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Abstract: This paper investigates numerical properties of a flux-based finite element method for the
discretization of a SEIQRD (susceptible-exposed-infected-quarantined-recovered-deceased) model
for the spread of COVID-19. The model is largely based on the SEIRD (susceptible-exposed-infected-
recovered-deceased) models developed in recent works, with additional extension by a quarantined
compartment of the living population and the resulting first-order system of coupled PDEs is solved
by a Least-Squares meso-scale method. We incorporate several data on political measures for the
containment of the spread gathered during the course of the year 2020 and develop an indicator that
influences the predictions calculated by the method. The numerical experiments conducted show
a promising accuracy of predictions of the space-time behavior of the virus compared to the real
disease spreading data.

Keywords: COVID-19; least-squares finite element method; susceptible-exposed-infected-quarantined-
recovered-deceased (SEIQRD)

1. Introduction

The outbreak of the global pandemic caused by the novel virus responsible for COVID-
19 had, and still has, a great impact on the life of the global human population. Human
lives are threatened greatly by this highly infectious virus with higher probability of death
and long-term damages to individuals of higher age or with a compromised immune
system. Due to this delicate situation of global influence, various political measures have
to be taken to prevent the virus from spreading as much as possible before an effective
vaccine can be developed and distributed among the population to ensure immunity of
a substantial part of the population that eventually causes the virus to die out. The most
prominent question in the meantime, however, is that of the measures to be taken to ‘flatten
the curve’ of new infections as the virus seems to spread exponentially if exposure is not
regulated in any way. Among the measures already taken by the governments are curfews,
lockdowns of whole cities and countries, quarantines of people exposed to the virus or that
recently have been to areas with a high impact, travel restrictions, and—most commonly
propagated measure on social media—social-distancing. But, to this point, there does not
seem to be a general (political) consensus about the safest plan to slow the spread of the
virus and which measures are the most effective, imposed on the people in exactly which
level of strictness. This calls for a scientific modeling of the epidemiological behavior of
this virus to form a plausible foundation for regulations. Such a model needs to extract
some patterns thereof from the scattered data collected during the time of first notice in
late 2019 until the latest developments today and to convert them into functions that can
effectively predict new developments in the future. Regulating factors, such as exposure
and mortality rates, can hopefully be witnessed and then, in turn, used to optimize the
political measures accordingly.

The well-known epidemiological models of SIR type (susceptible-infected-recovered)
have been extensively analyzed, and we refer to Reference [1] for an overview. This model
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works with a separation of the general population that needs to be studied into certain
compartments (S, I, R) that have different roles in the spread of and affection by the virus
and have a different use in the respective models. This compartment list can be extended
to account for the further specifications of the disease, and we refer to Reference [2] for
an overview. For example, the SEIR model includes an exposed group and the SEIRD
(susceptible-exposed-infected-recovered-deceased) model separates truly recovered and
deceased. The choice of these compartments for COVID-19 modeling has been the subject
of many recent publications. The experts in modeling seem to agree that a COVID-19
model should account for asymptomatic transmission and that a quarantined group might
be relevant (see Reference [3–9]).

A further challenge is the modeling of the spatial spread of the epidemic diseases in
geographical regions. Several works, therefore, coupled the classical SIR model with inter-
city networks, as in Reference [10,11]. To this aim, the classical epidemiological models of
SIR type have been recast in the variational setting of analytical mechanics in Reference [12]
with continuum partial differential equation models with diffusion terms describing the
spatial variation in epidemics. First, mechanical and mathematical investigations in this
direction were pursued in Reference [13,14] and seem very promising. A derivation of such
a coupled system of PDEs without particular reference to an established SIR model has
been conducted in Reference [15], where the authors have shown how the epidemiological
dynamics can be expressed in PDEs step-by-step. For a mathematical analysis of a similar
SIR model, we refer to Reference [16]. Another link can be drawn to the field of machine
learning, as neural network predictors have proven themselves recently in similar fields,
such as traffic and social modeling. Deep learning structures have been used to develop
predictors for the COVID-19 virus spread. The techniques of using training data to be fed to
the neural network that automatically computes a possible prediction are a great advantage
in comparison to classical FEM methods that need a detailed model and a system of PDEs
thought-out beforehand. A work on this forecast of the regional spread and intensity of
the virus prevalence is presented in Reference [17]. Limitations, however, are exactly these
training data, or the lack thereof, as at the beginning of the pandemic there might have not
been a big enough variety of data to train the algorithm properly, and this can be linked to
a choice of which data to use to make a most fitting prediction, until newer case numbers
and their distribution are known.

