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Abstract: Bi-factor models of intelligence tend to outperform higher-order g factor models statistically.
The literature provides the following rivalling explanations: (i) the bi-factor model represents or
closely approximates the true underlying data-generating mechanism; (ii) fit indices are biased
against the higher-order g factor model in favor of the bi-factor model; (iii) a network structure
underlies the data. We used a Monte Carlo simulation to investigate the validity and plausibility of
each of these explanations, while controlling for their rivals. To this end, we generated 1000 sample
data sets according to three competing models—a bi-factor model, a (nested) higher-order factor
model, and a (non-nested) network model—with 3000 data sets in total. Parameter values were based
on the confirmatory analyses of the Wechsler Scale of Intelligence IV. On each simulated data set,
we (1) refitted the three models, (2) obtained the fit statistics, and (3) performed a model selection
procedure. We found no evidence that the fit measures themselves are biased, but conclude that
biased inferences can arise when approximate or incremental fit indices are used as if they were
relative fit measures. The validity of the network explanation was established while the outcomes
of our network simulations were consistent with previously reported empirical findings, indicating
that the network explanation is also a plausible one. The empirical findings are inconsistent with
the (also validated) hypothesis that a bi-factor model is the true model. In future model selection
procedures, we recommend that researchers consider network models of intelligence, especially when
a higher-order g factor model is rejected in favor of a bi-factor model.

Keywords: bi-factor modeling; higher-order g factor modeling; psychometric network modeling

1. Introduction

To date, four out of the ten most-cited papers published in the Journal of Intelligence
focus on bi-factor modeling to determine the structure of intelligence (Beaujean 2015;
Cucina and Byle 2017; Eid et al. 2018; Morgan et al. 2015). What insights can we glean from
these publications when we try to integrate the findings? First, in more than 90 percent
of direct comparisons between bi-factor models and higher-order g-factor models, the bi-
factor model outperforms its higher-order competitor statistically (Cucina and Byle 2017).
Second, bi-factor modeling has raised concerns (Eid et al. 2018; Morgan et al. 2015) (see, also
Bonifay et al. 2017; Bornovalova et al. 2020; Decker 2020; Greene et al. 2019; Hood 2008;
Murray and Johnson 2013; Van Bork et al. 2017; Zhang et al. 2020). As Morgan et al.
(2015) notes, for example, fit measures may show ‘statistical bias’ against higher-order g
factor models in favor of bi-factor models. Such (potential) bias is one of the reasons why
models of intelligence should be evaluated not only through statistical comparison, but
also on conceptual and theoretical grounds (Morgan et al. 2015) (see also, Murray and
Johnson 2013; Schmank et al. 2019). Finally, such grounds may have been a reason for
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some researchers approaching bi-factor solutions with caution (Morgan et al. 2015), but, for
others, these grounds may have been a reason to continue to promote them (Beaujean 2015;
Cucina and Byle 2017).

We conclude that despite the well-established better fit of bi-factor models of intelli-
gence, the field seems to be divided over the appropriateness and usefulness of bi-factor
modeling. Drawing inspiration from the fifth and sixth top-10-cited papers in this jour-
nal (Van der Maas et al. 2017, 2014), we believe that adding a network perspective on
intelligence can contribute to the discussion, especially when combined with a series of
illustrative data simulations.

Data simulations were also the basis of the aforementioned caution concerning the
better fit of bi-factor models as compared to higher-order factor models. Morgan et al.
(2015) employed the following setup and logic. First, they generated data according to both
bi-factor models and higher-order g factor models. Next, they fitted both types of models
to all generated data sets and compared the obtained fit statistics. From this comparison,
the authors concluded that bi-factor models tend to be the best-fitting model, irrespective
of whether the true model was the bi-factor model or the higher-order g factor model. Thus,
they reasoned that if the generating mechanism in the population were a higher-order g
model in reality, it would be difficult to show, on the basis of fit statistics alone, that this
model should be preferred over the bi-factor model, as the latter tends to fit better.

The study of Morgan et al. (2015) seems to be inspired by an earlier simulation study
carried out by Murray and Johnson (2013). These authors employed a slightly different
setup, but reached similar conclusions. Instead of fitting the exact true (higher-order g
factor) model to the simulated data, they fitted a model that was close to the true model.
Next, they compared the fit statistics of this slightly different (higher-order g factor) model
with those of a bi-factor model in which the fitted model was nested. Thus, in this study,
the competition was actually between two untrue models. For example, while the true
model was a higher-order g factor model that included a limited number of cross-loadings,
the fitted higher-order g factor model lacked these cross-loadings, making it locally and
only slightly misspecified. Ultimately, this misspecification led to the rejection of the
fitted higher-order g factor model, favoring the bi-factor model. Conceptually, however,
the rejected higher-order g factor model was closer to the true model than the bi-factor
model was.

