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Abstract: We address the inverse medium scattering problem with phaseless data motivated by
nondestructive testing for optical fibers. As the phase information of the data is unknown, this
problem may be regarded as a standard phase retrieval problem that consists of identifying the phase
from the amplitude of data and the structure of the related operator. This problem has been studied
intensively due to its wide applications in physics and engineering. However, the uniqueness of the
inverse problem with phaseless data is still open and the problem itself is severely ill-posed. In this
work, we construct a model to approximate the solution operator in finite-dimensional spaces by
a deep neural network assuming that the refractive index is radially symmetric. We are then able
to recover the refractive index from the phaseless data. Numerical experiments are presented to
illustrate the effectiveness of the proposed model.

Keywords: deep neural network; phase retrieval; inverse scattering problems; nondestructive testing;
optical fibers

1. Introduction

Consider an operator T0 from a certain vector space X to another vector space Y:

T0 : X → Y

x 7→ y.

The direct problem may be regarded as finding y for a given x. On the other hand,
in the inverse problem, one seeks x, which represents the parameters characterizing the
system, from the measurement y. In many important applications, such as signal analysis,
imaging, crystallography, and optics, the space Y is defined in the complex field, i.e., y is a
complex valued function such as y = |y|eiΦ. However, it is very computationally expensive
or even impossible to measure the phase Φ. For this reason, the phase retrieval problem,
written as

y = T (x) := |T0(x)|,

has been studied intensively and has a long and rich history in various aspects. One of
the main difficulties in the phase retrieval problems lies in nonuniqueness. Consider a
classical signal recovery problem that reconstructs the signal f (t) from the amplitude of
its Fourier transform F ( f ) :=

∫
f (t)e−iξtdt. Even taking into account trivial ambiguities

such as translation and reflection invariance, it is known that there is no uniqueness in
phase retrieval. For example, for any function g such that F (g) = eiΦ(ξ), the amplitudes
of F ( f ∗ g) and F ( f ) are identical. Here, f ∗ g denotes the convolution of f and g. This
nonuniqueness in phase retrieval can be removed by restricting the domain or property of
the operator T . We refer the reader to references [1–4] for comprehensive studies on phase
retrieval problems.
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In this manuscript, we address the phase retrieval arising in the 2-dimensional inverse
medium scattering problem, which is governed by the following Helmholtz equation:

∆u + k2qu = 0 in R2, (1a)

where k > 0 is the wave number and q > 0 is the refractive index. Throughout this paper,
it is assumed that 1− q has compact support. That is, for a circle BR0 centered at 0 with
radius R0,

q(x) = 1, x ∈ R2 \ BR0 . (1b)

The total field u comprises the incident field ui and the scattered field us:

u = ui + us, ui = eikx·d. (1c)

The incident field ui(x; d) = exp(ikx · d) with incident direction d ∈ S1 solves the
homogeneous equation

∆ui + k2ui = 0 in R2.

The scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2
(

∂us

∂r
− ikus

)
= 0, |x| = r. (1d)

The goal of the inverse medium scattering problem is to reconstruct the refractive index
q from the measurement of scattered fields. This problem has been studied analytically as
well as numerically in many fields, such as medical imaging, nondestructive testing, optics,
radar, and seismology. See [5–7] for comprehensive surveys of this problem.

Our work here is especially motivated by the nondestructive testing of optical fibers.
Generally, an optical fiber consists of a core surrounded by cladding material with the
desired index of refraction. However, the index of refraction may be inaccurate due to
manufacturing error, which would be problematic in optical communications. One testing
method is to identify the refractive index profile q from the measurement of near-field data,
i.e., u(x; d)||x|=R. However, it is very expensive to measure the scattered field, especially
for high frequencies. For this reason, we seek the refractive index from the modulus of the
full field data at |x| = R, where R ≥ R0, i.e., we want to solve

T (q) =
∣∣∣u(x; d)||x|=R

∣∣∣.
Note that from the motivation, we assume that q is radially symmetric throughout

this paper, i.e.,
q = q(r), r = |x|. (2)

This problem can be categorized into the class of inverse problems with phaseless data,
which have also been widely studied over the past decades (see, e.g., [8–13]). Although sev-
eral results have been provided for the uniqueness of the inverse problem without phase
information under certain restrictions (e.g., [14–18]), to the authors’ best knowledge, iden-
tification of the refractive index from the measured data set {|u(x, d)| : |x| = R, d ∈ S1}
remains open. Furthermore, it is well known that the inverse problem is severely ill-posed
in the sense that the solution q is highly sensitive to changes in the data |u(x, d)||x|=R.