In this work, we opted for a continuum partial differential equation model as in
Reference [13,14] but added the quarantined compartment. Moreover, instead of a clas-
sical variational formulation, an approximation of the solution is obtained with a mixed
formulation involving the fluxes of the variable accounting for the number of individuals
in each group. This variational formulation is chosen to be of Least-Squares type, such that
the linearization is relatively straightforward, the solving procedure involves a positive
definite matrix, and we can use the inherent error estimator for adaptive strategies. We will
map out the country of Germany with respect to accumulating regions and incorporate the
ideas of travel restrictions and contact limitations imposed on the population. A further
advantage of this approach is that it will give us the possibility to account for the political
interventions made by the government in a hope to contain the spread of the virus in
affected areas. To give an analysis of the spread of the virus under the already existing
imposed political measures, data on restrictions, such as travel and contact reduction or
bans, have been studied in the example of Germany. During early stages of the virus
development in Europe, the case counts in this country have been significantly smaller
than the ones of the neighboring countries. As respective measures of regulation have been
taken early-on in March and April with rising numbers and a successful containment of
the spread was achieved due to fast decreasing new daily infection rates, this serves as an
indicator that the political decisions taken could have been effective. Another aspect is the
division of the country in individual states, similar to the USA, with their own respective
government that could more or less individually regulate the graveness of the measures,
while the state intervened with German-wide restrictions only a few times during the time
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period of March until November. Such federal “infection containment acts” have been
imposed, for example, during the lockdown in March with rather strict almost-curfew mea-
sures and then the permission to the individual states of relaxation of these acts, e.g., of the
contact restrictions from single-household contacts to two-household rules or small groups
and then successive enlargement of the number of people allowed at public gatherings or
festivities. Eventually, the “lockdown light” has been re-inforced following the alarming
high numbers of new daily infections. The indication as “light” is a terminology chosen by
the government to contrast the “regular” lockdown in March that had stricter regulations
imposed on businesses and catering that caused the economy to recess slightly.

We aimed at presenting a solution technique to the system of PDEs constructed
by the SEIQRD (susceptible-exposed-infected-quarantined-recovered-deceased) model
using a Least-Squares Method to predict the regional spread of COVID-19 in the country
of Germany. We rely on data gathered by the Federal Statistical Office of Germany on
actual numbers of infections, the reduction of incoming and outgoing flights, and contact
restrictions as political reactions to contain the spread. These data serve to develop an
indicator that is a key part in our calculations and shows at which time containment
regulations gripped and give rise to a likely decrease (or increase) in subsequent new
numbers of infections and their regional spread. Interpolation is used to fit and avoid
losses of data and the resulting predicted versus real-life data will be presented in order
to show the applicability of our Least-Squares solution method. To this end, this paper is
structured subsequently in 5 more sections. In Section 2, the SEIQRD model is stated, and,
in Section 3, the Least-Squares Method and the resulting first-order system to be solved are
discussed. Following this, we develop the special discretization of the system in Section 4
and focus on the explanation of the parameters and their fitting using our indicator in
Section 5. The numerical results are presented and analyzed in Section 6.

2. Model

We opt to change the usual SEIRD (susceptible-exposed-infected-recovered-deceased)
model for epidemiological studies to a SEIQRD model that also takes into account a
quarantined compartment of the population infected with the virus.

This model assumes that the living population is divided into five compartments: the
susceptible population Spx, tq, the exposed population Epx, tq, the infected population Ipx, tq,
the recovered population Rpx, tq, the quarantined population Qpx, tq, and deceased population
Dpxq. As in the works of Reference [13,14], we do not consider the birth rate nor the general
(non-COVID-19) mortality rate and denote with npxq the sum of the living population, i.e.,

npxq “
ÿ

iPtS,E,I,Q,R,Du

φipx, tq , (1)

with the functions φi representing the respective compartments for convenience of formu-
lating the coupled PDE model. Note that, since we consider the compartment D of the
deceased population, n does not vary over the time.

We distinguish between recovery rates γi, contact rates βi, the inverse of the incubation
period σ, a backflow η, and the quarantining rate δ.

Following Reference [13], we denote by γE the asymptomatic recovery rate and recall
that it is the proportion of change in the exposed group that never enters the infected group
(as they stay undetected) towards the recovered group. In the sense of the subsequent
notations, that means that there is a decrease in the number of exposed people and an
increase of recovered people.

E
γE
ÝÑ R

B

Bt
φE ´“ γEE,

B

Bt
φR `“ γEE . (2)
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Similarly, γR denotes the infected recovery rate, i.e., the infected people that do show
symptoms and, therefore, enter the regulated process of quarantine as an intermediate step
(see below) before entering the recovered population.

I
γR
ÝÑ R

B

Bt
φI ´“ γR I,

B

Bt
φR `“ γR I . (3)

σ is the inverse of the incubation period that indicates how fast exposed individuals change
to infected individuals after known exposure to the virus.

E σ
ÝÑ I

B

Bt
φE ´“ σE,

B

Bt
φI `“ σE. (4)

One particularity of the new virus is that as of now the status of immunity of recovered
patients is unclear. Therefore, we opt for a model that assumes that not all recovered
patients are immune; thus, the backflow ηRpx, tq is included that carries the proportion of
recovered patients that are not immune back to the susceptible individuals with rate η.

R
η
ÝÑ S

B

Bt
φR ´“ ηR,

B

Bt
φS `“ ηR. (5)

We now want to consider the additional effect of the quarantine and choose a quar-
antine scheme connected to the infected, exposed and recovered, as a natural way to
symbolize that quarantined people can be both in a state of yet non-discovered infection,
being asymptomatic, healthy, or symptomatic (which means visibly showing symptoms
that a possible infection with the virus might be accounted for). This quarantine rate should
change with time and based on political decisions, as it has been mandatory for returnees
from highly affected areas to undergo self-quarantine for several days while waiting for the
result of the test that indicates the infection status. Quarantined individuals can recover or
decease, as seen below.