From these simulation studies, we conclude that although the simplest explanation
for why bi-factor models outperform their higher-order competitors might be that these
models represent the true data-generating mechanism, or a model close to it, alternative
explanations for the outperformance exist and should be seriously considered by the
intelligence research community. Statistical bias is one such explanation and an important
one, but it may not be the only one. Recent network studies into the structure of intelligence
provide another potential explanation:

[In a network model, it is] in principle possible to decompose the variance in any
of the network’s variables into the following variance components: (1) a general
component, (2) a unique component, and (3) components that are neither general
nor unique (denoting variance that is shared with some but not all variables). A
bi-factor model can then provide a satisfactory statistical summary of these data.
(Kan et al. 2020, p. 4)

Here, we add that, in such a case, a bi-factor model may outperform a higher-order g
factor model because the latter is nested within the bi-factor model (Yung et al. 1999), and
therefore can only fit worse than the bi-factor model (though perhaps not significantly so).
Essentially, this network explanation aligns with Murray and Johnson (2013)’s argument
that when fitted models differ from the true model, and these fitted models concern nested
models, the most complex of these models will have a higher likelihood of fitting the data.
In more technical terms, the more complex model has a higher so-called “fit propensity”
(Falk and Muthukrishna 2021).
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The aim of the present study is to investigate the validity and plausibility of the
network explanation as to why bi-factor models outperform higher-order g factor models,
while controlling for the rivalling explanations that (1) the bi-factor model is the true model,
and (2) the fit indices are biased against the higher-order g factor model in favor of the
bi-factor model. Because the majority of comparisons between higher-order g factor models
and bi-factor models were conducted using the Wechsler scale batteries, specifically for
adult (Cucina and Byle 2017), we used the Wechsler Adult Intelligence Scale (WAIS–IV;
Wechsler 2008) as our starting point. That is, we first provide a brief overview of the
relevant psychometric properties of this battery. These properties encompass both factor
analytic and network properties. Next, based on these properties, we present a Monte Carlo
simulation study to assess the validity and the plausibility of each of the three rivalling
explanations. Finally, we discuss the implications of our results for future simulation
studies, as well as empirical research on the structure of intelligence.

2. The WAIS–IV; Factor-Analytical versus Psychometric Network Perspectives

The WAIS–IV consists of 15 subtests: Similarities (SI), Vocabulary (VO), Information
(IN), Comprehension (CO), Block Design (BD), Matrix Reasoning (MA), Visual Puzzles
(VP), Picture Completion (PC), Figure Weights (FW), Digit Span (DS), Arithmetic (AR),
Letter–Number Sequencing (LN), Symbol Search (SS), Coding (CD), and Cancellation (CA).
Table 1 provides a brief description of each of these subtests. According to the WAIS–IV
manual, these subtests target four cognitive constructs: Verbal Ability (V), Perceptual
Organization (PO), Working Memory capacity (WM), and Processing Speed (PS).

Table 1. Description of the WAIS-IV Subtests.

Category Subtest Task Description

Verbal Ability (V) Similarities (SI) Explain the similarity between two words or ideas.
Vocabulary (VO) Identify pictures of objects or provide definitions of words.
Information (IN) Answer common knowledge questions.
Comprehension (CO) Respond to questions regarding social settings or popular notions.

Perceptual Organization (PO) Block Design (BD) Pattern-based puzzle solving based on a presented model (Timed).
Matrix Reasoning (MA) Choose the best-fitting puzzle for an arrangement of pictures.
Visual Puzzles (VP) Select three puzzle pieces that might complete the illustrated problem.
Picture Completion (PC) Choose the missing image component.
Figure Weights (FW) Solve equations with objects instead of numbers.

Working Memory (WM) Digit Span (DS) Listen to numerical sequences and repeat them in a certain order.
Arithmetic (AR) Solving mathematical word problems spoken orally (Timed).
Letter–Number Sequencing (LN) Recall a sequence of numbers or letters in a given order.

Processing Speed (PS) Symbol Search (SS) Determine if a symbol corresponds to any of the symbols in a given sequence.
Coding (CD) Utilize a key to transcribe a code of digits (Timed).
Cancellation (CA) Cancel out objects of a given collection according to the instructions (Timed).

Note: A short description of each subtest of the Wechsler Adult Intelligence Scale—Fourth Edition (WAIS-IV).