To overcome these difficulties, we invoke a deep neural network (DNN) [19] to
approximate T−1. Several works have described solving inverse problems and performing
phase retrievals using DNNs. Indeed, DNNs have been shown to successfully solve
various inverse problems in imaging in the last few years. We refer the reader to [20–24]
and the references therein. In particular, there are several works that have set out to solve
phase retrieval in imaging. See, for example, [25,26]. It is worth mentioning that Xu et al.
proposed deep learning methods for inversion of the electromagnetic inverse scattering
problem without phase information in [27]. They reconstructed piecewise constant relative
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permittivity profiles using the U-net convolutional neural network. In our work, we use
a multilayer perceptron to train T −1 (or T ) on the subspace XM of X by considering the
inverse problem as a prediction of a set of points that are Fourier coefficients of 1− q. Then,
we are able to successfully construct models to approximate T −1 for various wavenumbers
k. As ∪∞

M=1XM = X, it is expected that the resolution of the reconstructed q ∈ X can be
increased by taking a large enough M with the proposed approach.

The rest of this paper is organized as follows: In Section 2, we discuss the direct
problem for the system (1) and define the operator T , both of which are essential for
obtaining the data set. In Section 3, we discretize the function spaces X and Y and redefine
operator T accordingly. Then, we illustrate the numerical results with examples. Some
concluding remarks are drawn in the last section.

2. Mathematical Model

In this section, we discuss the direct problem of the system (1) under assumption (2).
For a general refractive index q, the solution u to the system (1) depends on the in-
cident direction d, and they are related highly nonlinearly. However, the symmetric
assumption (2) gives

u(Qx; d1) = u(x; d2),

where Q is the rotation operator such that d1 = Qd2. Indeed, applying Q to x in (1) with
d = d1 yields

∆u(Qx; d1) + k2q(r)u(Qx; d1) = 0 in R2,

u(Qx; d1) = eikQx·d1 + us(Qx; d1),

lim
r→∞

r1/2
(

∂us(Qx; d1)

∂r
− ikus(Qx; d1)

)
= 0

due to the rotational invariance of the Laplacian. The uniqueness of the direct problem (1)
together with eikQx·d1 = ui(x; Q−1d1) implies that

u(Qx; d1) = u(x; d2), d2 = Q−1d1.

That is, for a given u(x; d1), one can determine u(x; d) for any d ∈ S1 as long as the
refractive index q is radially symmetric. Thus, without loss of generality, we set

d = (1, 0)

and we omit d from u(x; d) and ui(x; d).
It is well known that the system of Equations (1) is equivalent to the Lippmann–

Schwinger equation (e.g., [6]),

u(x) = ui(x)− ik2

4

∫
R2

H(1)
0 (k|x− y|)(1− q(|y|))u(y)dy, x ∈ R2, (3)

where H(1)
n is the Hankel function of the first kind of order n. Let

u(x) =
∞

∑
n=−∞

sn(r)einθ . (4)

Then, we deduce that sn solves

sn(r) = in Jn(kr)− k2πi
2

∫ ∞

0
r̃ Jn(kr<)H(1)

n (kr>)(1− q(r̃))sn(r̃)dr̃, 0 ≤ r < ∞
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from substitutions of the Jacobi–Anger formula [28]

ui(x; d) =
∞

∑
n=−∞

in Jn(kr)einθ , d = (1, 0),

and the addition theorem [29]

H(1)
0 (k|x− y|) =

∞

∑
n=−∞

ein(θ−θ̃) Jn(kr<)H(1)
n (kr>)

into (3). Here, (r, θ) and (r̃, θ̃) are the polar coordinates for x and y, respectively. Jn is
the Bessel function of the first kind of order n, r< represents the lesser of r and r̃, and r>
represents the greater. By taking into account the support of 1 − q and the change of
variables

ρ = kr, ρ̃ = kr̃,

we have

Sn(ρ) = in Jn(ρ)−
πi
2

∫ ρ0

0
ρ̃Jn(ρ<)H(1)

n (ρ>)p(ρ̃)Sn(ρ̃)dρ̃, 0 ≤ ρ ≤ ρ0. (5)

Here, we denote

Sn(ρ) := sn(r), p(ρ) := 1− q(r), ρ0 := kR.