Q
γQ
ÝÝÑ R

B

Bt
φQ ´“ γQQ,

B

Bt
φR `“ γQQ, (6)

I δ
ÝÑ Q

B

Bt
φI ´“ δI,

B

Bt
φQ `“ δI. (7)

Moreover, we follow the thoughts of Reference [10] and make the deceased linearly
dependant on the quarantine, as the death of these individuals is connected to a visible
infection that needs treatment in medical facilities that impose a strict quarantine on these
patients. Thus, we get

Q
γD
ÝÝÑ D

B

Bt
φQ ´“ γDQ,

B

Bt
φD `“ γDQ, (8)

with the fatality rate γD.
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In order to model the tendency of outbreaks to cluster towards large population
centers, we follow the idea of Reference [13] and consider the Allee effect, which, in a sense,
defines a correlation between the density of a population and the fitness of its individuals,
with constant parameter α. We, therefore, need to consider the partial derivatives in space
and introduce the space of weak derivatives H1pΩq on a simply connected geographical
domain Ω Ă R2. For φi sufficiently smooth, the Allee effect now reads

B

Bt
φSpx, tq “ ´ f pφS, φE, φI , npxqq, (9)

with

f pφS, φE, φI , npxqq “
ˆ

1´
α

npxq

˙

pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq, (10)

where βE is the contact rate at which the exposed asymptomatic patients transmit the virus
to susceptible individuals, and β I is the symptomatic contact rate.

Note that, in order to simplify the notation, we skipped the time dependence in the
notation of the coefficients. However, those coefficients are supposed to change over time,
as we will see in Section 5.

Assuming the population fields are sufficiently smooth, the model consists of the
following system of nonlinear coupled partial differential equations over Ωˆ r0, Ts :

B

Bt
φSpx, tq “ηφRpx, tq `∇ ¨ pnpxq νS∇φSpx, tqq

´

ˆ

1´
α

npxq

˙

pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq
, (11a)

B

Bt
φEpx, tq “

ˆ

1´
α

npxq

˙

pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq

´ σφEpx, tq ´ γEφEpx, tq `∇ ¨ pnpxq νE∇φEpx, tqq
, (11b)

B

Bt
φIpx, tq “σφEpx, tq ´ δφIpx, tq ´ γRφIpx, tq `∇ ¨ pnpxq νI∇φIpx, tqq, (11c)

B

Bt
φQpx, tq “δφIpx, tq ´ γDφQpx, tq ´ γQφQpx, tq `∇ ¨

`

npxq νQ∇φQpx, tq
˘

, (11d)

(11e)

B

Bt
φRpx, tq “γRφIpx, tq ` γEφEpx, tq ` γQφQpx, tq ´ ηφRpx, tq `∇ ¨ pnpxq νR∇φRpx, tqq (11f)

(11g)

B

Bt
φDpx, tq “γDφQpx, tq, (11h)

where the coefficients νS, νE, νI , νQ, νR, νD account for the diffusion aspect; confer with
Reference [18–21]. The model is summarized in Figure 1.
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φS

φE

φI φQ

φD

φR

βE , βI

σ

γE

γR

η

γQ

γD

δ

Figure 1. Flow chart depicting the regulating functions γk, σ, η, βi pk “ E, R, Q, D, i “ E, Iq and δ for
the respective compartments of the population φj pj “ S, E, I, R, Q, Dq.

3. The Least-Squares Method

The class of Least-Squares Finite Element Methods is based on the idea of the residual
minimization of a variational problem and as these methods rely on inner-product pro-
jections, they tend to be particularly robust and stable. While traditional finite element
methods are usually developed from a variational setting that comes almost directly from
the problem to solve at hand, Least-Squares Methods work exactly the other way round by
fixing a variational framework before and then fitting the problem into this framework. For
an introduction to this class of numerical methods, we refer the reader to Reference [22].

With the notation φ “
`

φS, φE, φI , φQ, φR, φD
˘J, ν “

`

νS, νE, νI , νQ, νR, νD
˘J,

Apxq “ npxqdiagpνq, fpφq “ p´ f pφq, f pφq, 0, 0, 0, 0qJ, as well as

B “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 η 0
0 ´σ´ γE 0 0 0 0
0 σ ´δ´ γR 0 0 0
0 0 δ ´γQ ´ γD 0 0
0 γE γR γQ ´η 0
0 0 0 γD 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, (12)

the system can be written in a vector form as

B

Bt
φ “ Bφ` fpφq `∇ ¨ pA∇φq (13)

for φ P V “ L2p0, T, H1pΩqqq6 and with r0, Ts our time interval of interest. Defining
σ “ A∇φ leads to

B

Bt
φ “ Bφ` fpφq `∇ ¨ σ . (14)
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The components of σ then belong to the space of integrable divergence, i.e.,

σ P Σ :“ L2p0, T, pHgpdiv, Ωqq6qwith Hgpdiv, Ωq “ tτ P Hpdiv, Ωq : τ ¨ n “ g on BΩu, (15)

where a Neumann boundary condition g on the boundary Γ “ BΩ of Ω is prescribed in
the space. With f pφS, φE, φI , npxqq “

´

1´ α
npxq

¯

pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq and
the matrix

K “
´

1´
α

n

¯

¨

˚

˚

˚

˚

˝

0 βE β I 0 . . . 0
... 0 0

...
...