2.1. Factor-Analytical Approaches

In the factor analytic tradition, these constructs—V, PO, WM, and PS—are hypothe-
sized to represent common sources of the variance in the observed subtest scores. This is
shown in the so-called WAIS-IV measurement model in Figure 1. To evaluate a measure-
ment model, one can conduct a confirmatory factor analysis. In the present example,
this would involve regressing the 15 observed variables—the WAIS-IV subtest scores—on
the four unobserved variables (“factors” or “latent variables”) representing the common
sources V, PO, WM, and PS according to their hypothesized pattern (see Table 1). This fac-
tor analysis yields multiple types of information, including the model’s fit statistics and
parameter estimates. The fit statistics provide information on the extent to which the
variance–covariance structure of the observed variables as implied by the model matches the
variance–covariance structure among the variables as observed. To evaluate this extent, a
variety of fit criteria have been developed (for an overview, see, e.g., Schermelleh-Engel
et al. 2003). If (and only if) the model fit is adequate according to these criteria, one can
assign an interpretation to the parameter estimates. These estimates include the point (and
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interval) estimates of the regression coefficients of the observed variables on the latent vari-
ables (commonly referred to as “factor loadings”), the residual variances in the observed
variables, and the covariances or correlations among the latent variables.

Figure 1. WAIS–IV Measurement Model of intelligence. Note. In the measurement model of the
Wechsler Adult Intelligence Scale—Fourth Edition (WAIS–IV, Wechsler 2008) the four constructs
V = Verbal Ability ; PO = Perceptual Organization; WM = Working Memory capacity; PS = Processing
Speed are defined as (possibly correlated) common sources of variance in the observed variables.
These observed variables are the scores on the subtests SI = Similarities; VO = Vocabulary; IN = Infor-
mation; CO = Comprehension; BD = Block Design; MA = Matrix Reasoning; VP = Visual Puzzles;
PC = Picture Completion; FW = Figure Weights; DS = Digit Span; AR = Arithmetic; LN = Letter
Number Sequencing; SS = Symbol Search; CD = Coding; CA = Cancellation. Subtest unique sources
of variance are also present (upward arrows).

In the factor analysis of empirical intelligence test data, the factor loadings and the
correlations among the factors are generally positive and significant. This is consistent
with the well-established finding that the observed correlations among indicators of cogni-
tive abilities are predominantly positive (Carroll 1993), a phenomenon referred to as the
“positive manifold” of intelligence (Thurstone 1935).

To explain the positive correlations among the factors in the measurement model—and
thus the positive manifold—Schmid and Leiman (1957) introduced higher-order factor
modeling. This technique allows for an ultimate common dependence of the factors in the
measurement model on one or more of the other factors (called higher-order factors), as
visualized in Figure 2. That the correlations among the factors are imperfect is attributed
to the presence of independent “residual” influences. Notably, higher-order factors have
no observed indicators, unlike the factors that were already included in the measurement
model and which are now referred to as “first-order” factors. Statistically, in our WAIS-IV
example, the (first-order) factors V, PO, WM, and PS are regressed on a fifth (second-order)
latent variable. Next, adhering to g theory (e.g., Jensen 1998), this second-order variable
is interpreted as representing Spearman’s (1904) theoretical variable g, which stands for
general intelligence. Although the exact nature of g remains unknown, it is hypothesized
to be a single, unitary (non-cognitive, biological) variable that affects any test of cognitive
performance (Jensen 1998). We refer to this theoretically grounded factor model as the
(WAIS-IV) higher-order g factor model.

From the higher-order g factor model, it follows that the variance in the scores on each
intelligence subtest can be decomposed into three orthogonal (i.e., statistically independent)
variance components (Schmid and Leiman 1957): (1) a unique variance component, which
includes, for example, variance due to pure measurement error, (2) a general component
that is shared with all other subtests, due to their ultimate common dependence on g, and
(3) a variance component that captures residual shared variance, meaning variance that is
shared with some but not all of the other subtests. Such orthogonal variance decomposition
was (originally) exactly what a bi-factor analysis aimed to accomplish (Holzinger and
Swineford 1937).
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Figure 2. WAIS-IV Higher-order g Factor Model of Intelligence. Note. A higher-order g factor model
explains the (positive) correlations among the factors in the measurement model by supposing a
common dependency of those factors on the theoretical variable g. Variable g does not explain all of
the variance in the factors, however, as indicated by the residuals (depicted as independent arrows
that point to the factors). For abbreviations, see Figure 1.