It is worth noting that (5) can be derived by the method of separation of variables,
which also justifies the representation of (4) (e.g., [30]). Furthermore, one can show that
the integral equation (5) is uniquely solvable in L∞ for p ∈ L2 [6,30]. Together with the
asymptotic behavior of the Bessel functions |Jn(ρ)| ≤ C/n (0 ≤ ρ ≤ n/2) [31], it follows
that for some constant C > 0

‖Sn‖L∞(0,ρ0)
≤ C

1
n

,

which implies
∞

∑
n=∞

Sn(ρ0)einθ ∈ L2(0, 2π).

We also remark that as J−n = (−1)n Jn and H−n = (−1)n Hn, the uniqueness of
(5) yields

S−n(ρ) = Sn(ρ), 0 ≤ ρ ≤ ρ0.

Now, we formulate the inverse problem considered here. Let X = L2(0, R) and
Y = L2(0, 2π), and define

T : X → Y

q(r) 7→ S(θ) :=
∣∣∣ ∞

∑
n=−∞

Sn(kR)einθ
∣∣∣.

For a given S, we are interested in solving

T (q) = S. (6)

3. Deep Neural Network for the Inverse Problem

Given a set of data pairs {(T (q), q)}, we seek to approximate T −1 with the neural
network to solve (6). To this end, it is necessary to discretize q(r) and S(θ) and approximate
X and Y in finite-dimensional spaces. Since it is assumed that 1− q(|x|) is compactly
supported in B(0, R) (1b), we restrict X to square integrable functions such that q(R) = 1.
We further assume that q(0) = 1 to simplify the problem. That is, 1− q belongs to L2

0(0, R),
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a set of square integrable functions vanishing at the boundary. As {sin(mπr/R)}∞
m=1 is an

orthogonal basis for L2
0(0, R), we approximate q(r) by a projectile onto XM, where

XM := {1−
M

∑
m=1

cm sin
mπr

R
}.

In this manner, we are able to discretize q(r) as a vector C = (c1, c2, · · · , cM)T . Ad-
ditionally, S(θ) is vectorized by uniform discretization {θl}128

l=1 of θ in [0, 2π] for the finite
sum |∑N

n=−N Sn(kR)einθ |. Here, Sn(kR) is obtained from the numerical solution to the
integral Equation (5). We use the trapezoidal rule for numerical integration to convert (5)
to a linear system

Sn(ρα) = in Jn(ρα)−
πi
2

K

∑
β=1

ωβρ̃β Jn(ρα<)H(1)
n (ρα>)p(ρ̃β)Sn(ρ̃β)∆ρ̃, α = 1, 2, · · · , K.

Here, ρ1 = 0, ρK = ρ0 and ωβ are weighting factors for the trapezoidal method.
We take ∆ρ̃ = 0.005. All the computations to generate the data were performed using
MATLAB R2020a.

Table 1 shows that the approximation |∑N
n=−N Sn(kR)einθ | converges to S(θ) quickly

as N increases for various q. With an abuse of notation, S denotes a column vector whose
lth component is |∑N

n=−N Sn(kR)einθl | (l = 1, 2, · · · , 128) to represent S(θ).

Table 1. The mean of ‖∑N
n=−N Sn(kR)einθ‖L2 for R = 1 and k = 5, where Sn is the numerical solution

to the integral equation (5) with q ∈ XM such that (∑M
m=1 |cm|2)1/2 ≤ 0.1. The coefficients {cm} of q

are chosen randomly from the uniform distribution. The sample size is 1000.

M N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 · · · N = 20

2 2.274975 2.456498 2.500061 2.507212 2.508060 2.508137 · · · 2.508143
4 2.272488 2.455003 2.498695 2.505858 2.506708 2.506785 · · · 2.506790
6 2.270497 2.453404 2.497168 2.504340 2.505191 2.505267 · · · 2.505273
8 2.272039 2.454842 2.498589 2.505758 2.506608 2.506685 · · · 2.506690

Now, we are in a position to approximate T −1 by

arg minF∈Neural Net ∑
j
‖Cj − F(Sj)‖2.