...
...

...
...

...
0 0 0 0 . . . 0

˛

‹

‹

‹

‹

‚

, (16)

we obtain

fpφq “
´

´φJKφ, φJKφ, 0, 0, 0, 0
¯J

. (17)

Using an implicit Euler time discretization, the first-order system reads

Rpφ, σ; φold, σoldq “

ˆ

φ´φold ´ τpBφ` fpφq `∇ ¨ σq
σ ´ Apφq∇φ

˙

“ 0 . (18)

Our Least-Squares Finite Element method consists of the least squares minimization
of Rpφ, σ; φold, σoldq in V ˆ Σ, which means we search pφ, σq P V ˆ Σ

›

›

›
Rpφ, σ; φold, σoldq

›

›

›

2

0,Ω
ď

›

›

›
Rpψ, τ; φold, σoldq

›

›

›

2

0,Ω
(19)

for all pψ, τq P V ˆ Σ. As the function f is a nonlinear function of φ, we will solve with the
Gauss–Newton Multilevel Method proposed in Reference [23]. In fact, the main theorem
states that if an iterative method is used which converges uniformly with respect to h, then
a stopping criterion of the form

respφpkqh , σ
pkq
h q ď λh

›

›

›
R
´

φ
pkq
h , σ

pkq
h

¯
›

›

›

0,Ω
, (20)

based on a particular residual is useful with λ independent of h. Here, this residual is
defined as the scalar product

respφpkqh , σ
pkq
h q “

´

R
´

φ
pkq
h , σ

pkq
h

¯

,J pφpkqh , σ
pkq
h qrψh, σhs

¯

0,Ω
, (21)

with J the Fréchet derivative of R (omitting the notation of dependence on the data of the
previous step) in the direction rψh, σhs P Vh ˆ Σh in the discretization space (to be defined
in Section 4 below) that we calculate in the following. As the nonlinearity is concentrated
in the term fpφq, we introduce

R0pφ, σ; φold, σoldq “ Rpφ, σ; φold, σoldq ´ τpfpφq, 0qJ (22)

in order to simplify the notation. The variable τ is not to be confused with τ P Σ, as
t “ told ` τ indicates the time step performed by the Euler discretization in the Gauss-
Newton Multilevel Method in Reference [23].

For the derivative associated with the variable σ, we obtain

B

Bθ
Rpφ, σ ` θτ; φold, σoldq

ˇ

ˇ

ˇ

ˇ

θ“0
“

ˆ

τ∇ ¨ τ
τ

˙

, (23)
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and, for the linear part associated with the variable φ, we have

B

Bθ
R0pφ` θψ, τ; φold, σoldq

ˇ

ˇ

ˇ

θ“0
“

ˆ

ψ´ τBψ
´A∇ψ

˙

. (24)

For the directional derivatives of the function f , we first state

B

Bθ
f pφS ` θψS, φE, φI , nq

ˇ

ˇ

ˇ

ˇ

θ“0
“

´

1´
α

n

¯

pβ IψSφI ` βEψSφEq, (25)

B

Bθ
f pφS, φE ` θψE, φI , nq

ˇ

ˇ

ˇ

ˇ

θ“0
“

´

1´
α

n

¯

pβEφSψEq, (26)

B

Bθ
f pφS, φE, φI ` θψI , nq

ˇ

ˇ

ˇ

ˇ

θ“0
“

´

1´
α

n

¯

pβ IφSψIq, (27)

such that

B

Bθ
f pφ` θψq

ˇ

ˇ

ˇ

ˇ

θ“0
“

´

1´
α

n

¯

pβ IpφSψI ` ψSφIq ` βEpφSψE ` ψSφEqq, (28)

and, with the matrix K and the notation from before, we obtain

B

Bθ
fpφ` θψq

ˇ

ˇ

ˇ

ˇ

θ“0
“

´

1´
α

n

¯

¨

˚

˚

˚

˚

˚

˚

˝

´β IpφSψI ` ψSφIq ´ βEpφSψE ` ψSφEq

β IpφSψI ` ψSφIq ` βEpφSψE ` ψSφEq

0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

, (29)

“

´

´pφTKψ`ψTKφq, φTKψ`ψTKφ, 0, 0, 0, 0
¯

, (30)

“ pφTKψ`ψTKφqp´1, 1, 0, 0, 0, 0qJ. (31)

The Fréchet derivative is now the sum of (23), (24), and (29).

