
and about 40% for a threshold of 10−8 taken in cases of lmax = 15, 20. As it will be shown below, for
really large systems, the fraction of short-range contributions in equivalent grids is much smaller, and
the gain in the computational cost increases with the system size with respect to the computation by
means of Equation (36). A further test on MESP surface extrema on a density isosurface has been
included in the supplementary files.

Once the validity of the results has been established from the point of view of accuracy, we
have analyzed the performance of the algorithm in large systems. In Table 2 we collect the results of
MESP calculations in a set of molecules ranging from a small system like benzene (12 atoms, 222 basis
functions) to two large ones: CC-MMIM BF4, consisting of a three circumcoronene slices with two
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pairs of MMIM BF4 ionic liquid molecules embedded between the circumcoronene sheets (617 atoms)
and a DNA fragment with 750 atoms. In the last two, the electron densities correspond to PM7
calculations [36] (only basis valence functions).

Table 2. Computational cost in seconds of MESP computation with the current algorithm a. Percentage
of long-range contributions to MESP for a threshold of 10−8.

Molecule Benzene Liposidomycin DBCOx2 b CC-MMIM BF4
c DNA Fragment

n. atoms 12 71 360 617 750
n. basis d 222 1157 7560 1715 2250
partition/expansion time e 2.2 61 780 1.1 g 2.0 h

box size f 40 84 76 112 156
time MESP (lmax = 10) 7 36 230 195 g 254 h

time MESP (lmax = 15) 16 65 435 − −
time MESP (lmax = 20) 43 105 617 − −
% long-range h 60 95 93 99.5 99.99

a MESP computed on a 129 × 129 × 192 grid (2,146,689 points) of a cubic box. b Dimer of polyhidroxilated
circumcoronene. c Three sheets of circumcoronene with two pairs of MMIM BF4 molecules embedded between the
sheets. PM7 calculation. d Number of basis functions. e Time in DAM partition/expansion with lmax = 20. f Length
in bohr of the cubic box edges. g Due to ZDO approximation, only terms up to lmax = 2 do not vanish. h Due to
ZDO approximation, only terms up to lmax = 4 do not vanish.

With these results, we have analyzed the dependence of the computational cost of the two steps
involved. Three different expansions have been used (lmax = 10, 15, 20), except in CC-MMIM FB4 and
DNA fragment. In these cases, due to the ZDO aproximation involved in PM7 method, only valence
one-center distributions contribute to densities. Consequenty, the partition/expansion is a very fast
process and terms in MED and MESP expansions with lmax higher than twice the highest L value in
the basis set are zero.

As expected, the computational time of the partition/expansion step in small systems increases
with the square of the number of basis functions, and at a lower rate when dealing with large systems,
in which cases the dependence tends to be linear. The increment of the cost with respect to the length
of expansion (11) is also smaller than the predicted l2

max dependence. In the supplementary files, a little
movie showing the MESP of the DNA fragment over its molecular surface defined as MED isosurface
with ρ = 0.001 au is included. Red color means positive MESP values, blue color, negative values.

Finally, in Table 3 we analyze the performance of MPI parallelization of the codes corresponding to
both steps of the algorithm. Calculations have been carried out on a polyhidroxilated circumcoronene
system with 360 centers, with a basis set consisting of 7560 contracted GTOs. The expansion of
the atomic fragments has been made up to lmax = 20, and the MESP has been computed with this
expansion on a 129 × 129 × 129 cubic grid (2,146,689 points) within an interval x, y, z ∈ [−38, 38]. The
wall clock time, the average time per processor and the standard deviation are provided for the DAM
partition/expansion and for the MESP tabulation.

In both steps, the computational time scales very well with the number of processors. In the
partition/expansion step, a linear fit of the clock wall time vs. the reciprocal of the number of
processors gives a regression parameter of R2 = 0.9998, and the same value is obtained for the
fit of the average time. In case of MESP tabulation, the scaling is likewise, with R2 = 0.9982 and
R2 = 0.9990, respectively.
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Table 3. Performance of the algorithm parallelization. All times in seconds.

N. Procs a Partition/Expansion MESP Tabulation b

Wall Clock c Average d Std. Dev. e Wall Clock c Average d Std. Dev. e

1 2165 − − 2048 2048 −
2 1125 1124 0.2 992 989 4
4 670 669 0.8 552 520 26
6 531 530 0.8 406 366 32
8 466 465 0.5 335 293 24
10 402 400 0.9 272 237 21

a Number of MPI processes on a system with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz with 10 cores.
b Computation on a 129 × 129 × 129 grid (2,146,689 points). c Highest time among processors. d Average time per
processor. e Standard deviation.

The standard deviations show that the time is more evenly shared among processors in the
partition/expansion than in the tabulation, but in both cases the time distribution is satisfactory.
Furthermore, in the second step the standard deviation is affected by the fact that the main processor
spends more time than the remaining ones, due to the workload associated to the gathering of
tabulations accomplished by ancillary processors, which are stored in external files, and to tidying tasks.

5. Conclusions

A method for the efficient computation of molecular electrostatic potential has been reported.
The method splits the problem in two steps. The first one consists of the partition of the molecular
electron density in terms of (pseudo)atomic densities, which are further expanded as a truncated
series of spherical harmonics times radial factors. The second step corresponds to the computation
of the electrostatic potential from these expansions. The computational cost of the first step depends
on the size of the basis set used in the LCAO computation and the length of the expansions, and it
is independent of the number of points in which the potential is computed. The cost of the second
step is independent of the basis set size and only depends on the expansions length and the number
of tabulation points. The result is an algorithm that reduces the computational time around two
orders of magnitude when compared with the calculation from electron density matrix and integrals
involving the basis set, for a precision of 6 decimal figures. The algorithm can be very efficiently
parallelized with MPI, showing a good sharing of computational cost among processors in both steps.
The algorithm has been implemented in DAMQT package for the analysis of molecular electron
density and related properties. A recent version of the package can be downloaded freely from:
https://data.mendeley.com/datasets/7mwfftd2x4/2.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2079-3197/7/4/
64/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

CGTO Contracted Gaussian type orbital
CPU Central processing unit
GTO Gaussian type orbital (primitive)
DAM Method of deformed atoms in molecules
DAMQT Package for the analysis of electron density and related properties
LCAO Linear combination of atomic orbitals
MED Molecular electron density
MESP Molecular electrostatic potential
MMIM Dimethyl imidazolium
MPI Message passing interface
ZDO Zero differential overlap
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