DNNs have various methods such as Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and transfer learning. However, these methods are all suitable for
solving classification or time series problems. As our problem can be regarded as predicting
a set of points–coefficients, we use a multilayer perceptron as our DNN. The Feed-Forward
Neural Network (FFNN) is used since there is no correlation between the coefficients ci,
and the network was configured according to the number of coefficients to be predicted.
The architecture of a multilayer perceptron is illustrated in Figure 1. We refer the reader to
references [32,33] for various methods for the DNNs.
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Figure 1. The architecture of a multilayer perceptron with 12 hidden layers.

A total of 12,000 numerical data sets with R = 1, N = 8, M = 5 were separated into
8000 training data sets, 2000 development data sets, and 2000 evaluation data sets. All
training was performed using an NVIDIA Quadro P4000.

Figure 2 shows the distribution of relative errors of the 2000 evaluation data sets for
different wave numbers, i.e., {‖qj − q̂j‖2/‖qj‖2}2000

j=1 . Here, q is the actual refractive index
and q̂ is the recovered one by the trained model. To compare the learning performance
for each k, we configured the network with the same conditions each time. The network
consists of 128 nodes for the input layer of sources and 12 hidden layers. The rectified
linear unit (ReLU) is used for the activation function, and dropout is not adopted because it
reduces the performance. We take the mean squared error for the loss function and Adam
for the optimizer with a learning rate 0.00001.

Figure 2. Distribution of the relative errors of the 2000 evaluation data sets for different wavenumbers. The central mark on
each box indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using
the ‘+’ symbol.

We note that in the simulations with the indicated settings, the performance of the
model is low or the model is not trained for wavenumbers less than 5. This is related to the
nonlinearity of the operator. Indeed, for small values of k, the scattered data are more widely
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distributed on {Sn} than for larger k; see [11,30]. On the other hand, at high frequencies,
the nonlinear Equation (6) becomes extremely oscillatory and possesses many more local
minima [34]. Furthermore, the scattering data is accumulated near S0, i.e., |S0| >> |Sn| for
large n. This reduces the ill-posedness of the inverse problem but it also reduces the rank
of {Sj(θl)}. Recall that S(θ) = ∑N

n=−N Sn(kR)einθ . Then, the model to be trained tends to
be an underdetermined problem. For these reasons, the performance of the model at high
frequency is low, as shown in the case of k = 20.

Table 2 shows the coefficients of the recovered 1− q when q /∈ X5 from the trained
model for X5. The recovered coefficient cm(m > M) is very small in XM(M = 2, 4 < 5),
and in the case of XM(M = 6, 8 > 5), our model acts as the projection of XM onto X5 by
ignoring the actual cm(m > 5)—i.e., our model is indeed an approximation of the projection
of T −1 onto X5. This can be verified from Figure 3 as well. In Figure 3, we show how
the model can recover the refractive indexes when they are general functions that do not
belong to XM. We also provide the relative errors defined as ‖P5q− q̂‖2/‖P5q‖2. Here, P5
is the projection operator onto X5.

Table 2. Actual coefficients cm of 1− q(r) for q ∈ XM(M = 2, 4, 6, 8) and recovered coefficients from the trained model for
X5 with k = 7. The trained model for X5 can recover cm only for 1 ≤ m ≤ 5. The recovered coefficients c3, c4, c5 in X2 and c5

in X4 are very small. In the case of X6 and X8, the trained model is able to recover cm(1 ≤ m ≤ 5) successfully and ignores
the other coefficients cm(m > 5).