J pφ, σqrψ, τs “

ˆ

τ∇ ¨ τ `ψ´ τpBψq ´ τpφTKψ`ψTKφq
τ ´ A∇ψ

˙

. (32)

4. Finite Element Discretization

In this work, we considered a fixed time step τ, while space-time adaptivity will be
considered in a follow-up paper. Therefore, in each time-step, the finite element discretiza-
tion of the Least-Squares Finite Element Method consists of considering the minimization
problem (19) in a finite-dimensional subspace Vh ˆ Σh Ď H1pΩq6 ˆ Hgpdiv, Ωq6, based on
a triangulation Th of Ω, i.e., we search pφh, σhq in Vh ˆ Σh, satisfying

›

›

›
Rpφh, σh; φold

h , σold
h q

›

›

›

2

0,Ω
ď

›

›

›
Rpψh, τh; φold

h , σold
h q

›

›

›

2

0,Ω
(33)

for all pψh, τhq P Vh ˆ Σh. As the Least-Squares Method does not require any compatibility
of the finite element spaces, we choose Vh “ P1pThq

6 as the standard Lagrange element
and Σh “ RT0pThq

6 X Hgpdiv, Ωq6 the Raviart-Thomas element space accounting for the
Neumann boundary condition prescribed by the function g. The Raviart-Thomas spaces
for arbitrary degree k and dimension n of the Ω Ă Rn are defined as

RTkpThq “ PkpThq
n ` xPkpThq, (34)



Computation 2021, 9, 18 9 of 22

where PkpTq is the space of local polynomials of degree at most k on a triangle T P Th. For
the case k “ 0, n “ 2, this gives

RT0pThq :“
 

q P P1pTq : @T P Th Da P R2 Db P R @x P T, qpxq “ a` bx
and @E P EΩ, rqsE ¨ nE “ 0u .

(35)

The local degrees of freedom of the combination P1pThq ˆ RT0pThq are pictured in
Figure 2.

Figure 2. Local degrees of freedom by using P1- and RT0 bases in the discretization of the first-order
system to be solved with the Least-Squares Method.

The inner basis functions of RT0 can be defined on the edge-path ωE “ T`E Y T´E ,
where T`E and T´E are the adjacent triangles of the edge E by the following formula:

ψEpxq :“

#

˘ 1
2|T|

`

x´ P˘E
˘

for x P T˘

0 else,
. (36)

Such a basis function is shown in Figure 3. With our computations of the Fréchet
derivative, the nonlinear least-squares problem (33) is equivalent to the variational problem

`

R
`

φh, σh
˘

,J pφh, σhqrψh, τhsq
˘

0,Ω “ 0 (37)

for all pψh, τhq P Vh ˆ Σh.

Figure 3. RT0-basis functions on a triangle patch ωT .

This is a nonlinear algebraic least-squares problem which we solved using an inexact
Gauss-Newton method similar to the one presented in Reference [23]. Successive approxi-
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mations to the nonlinear least-squares problem are, therefore, obtained by minimizing the
linear least-squares problem

Flinpδφh
, δσh ; φh

pkq, σh
pkqq “

›

›

›

›

R
´

φh
pkq, σh

pkq
¯

`J
´

φh
pkq, σh

pkq
¯

ˆ

δφh
δσh

˙
›

›

›

›

2

0,Ω
. (38)

Recall that minimizing Flin in Vh ˆ Σh is equivalent to the variational formulation

ˆ

R
´

φh
pkq, σh

pkq
¯

`J
´

φh
pkq, σh

pkq
¯

ˆ

δφh
δσh

˙

,J
´

φh
pkq, σh

pkq
¯

ˆ

ψh
τh

˙˙

0,Ω
“ 0 (39)

for all pψh, τhq P Vh ˆ Σh. Following the suggestion of the authors, we use

respφpkqh , σ
pkq
h q “

´

R
´

φ
pkq
h , σ

pkq
h ; φold

h , σold
h

¯

,J
´

φ
pkq
h , σ

pkq
h

¯

“

ψh, τh
‰

¯

0,Ω
(40)

as stopping criterion, i.e., the Gauss-Newton iteration is stopped as soon as the nonlinear
residual satisfies (20), where we choose λ “ 0.2. The steps are summarized in Algorithm 1.

Algorithm 1: Gauss-Newton for minimization of the nonlinear functional.

Input: solution of the last time step pφold
h , σold

h q, parameter λ
k “ 0
φ
pkq
h “ φold

h

σ
pkq
h “ σold

h

while respφpkqh , σ
pkq
h q ď λh

›

›

›
R
´

φ
pkq
h , σ

pkq
h

¯
›

›

›

0,Ω
do

Solve (39)
φ
pk`1q
h “ φ

pkq
h ` δφh

σ
pk`1q
h “ σ

pkq
h ` δσh

k “ k` 1
end

Result: φ
pkq
h , σ

pkq
h

5. Parameter Fitting

This section is devoted to the description of the parameters βE,I , σ, γE,R,Q,D, δ, η that
are used in the PDEs (11a)–(11f). The key idea is that we assume α, βE, β I , δ is linearly
dependent on some indicator θpx, tq taking into account the political measures. Surely, the
linear dependency is an important restriction and nonlinear functions will be considered in
a follow-up paper. On the other side, the SIR-type models are based on a linear incidence
rate such that this ansatz is expected to give first adequate results. We also let γD vary
over the time, taking into account that the health system had to learn and to increase
the capacities. γD does not vary in space. We started with an ansatz corresponding to a
polynomial of degree 5, and it turned out that a polynomial of degree 3 is sufficient.