Notably, a higher-order g factor model respecified as a bi-factor model includes a
number of proportionality constraints on the factor loadings (Holzinger and Swineford
1937; Mansolf and Reise 2017; Schmid and Leiman 1957; Yung et al. 1999). These constraints
result from the first-order factors in the higher-order g factor model mediating the effects of
g on the subtest scores.1 The inclusion of proportionality constraints is not a requirement
for the bi-factor model, however (Holzinger and Swineford 1937; Schmid and Leiman 1957;
Yung et al. 1999). Relaxation of the constraints makes the bi-factor-model more flexible than
the higher-order g factor model. A concrete example of an unconstrained bi-factor model of
intelligence, pertaining to the WAIS-IV, is displayed in Figure 3. This shows that the scores
on all subtests are directly regressed on a general latent variable (denoted g′), while the
scores on the Verbal, Perceptual Organization, Working Memory, and Processing Speed
subtests are additionally regressed on more narrowly defined latent variables (denoted here
V′, PO′, WM′, and PS′). These more narrowly defined latent variables are all statistically
independent of g′ and of each other, and are usually referred to as “group factors”.

Figure 3. WAIS-IV Bi-factor decomposition of Intelligence. Note. A bi-factor model decomposes
the variance in the scores on each subtest into three orthogonal variance components: (1) a unique
variance component, which includes, for instance, variance due to pure measurement error; (2) a com-
ponent that is shared with all other subtests (as visualized by a common dependence on variable
g′); (3) a component that is shared with some but not all subtests (a visualized by dependencies on
variables V′, PO′, WM′ or PS′). For abbreviations, see Figure 1.

As discussed extensively by, for instance, Hood (2008), Decker (2020), and Dolan and
Borsboom (2023), the interpretation of the latent variables in a bi-factor decomposition is
not as straightforward as in the measurement model and the higher-order g factor model.
The interpretation also depends on the proportionalities of the factor loadings.
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If the aforementioned proportionality constraints hold—that is, if the bi-factor model
is merely a statistical respecification of the higher-order g factor model—then the following
holds. The contribution of variable g′ to the variance in a given observed variable equals
the contribution of the general factor to that observed variable g in the higher-order g factor
model. Therefore, one could argue that variable g′ equals variable g. Indeed, variable
g is a predictor of the performance on each subtest, albeit indirectly, as the higher-order
g factor model shows. This is not detectable from the bi-factor decomposition model,
which does not represent the causal model here, only the way the variance is decomposed.
This distinction between the hypothesized causal model and the variance decomposition
method is important with respect to variables V′, PO′, WM′, and PS′. These must have a
different interpretation than the first-order factors V, PO, WM, and PS, which appear in
the higher-order g factor model and measurement model. After all, the variables in the
bi-factor model are independent of g′ (= g) and of each other, while the first-order factors
in the higher-order factor model are not, due to their common dependence on g. Rather,
the variables V′, PO′, WM′, and PS′ can be interpreted as the residuals of the factors V,
PO, WM, and PS in the higher-order g factor model. These residuals are, indeed, also
(indirect) predictors of the performance on certain subtests and are, indeed, independent of
g. The factors V, PO, WM, and PS that figure in the measurement model and higher-order g
factor model do not figure in the bi-factor decomposition model (but they should not be
ignored, as their presence as mediators is the source of the grouping and of the proportional
factor loadings).

In the absence of the proportionality constraints, when the factor loadings are all
freely estimated, g′ is no longer identical to g in the higher-order g factor model, and the
interpretative status of the variables V′, PO′, WM′, and PS′ becomes unclear (Hood 2008).
When considering the bi-factor model as an alternative measurement model (rather than a
method for decomposing the observed variance into variance components), it is important
to note that a bi-factor model differs substantively from both the original measurement
model and the higher-order factor model. For example, whereas in the measurement
model and the higher-order factor model each subtest indicates a single latent variable
(e.g., V), in a bi-factor model interpreted as a measurement model, the subtests are no
longer unidimensional, but two-dimensional; each subtest now indicates two variables
(i.e., g′ and e.g., V′). By definition, measurement invariance (Mellenbergh 1989) does not
hold, as Hood (2008) points out: “[M]easurement invariance with respect to [g′] must be
violated if one takes the test specific factor to be the group variable, and measurement
invariance with respect to the test specific factor must be violated if one takes [g′] to be the
group variable.”. That measurement invariance does not hold implies that, whatever the
intelligence test measures (Van der Maas et al. 2014), “intelligence” will have a different
meaning for different individuals or groups of individuals (Mellenbergh 1989). From the
previous, it has been concluded that unconstrained bi-factor models of intelligence are
inconsistent with g theory (Hood 2008), which implies that these models are theoretically
weaker than higher-order g factor models; only the latter are consistent with g theory.