XM c1 c2 c3 c4 c5 c6 c7 c8

X2 −0.065950 −0.055493
Recovered −0.065947 −0.056183 0.000388 −0.000543 0.001080

X2 0.053806 0.016251
Recovered 0.054025 0.015160 0.000185 −0.001412 −0.000185

X4 0.055903 0.040100 −0.042993 0.109659
Recovered 0.056550 0.039870 −0.043363 0.107659 −0.000127

X4 −0.027582 −0.093878 −0.006221 −0.001151
Recovered −0.027636 −0.094518 −0.006339 −0.001007 0.000606

X6 0.026614 −0.020468 0.000594 −0.025930 0.103335 −0.025599
Recovered 0.024475 −0.025661 −0.001172 -0.027904 0.114871

X6 −0.031879 −0.074713 0.012923 0.009334 −0.056347 0.015316
Recovered −0.031876 −0.075086 0.012429 0.009800 −0.065774

X8 0.001487 −0.004899 −0.047159 −0.008064 −0.056774 0.073704 0.048645 −0.073397
Recovered 0.000079 −0.006535 −0.046007 −0.011743 −0.058407

X8 −0.009015 0.098806 −0.030338 0.008131 0.062194 −0.049663 −0.010376 0.021190
Recovered −0.009203 0.095855 −0.027988 0.006213 0.075342
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Figure 3. General indexes of refraction and those reconstructed by the trained model for X5 with k = 7. The relative errors
‖P5q− q̂‖2/‖P5q‖2 are 0.0365 (top left), 0.0164 (top right), 0.0267 (bottom left), and 0.0574 (bottom right).

One of the difficulties in solving inverse problems and phase retrieval problems is
their ill-posedness; a small error in measurement may result in a much larger error in the
numerical solutions. Thus, a certain regularization technique is required. The classical
regularization method converts the ill-posed problem to a well-posed problem using single
fidelity. On the other hand, the DNN uses group data fidelity to learn the inverse map T −1

from the training data [35]. This may also convert the ill-posed problem to a well-posed
problem. Figure 4 shows how our trained model handles noise data. Indeed, we illustrate
the distribution of {‖qj− q̂j‖2/‖qj‖2}2000

j=1 in Figure 4, where q̂ is the reconstructed refractive
index from noisy data Sδ = S + δ with Gaussian noise δ added. We notice that the relative
errors increase according to the Gaussian noise level without any sudden change. Specific
examples with different signal-to-noise ratios (SNRs) are shown in Figure 5. The SNR is
computed as

SNR = 20 log10
‖S‖2

‖δ‖2
.
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Figure 4. Distribution of the relative errors of the 2000 evaluation data sets with different Gaussian noise levels under the
trained model for X5 with k = 7. The central mark on each box indicates the median and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the ‘+’ symbol.

Figure 5. Refractive indexes from noise data with different SNRs reconstructed by the trained model for X5 with k = 7.

4. Discussion and Conclusions

In this work, we solve the phase retrieval problem arising from the inverse medium
scattering problem using the DNN. From the set of data pairs {(Sj, qj)}, we train the model
to approximate T −1. More precisely, our model is an approximation of

PMT −1,

where PM is the projection operator onto the M-dimensional Fourier sine space. Since the
Fourier sine space is dense in L2

0, we are able to obtain an approximate solution to T (q) = S
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for any 1− q ∈ L2
0. In the machine learning approach, it is crucial to design the input and

output arguments. In this work, we take Fourier coefficients to represent the refractive
index. Then, we can reconstruct the shape well with a relatively small dimension M.
Furthermore, the error may be reduced by increasing M. However, for large M, the model
is not easily trained since the nonlinearity of q and S in T and the sensitivity dramatically
increase as M increases. For this reason, a new network is required for larger M; this is
the focus of our ongoing work. We notice that the nonlinearity of T is also related to the
wavenumber k. For small k, the scattered data are more widely distributed on {Sn} than
for larger k. This increases the nonlinearity of the operator and yields low performance of
the model. At high frequencies, the nonlinear equation we considered becomes extremely
oscillatory and possesses many more local minima. Furthermore, the scattering data
is accumulated, which reduces the rank of the data set. This increases the variance of
performance.

Although the uniqueness of the problem considered here remains open, we can suc-
cessfully reconstruct the refractive index from phaseless scattering data. In particular, our
model overcomes the ill-posedness of the problems using group data fidelity. This converts
an ill-posed problem to a well-posed problem. In addition, the proposed method does
not require any additional computation once the model is trained by learning, and the
solution can be obtained directly from the measured data, making it suitable for industrial
applications such as the nondestructive testing of optical fibers.
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