The other parameters are assumed not to be dependent on the political restriction and,
therefore, are constant in time.

For the design of this indicator, we took inspiration from the flight data found in
Reference [24] for the comparison to the numbers of the COVID-19 not-yet inflicted year
2019 in Germany and the flight reduction in the year 2020 taken from Reference [25]. This
data has been collected by the Statistisches Bundesamt (Federal Statistical Office of Germany)
and is publicly accessible.

The indicator follows the data gathered for the reduction of the number of outgoing
and incoming flights, as well as the contact reduction measures imposed by the government,
over the time period of the outbreak of COVID-19 in Germany dating from January (or
March, as the contact restraints haven been imposed later) until September 2020. The
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assumption that justifies this indicator is a correlation of the measures and the intensity of
virus prevalence within the population. Our model is fed by two aspects, the first being
the reduction of flights. This is based on the fact that following the growing international
numbers in January, the government took measures of reducing flights to contain the risk
of the residential population to be infected by travelling individuals that might come back
from a high-risk area. This also gives rise to the question of reasonable initial values for the
indicator and draws a connection between these of the compartments presented earlier in
Section 2. Figure 4 shows how drastically the number in flights decreases up to April and
then slowly increases again but stagnates in August.

Figure 4. Flight data collected by the Federal Statistical Office of Germany in Reference [25]. A value of 100% is assigned if
the number of outgoing and incoming flights in Germany for the respective region is the same as in the year 2019.

This can be linked to our second class of data, the contact restrictions. As the numbers
in infections surged in March, a lockdown was announced across Germany with the same
regulation imposed in every federal state: Only people belonging from their own household
could be met and maximum one other person in public. Big gatherings have been forbidden
completely and even travelling restrictions across the federal states (within the country!)
have been imposed via bans on touristic stays at hotels. A model that takes these travel
restrictions into account has also been considered in Reference [26]. These restrictions
have been successively loosened on a private and a public level over the course of May
and June and in July, August, and September the situation has been lead towards further
normalization by permissions for public gatherings with growing numbers of participants
of 100, 200, 350, etc. This tendency is reflected in the flight numbers, as they have been
increasing from the depression in April, while being still far away from pre-pandemic
numbers. The differences in the states can be seen while studying the respective “infection
containment acts” and press releases (given that the numbers are reflected correctly). Not
all states, however, have completely discarded the contact restraints in June and July (like
Brandenburg and Mecklenburg-Vorpommern) but stayed with a moderate permission to
meet an arbitrary number of people belonging to two households or a group of maximum
10 people from different households (like in Bavaria). These, however, are regulations
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for public meetings, but private gatherings have frequently not been observed, or no
regulations have been imposed on private premises whatsoever (Bavaria, since June).

Drawing together these two classes of data we developed an indicator, the numbers of
which can be seen in Table 1 and Figure 5. The indicator combines the contact limitations
and the travel restrictions in terms of flights to create a weighting in the sense that the
spread of the virus in already existing infections stays more close-region bound and the
number of new infections is predicted to stay lower than an uncontrollable development
without any restrictions. Thus, a value of 0.8, for example, indicates that due to travel and
contact restrictions active at that time, a reduction of the transmission rates of the virus in
our model towards 80% is used in the calculations compared to the uncontrolled case. At
the beginning of 2020, restrictions for flights from China were already in place, as well as
limitations of large events. Therefore, we chose to set this indicator to 0.8 for January in
all federal states. Depending on how fast the government of the respective state were in
implementing the measures, we let this indicator decrease until April. Note, for instance,
that Bavaria had the strictest regulation in April and has, therefore, the smaller indicator in
April. Similarly, the regulations were decreasing in July but remain very strong, and this is
the reason why this state has, again, the smallest indicator from July to September.

Figure 5. Indicator fitted to the collected data on contact restrictions and flights for comparison.
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Table 1. Value of the indicator per month and state as shown in Figure 5.

1 (Jan.) 2 (Feb.) 3 (Mar.) 4 (Apr.) 5 (May) 6 (Jun.) 7 (Jul.) 8 (Aug.) 9 (Sept.)