Typically, bi-factor models are of the unconstrained kind. As mentioned in the intro-
duction, these tend to outperform higher-order g factor models. This holds in general and
for the WAIS in particular (Cucina and Byle 2017). These results mean that the constraints
implied by higher-order g factor models are untenable and, using Popperian logic, this is
reason to reject this model. The next question becomes whether the rejection of higher-order
g factor model is reason enough to adhere to a bi-factor model. This is doubtful: Apart
from the conceptual difficulties with bi-factor models of intelligence (Decker 2020; Dolan
and Borsboom 2023; Hood 2008) and the (potential) statistical bias against the higher-order
g factor model (Morgan et al. 2015), recent studies into the correlational structure of the
WAIS (Kan et al. 2019, 2020; Schmank et al. 2019) have demonstrated that bi-factor models
fit worse than psychometric network models. What do such network models look like?
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2.2. A Network Approach

Psychometric network modeling (Borsboom et al. 2021; Epskamp et al. 2018, 2017)
can be viewed as an alternative to factor modeling in the sense that psychometric network
models also aim to describe or explain the variance–covariance structure of individual
differences. They do so without the need to invoke latent variables. The idea behind these
models is that the variables included in the network model directly influence each other
and, as a result, are correlated. With respect to the positive manifold, psychometric network
models of intelligence are thus supported by the mutualism theory of intelligence (Van der
Maas et al. 2017, 2006). This theory explains the positive manifold as the result of the
dynamic interactions between cognitive abilities that take place during their development.
Empirical evidence for such interactions exists, both within and between cognitive domains.
An example within cognitive domains is that the growth of one mathematical skill improves
the other mathematical skill (Hofman et al. 2018). An example between cognitive domains
is that one’s increasing vocabulary benefits matrix reasoning (and vice versa) (Kievit
et al. 2017). In the mutualism theory of intelligence, and more generally speaking in
psychometric network models, not every variable needs to exert an influence on all other
variables; interactions can be sparse, implying that effects can also be indirect. Furthermore,
the interactions do not need to be strong and are not necessarily always bi-directional
or symmetric. Some interactions may even be negative. As long as the interactions are
predominantly positive, a positive manifold is expected (Van der Maas et al. 2006). When
the interaction strengths differ across abilities, for example within and between domains, a
clustered organization can emerge.

In the jargon of psychometrics, a psychometric network is a constellation of “nodes”
and “edges” (Epskamp et al. 2017). Nodes are synonymous with observed variables—in
our example, the WAIS intelligence subtest scores. Edges represent the relations among the
nodes and are typically modeled as partial correlations (i.e., the correlation between two
variables, after regressing for the effects of all the other variables included in the model).
Non-significant edges are usually constrained to zero (Epskamp et al. 2017), so that network
models, like factor models, have a certain number of degrees of freedom and can be put to
the statistical test (e.g., Bulut et al. 2021; Kan et al. 2019, 2020; Schmank et al. 2019).

Visualizations of the partial correlational structure of intelligence (e.g., Van der Maas
et al. 2017, and Figure 4) typically show that the nodes cluster together. These clusters
can be interpreted as the broader cognitive constructs, such as verbal ability, working
memory, and so on. Adhering to the mutualism theory of intelligence, these clusters are
emergent properties of the underlying dynamical system; they are abstractions and do not
represent common sources of variance, as in the traditional factor analytic interpretation.
Similarly, general intelligence is an emergent property (Van der Maas et al. 2014) and an
abstraction, rather than an unobserved common source of variance, as the variable g is in g
theory (Jensen 1998; Spearman 1904). The general factor that would be obtained in a factor
analysis from data generated by a network or mutualistic mechanism would constitute a
summary variable—and admittedly a sensible and useful one—but also one that has no
instantiation in the real world. One may draw a parallel with a variable like “general health”
(Kossakowski et al. 2016; Van der Maas et al. 2014). This variable also summarizes various
correlated observations and is a result or outcome variable, rather than an underlying cause
or source of variance in symptoms.
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Figure 4. WAIS-IV psychometric network model of intelligence. Note. A graphical representation
of the psychometric network model that was used in the present study. The nodes represent the
WAIS-IV subtest scores, while the edges are partial correlations between the subtests. The stronger
the partial correlation between two nodes, the thicker the edge that connects them. For abbreviations,
see Figure 1.