Berlin 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.31
Bremen 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.31
NRW 0.8 0.74 0.45 0.04 0.04 0.09 0.24 0.29 0.31

Sachsen 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.31
Thüringen 0.8 0.72 0.45 0.04 0.04 0.09 0.24 0.29 0.31

Hessen 0.8 0.78 0.43 0.04 0.04 0.09 0.24 0.29 0.3
Baden-Würt. 0.8 0.76 0.41 0.04 0.04 0.09 0.24 0.29 0.3

Rheinland-Pfalz 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.3
Hamburg 0.8 0.78 0.44 0.04 0.04 0.09 0.24 0.29 0.3

Niedersachsen 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.3
Bayern 0.8 0.73 0.45 0.01 0.04 0.09 0.1 0.11 0.11

Mecklenburg-V. 0.8 0.62 0.31 0.03 0.03 0.08 0.17 0.17 0.22
Saarland 0.8 0.78 0.45 0.03 0.04 0.09 0.24 0.29 0.31

6. Numerical Experiment

We performed the numerical experiment with the open source FENICS (see, e.g.,
Reference [27]). We use a finite-element spatial discretization of Germany, consisting of
an unstructured mesh containing 1773 elements. Further results with finer meshes and
adaptive mesh refinement strategies will be presented in a follow-up paper. In this project,
we restricted ourselves to the time step τ “ 0.1 day due to the fact the the coupled PDE
had to be solved many times. The initial conditions are the data from the “COVID-19
Dashboard” [28] of the Robert Koch-Institut , the leading epidemiological research institute in
Germany concerned with data gathering at this time, of February 15th in which evaluations
are based on the reporting data transmitted from the health authorities according to IfSG
(infection protection acts). Data can be individually chosen for the respective states and
regions. On the coast part of the German border, zero Neumann boundary conditions
are set, while, on the remaining part, the data from an SRI model without diffusion (nor
quarantine) are used.

The data from 15th February to 1st June was used for the calibration for the constant-
in-time parameters, i.e., σ, γE,R, η. In order to investigate the sensibility of these coefficients,
we also reproduced the calibration using less data, always starting from 15th February.
For each Bundesland (federal state), we show the results in Figure 6. For the parameter
depending on the indicator, the results of this analysis are shown in Figure 7. Figure 8
shows the evolving spatial pattern of the COVID-19 outbreak in Germany. A comparison
of the prediction and the data from RKI is shown in Figure 9.
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1

Figure 6. Values of the parameters σ, γE,R, η with different time period fitting for the respective federal states.
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Figure 7. Values of γQpθq, βE,Ipθq, δpθqwith different time period fitting for the respective federal states.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Regional spread of the virus at different time stages after initial outbreak on day 1 (D1). (a) D55, (b) D100, (c)
D150, (d) D200, (e) D235, (f) D257.
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Figure 9. Predicted number of infections in Germany versus real data from RKI.

In order to present an evaluation of the accuracy of the prediction we start by consid-
ering the error as the forecast minus the real RKI data. Unfortunately, the RKI data are not
monotone due to infrastructural and organizational reasons. For instance, reported new
infections are linked to the days of the week in a sense that the public health departments
are frequently closed over the weekends and have only started to register new cases also
during the weekends after the situation has been severely more tense. Thus, Monday
reports contain more new cases than the other days of the week up until Friday, as it can
also contain the cases to be accounted towards Saturday and Sunday.

From the RKI data, we, therefore, constructed a piecewise linear interpolation IRKI,d with

IRKI,dpxq “ RKIpx` d´ px ” 7qq
´

1´ px´dq”7
7

¯

` RKIpx` 7` d´ px ” 7qq ppx´dq”7q
7 (41)

between each weekday, as well as the average IRKI,avg7 of the last seven days. The dif-
ference between the RKI data and these interpolations, as well as the difference between
the RKI data and the prediction, are shown in Figure 10. We see that the prediction
overshoots the Thursday line, such that the error Npredicted ´ NIRKI,thursday is positive.The
forecast undershoots none of the other lines over the whole prediction time. We note
that, until the beginning of August, the forecast undershoots the avg line and the error
Npredicted´NRKI,avg7 is negative. After this time, the forecast overshoots all the RKI interpo-
lations until the end of September. The different errors are shown in Figure 11. We remark
that the error oscillates taking into account that the RKI data oscillates. Overall, the error
remains smaller than the error due to the piecewise linear interpolation of the data.



Computation 2021, 9, 18 18 of 22

0

1000

2000

3000

4000

5000

6000

7000

8000

21. Mär. 10. Apr. 30. Apr. 20. Mai. 9. Jun. 29. Jun. 19. Jul. 8. Aug. 28. Aug. 17. Sep.

RKI data Monday Tuesday Wednesday Thursday Friday Saturday Sunday avg Prediction

Figure 10. Predicted number of infections in Germany, the interpolation made for each day of the
week compared, and the observed data from the RKI.
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Figure 11. Error curves for the respective day of interpolation and their average marked in green; the
calculated prediction is marked in violet.

In order to deal with these discrepancies, we computed the mean absolute percentage
error (MAPE) and root-mean-square error (RMSE) for each of the previously mentioned
interpolations of the RKI data. These quantities, obtained with

MAPE :
1

nN

ÿ |Npredicted ´ IRKI,d|

IRKI,d
RMSE :

d

1
nN

ÿ

pNpredicted ´ IRKI,dq
2, (42)

are given in Table 2. These can be compared to the numbers in the work [10] to find a similar
accuracy of the prognostic. We remark, again, that the interpolation has a larger effect:

In order to study how the model is sensitive to the indicator, we perturbed the indicator
up to 10%. The results in Figure 12 indicate that small variations are acceptable, as the
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resulting data stay all in a close proximity, even so still in a reasonable range in the second
half of the timeline.