3. Present Study

The preceding discussion highlights that there are multiple ways to model the variance–
covariance structure of intelligence. One way is to conduct a factor analysis, which may
involve higher-order or bi-factor modeling. Another approach is network modeling. While
all these models share similarities, they also differ, not least with respect to the hypothesized
etiology of individual differences in the subtest scores. When fitted to a particular data
set, the models may exhibit significant differences in terms of statistical fit. This under-
scores that fit statistics can be a valuable tool alongside theoretical considerations. Using
Popperian logic, fit statistics enable researchers to reject certain models in favor of the
remaining alternative models. Typically, model competitions involve two or more factor
models (e.g., Major et al. 2012), but thanks to recent statistical advances, it is now possible
to include psychometric network models in the model selection procedure (Kan et al. 2019,
2020; Schmank et al. 2019).2 This possibility, in turn, provides an opportunity to investigate
the validity of the network hypothesis regarding why bi-factor models outperform higher-
order g factor models. Moreover, we can conduct this investigation while controlling for
the competing explanations that (1) bi-factor models represent the true data-generating
mechanism, and (2) fit indices are biased against higher-order factor models in favor of
bi-factor models. This is possible because these three explanations generate sets of pre-
dictions that are differential. We outline these sets of predictions below, after we detail
how each explanation predicts the higher-order factor model’s outperformance using the
bi-factor model.

Explanation 1: The bi-factor model represents the true data-generating mechanism.
In general, the following holds: Provided that the true model is included in the set of
competing models, and provided that fit measures behave as intended and do not produce
biased results, this true model should yield better relative fit statistics than its untrue
competitor(s). Models that include additional parameters are overly complex, and this
extra complexity is penalized by relative fit statistics. Models that omit parameters are not
complex enough and can be expected to show a worse relative fit. The empirical finding
that bi-factor models outperform nested higher-order g factor models (Cucina and Byle
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2017) is thus consistent, with the bi-factor model being the true model and the nested
higher-order g factor model being an untrue competitor. The rejection of the higher-order g
factor model is then justified because this model would concern an “oversimplification”.

Explanation 2: Fit indices are inherently biased (in favor of bi-factor models and
against higher-order g factor models). If a higher-order g factor model is the true generating
mechanism, a bi-factor model in which this higher-order g factor model is nested will
contain a likelihood that is at least as good as that of the higher-order g factor model. In other
words, whenever a higher-order g model fits the data in an absolute (exact or approximate)
sense, a bi-factor model will also fit the data in an absolute (exact or approximate) sense.
Relative fit criteria, however, penalize the addition of too many parameters. Thus, if these
relative criteria work as intended and the penalty is adequate, the higher-order g factor
model should emerge as the preferred model. If the penalty is not severe enough, the
situation may arise where the model selection procedure suggests that the untrue bi-factor
model should be preferred over the true higher-order g factor model. It then remains
unclear to what extent this preference occurs. Notably, the possibility exists that fit indices
are more generally biased, for example, in favor of the network model, and against the
bi-factor and higher-order g factor model.

Explanation 3: A non-nested network model underlies the empirical data. In practice,
the chances are high that the true model is not included in the set of competing candidate
models. Thus, it is plausible that neither the fitted higher-order g factor model nor fitted
the bi-factor model represents the true model. In this scenario, “unmodelled complexity”
may be the source of the better relative fit of the bi-factor model (Kan et al. 2020; Murray
and Johnson 2013): Since the likelihood of the higher-order g factor model cannot be higher
than that of a bi-factor model in which it is nested, the bi-factor model can only capture
more—never less—of such (additional, unmodelled) complexity (e.g., Morgan et al. 2015;
Murray and Johnson 2013). In other words, whenever the true model is not included in the
set of models, the bi-factor model is more likely to provide a good summary of the data
than a higher-order g factor model. The implication is that if the true underlying model is a
network model, it makes sense that the bi-factor model tends to provide a relatively better
summary of the variance–covariance structure generated by the true network model. If this
network is not nested in the bi-factor model, implying that the network cannot actually be
respecified as a bi-factor model, the remaining questions are (1) whether the fitted bi-factor
model shows acceptable fit in an absolute or approximate sense, (2) whether a nested
higher-order model shows acceptable fit in an absolute or approximate sense, and (3) how
the relative fit statistics of the bi-factor model compare to those of the nested higher-order g
factor model.

Differential Predictions. Although all three explanations are capable of predicting
that bi-factor models outperform higher-order g factor models on the basis of relative fit,
they make additional predictions. When these predictions are considered collectively, and
provided the power to distinguish between the models is sufficient, these sets of predictions
differentiate between the competing explanations.