While the results of our numerical experiments look very promising, this is definitely
to be accounted to some of the specific decisions we took for tailoring our calculations.
For the indicator, we had to set a suitable initial value, for example, which represents the
percentage of non-restrictions (100% means no restrictions) at some point. In addition,
while the data we collected are a lot, only certain moments where incorporated and it is also
always unknown beforehand whether the contact restrictions, for instance, will always be
followed directly after press announcement. In this sense, the human choice is a big factor
that cannot always be considered accordingly. (We refer to the most recent developments,
as a “hard lockdown” has been imposed at the beginning of November that is still active,
but the count of new infection cases per day have not decreased to a “satisfactory level”
since. One of the reasons could be the dissatisfaction of large parts of the population with
the deemed too drastic and restrictive measures, calls for demonstrations and large (and
also private) gatherings without proper regard of the distancing measures, the loosening of
the rules during Christmas-time, and the like.)

Our employed model is largely based on the works of Reference [10,13,14] and our
Least-Squares solution technique shows a consistency with the numerical results presented
in these works. However, some adjustments have been made in order to fit the computa-
tional work more tightly to the real-life data, thus producing more promising predictions.
In Reference [13], the model successively forecasts exposed and infected cases which at this
point are of high importance to the public health institutions. Similarly to our interpolation
technique, a comparison of an “optimistic” and a “pessimistic” case can be witnessed,
with the actual real-life data lying in between. Like the authors of this work, we come
to the conclusion that this particular system of PDEs successively models the local virus
dynamics on a meso-scale level.

The question of interest for practical relevance of our work remains: Can the predic-
tions be used to influence and support political decisions in terms of virus containment?
The answer is yes, but the transmission dynamics have to be investigated more closely in
order to limit grave effects (like lockdowns) on the whole of the population. It could be
more favorable to single out so-called virus hubs and rather focus on containment strategies
in these areas while maintaining a tolerable, moderate policy for the remaining areas. To
this end, the authors of Reference [10] present a detailed work on inter-state transmission
that can be accounted to the use of the GLEAM network that serves to analyze the dynamics
more closely in heavily-affected regions due to tourism and high traffic density. In addition,
concrete rates for specific contact restrictions (that also include, for example, school closings,
which could be one of the new aspects that we could include, as well in future work) have
been used in the model, while we rely on the indicator for parameter fitting. It has to be
noted though that the problem of limited testing and the related dark figures arises, that
introduces a uncertainty in the data that is used for parameter calibration. Nevertheless,
the use of such a network in our model could lead to even more closely fitted spacial
predictions of spread and, thus, more detailed timelines, like in Figure 8, where, in part (f),
some suggested virus hubs are noticeable of the type that the authors of Reference [10] can
predict very accurately with the fine-tuning of the GLEAM network. Like in our approach,
the predictions never undershot the actual observed numbers (in the most relevant cases),
which indicated a high potential in practical use.

In Reference [14], another approach is shown that uses a machine learning technique
to simulate the spread of the virus. A Bayesian learning in OPAL (Occam Plausibility
Algorithm) is presented, where the simulation process in terms of more automatically
computing spatio-temporal evolving can be seen. Comparing the resulting correlation
and Pearson coefficients, our results show a similar accuracy, presenting two solution
techniques to such systems of PDEs. Reference [10] presents a mixture of these two suitable
techniques via a meso-scale approach, like ours, and refinement via a machine learning
technique, the GLEAM network.
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Table 2. Mean absolute percentage error (MAPE), root-mean-square error (RMSE), and Pearson
coefficients for the different days, based on the interpolation of the data for their 7-day average.

Day MAPE RMSE/Max(RKI) Pearson Coeffcient

no interpolation 0.396 46.253 0.843

Monday 2.623 1620.667 0.884
Tuesday 146.343 1564.583 0.865

Wednesday 99.048 1101.250 0.851
Thursday 59.527 731.861 0.816

Friday 2.256 1202.249 0.875
Saturday 39.708 1405.030 0.883
Sunday 99.898 651.748 0.901

Avg 2.450 11,497.504 0.864

−10% − 9% − 8% − 7% − 6% − 5%

− 4% − 3% − 2% − 1% 1% 2% 3% 4%

5% 6% 7% 8% 9% 10%

Figure 12. Sensitivity of the model towards the perturbations of the indicator.

Overall, we observe that our sensitivity analysis suggests that our indicator serves as
a good tool to tune our predictions taking into account political measures that are taken.
These predictions can in turn be used to help politicians and public health offices to take
according measures in terms of contact restrictions and medical, as well as supply resource
re-evaluation, to limit the virus spread to a tolerable amount and to anticipate spreads in
particularly affected areas due to, for example, touristic location.

For future work, we are considering a more refined tailoring of our discretization
method. A more technically challenging task due to its complexity and amount of data it
produces is to implement the successive solution of the system with more than one Euler
time step in one solution procedure. For further theoretical work, we will try to develop
more modifications to classical models in the literature to test the limits of the accuracy of
our discretization method. Works in actual simulation will be aimed at, as well.

Supplementary Materials: The following is available at https://www.mdpi.com/2079-3197/9/2/
18/s1, Table S1: RKI data.
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