• If Explanation 1—the bi-factor model represents the true data-generating mechanism—
is correct (and Explanations 2 and 3 are not), then:

1. Fit statistics will show excellent exact fit and therefore (near) perfect approximate
and incremental fit for the bi-factor model;

2. A comparison between the bi-factor and higher-order g factor model will reject
the latter for being too simplistic, while

3. A comparison among three models—the bi-factor, higher-order g factor, and
non-nested network model—will judge the latter to be less adequate than the
true bi-factor model, so that

4. the true bi-factor model is expected to outperform both the nested higher-order g factor
model and the non-nested network model.

• If Explanation 2—fit indices are inherently biased in favor of bi-factor models and
against higher-order factor models—is correct, then:
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1. Exact, approximate, and incremental fit statistics may or may not show good
or excellent fit for the higher-order g factor model if that is the true model, and,
thus, for the bi-factor model, while;

2. in a comparison between the true higher-order g factor model and the untrue bi-factor
model, the relative fit indices are expected to show an increased preference for the untrue
bi-factor model (e.g., higher than the nominal significance level when performing
a loglikelihood ratio test).

• If Explanation 3—a non-nested network model underlies the empirical data—is correct
(and Explanations 1 and 2 are not), then:

1. Fit statistics will show excellent exact, approximate, and incremental fit for this
true network model;

2. Fit statistics for the bi-factor model may show acceptable fit (and possibly for the
higher-order g factor model as well), but (near) perfect fit is unlikely;

3. A comparison between the untrue bi-factor model and the untrue higher-order g
factor model would reject the latter in favor of the former, because the bi-factor
has more fit propensity than the nested higher-order g factor model, whereas;

4. A comparison among the three models—the bi-factor, higher-order g factor,
and true, nonnested network model—should show a preference for the true
(i.e., network) model, such that

5. the bi-factor model is expected to outperform the higher-order g factor model, but not the
true network model.

In summary, a comparison between the higher-order g factor model and bi-factor
model comparison can (in)validate each explanation, while an additional comparison
between three models—a bi-factor model, a nested higher-order g factor model, and a
non-nested network model—can discriminate between Explanation 1 and Explanation 3
provided statistical bias is absent (hence provided Explanation 2 is not true). In the first
case, the bi-factor model ends up as the model of preference and, in the latter case, the
network model is the model of preference.

4. Method

With the above differential sets of predictions in mind, and drawing from the method-
ologies of Morgan et al. (2015) and Murray and Johnson (2013), we conducted a Monte
Carlo simulation study, employing a fully crossed, three-by-three research design. That
is, first a bi-factor model (without equality constraints), a (nested) higher-order g factor
model, and a (non-nested) network model served as the data-generating mechanisms in
the population. Second, we fitted all three models to all data sets and obtained the fit
statistics. The relative fit statistics were used in model selection procedures. These selection
procedures comprised (i) pairwise comparisons of the relative fit, including a comparison
between a higher-order g factor model and a bi-factor model, and (ii) a comparison of the
relative fit of all three models.

4.1. Data Generation

To arrive at empirically plausible parameter values for the factor models used in
our simulations, we fitted the higher-order g factor and bi-factor models depicted in
Figures 2 and 3 to the German WAIS–IV (15 × 15) correlation matrix (Petermann 2012). For
the network model, we paralleled the procedure described in Kan et al. (2020): First, we
used the R psychonetrics function ggm() to compute a (15 × 15) full partial correlation
matrix from the (15 × 15) US WAIS–IV correlation matrix. We then pruned this matrix
at α = 0.01 (the default in psychonetrics) and searched for further improvements using
the psychonetrics function stepup(), which automatically adds the parameter with the
largest modification index until modification indices are no longer significant. The adja-
cency matrix of this pruned (and improved) partial correlation matrix was defined as the
configural network model. Next, we fitted this configural model (confirmatory) to the
German WAIS–IV correlation matrix, thereby freely estimating the parameter values.3
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The factor and network model implied correlation matrices (Tables A1 and A2) served
as input for R library MASS function mvrnorm. This function generates multivariate normally
distributed sample data according to a given population correlation or covariance matrix.
The sample size was set as equal to the German sample size (1425) and the number of
replications was set to 1000, resulting in a total of 3 × 1000 = 3000 sample data sets
(with N = 1425 each). On these 3000 data sets, we fitted the higher-order g factor model
(henceforth HF), the bi-factor model (henceforth BF), and the network model (henceforth
NW) using Maximum Likelihood Estimation.

4.2. Model Fit Criteria

To facilitate a comparison of the results from our simulations with the results found
in the literature, we obtained the same fit statistics as those reported by Cucina and Byle
(2017). These included exact fit, approximate fit, incremental fit, and relative fit statistics (see
below). To enhance clarity in our descriptions, we employed commonly used evaluation
criteria (Schermelleh-Engel et al. 2003).

The exact fit of the models was assessed through the χ2 statistic, accompanied by its
corresponding degrees of freedom (df ) and associated p-values. We performed χ2 tests
(α = .05) and determined the rejection rates of the models (which should be close to α in
case the model concerned a true model). To evaluate the approximate fit, we obtained the
root–mean–square of approximation (RMSEA) and applied the following rules of thumb:
RMSEA ≤ .05 indicates “good fit”, RMSEA = .05–.08 “adequate fit”, RMSEA = .08–.10
“mediocre fit”, and RMSEA > .10 “unacceptable fit”. To evaluate the incremental fit of
the models, we obtained the normed fit index (NFI), the Tucker–Lewis index (TLI; a non-
normed fit index), and the comparative fit index (CFI). For the NFI, values ≥ .95—and
for the TLI and CFI, values ≥ .97—indicated “good” fit. Additionally, TLI and CFI values
between .95 and .97 indicated “acceptable fit”. All other incremental fit values indicated
“unacceptable fit”. To evaluate relative fit, used in the model selection procedure, we adhered
to the following strategies. Only in instances where nested models were compared (i.e., the
BF model with the HF model), we conducted a likelihood ratio test (i.e., the ∆χ2 test; α = .05).
In all cases, we obtained the AIC and BIC and adhered to the rule that lower values of these
fit criteria indicate a better relative fit (Schermelleh-Engel et al. 2003). In each simulation
run, the model with the lowest value was declared the preferred model.

4.3. Analysis

When analyzing the results of our simulations, we first checked the performance of
all fit indices. This was relevant for the evaluation of Explanation 2 (fit indices are biased)
but also for the evaluation of Explanations 1 and 3, both of which lean on the premise
that relative fit indices are unbiased. This performance check is described in full detail in
Appendix B.

If the fit measures behaved as expected or intended, with no bias against the HF model
in favor of the BF model, Explanation 2 was rejected as a valid explanation for the observed
superiority of bi-factor models over higher-order g factor models. Concerning Explanation 1
(the BF model is the true model), if the BF model was the true data-generating mechanism
and the fit indices performed as intended, the ∆χ2 test, AIC, and BIC were expected to
favor the BF model as the preferred model. If this expectation was met, Explanation 1 was
considered valid. Regarding Explanation 3 (a network model is the true model), again,
assuming the fit indices performed as intended, the ∆χ2 test, AIC, and BIC were expected
to exhibit a tendency to choose the BF model as the preferred model in the BF–HF model
comparison. If this expectation was met, Explanation 3 was considered valid.

In addition to verifying the validity of the three competing explanations, our objective
was to assess the plausibility of the explanations that were deemed valid. To achieve this,
we compared the fit results of the simulations with the fit results reported in empirical
studies. Fit values for the bi-factor and higher-order g models needed to closely align
with those reported in Cucina and Byle (2017, see also Table 2). For instance, we expected
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RMSEA values to fall within the “adequate” to “mediocre” range, rather than being close
to 0 (“perfect fit”) or exceeding 0.10 (“unacceptable fit”).

4.4. Software

All simulations and analyses were conducted in R (R Core Team 2022), using the
RStudio (RStudio Team 2022) interface. We used R packages MASS (Venables and Ripley
2002) for data generation, tidyverse for data wrangling and visualization (Wickham
et al. 2019), and qgraph (Epskamp et al. 2021) to extract and display network structures.
Confirmatory factor and network analyses were performed in R package psychonetrics
(Epskamp 2021) and cross-validated in OpenMx (Boker et al. 2011). Here, we limit ourselves
to reporting the results from psychonetrics. Codes and output are available on the Open
Science Framework (OSF): https://osf.io/xp869/ (see also https://github.com/KJKan/
pame_I).

5. Results
5.1. Performance of Fit Indices

As outlined in Appendix B, when the true model was the HF model, all fit statistics
behaved as anticipated. Key findings include the following. In a pairwise comparison,
the ∆χ2 test exhibited a rejection rate of the HF model in favor of the BF model in 5.90%
(CI95 = [4.56%, 7.56%]) of cases, in alignment with the nominal significance level of 5%.
The BIC consistently selected the true model 100% of the time, demonstrating perfect
performance. Although not flawlessly, the AIC also performed well, showing a preference
for the BF model in 3.30% of instances when the true model was the HF model. Since this
percentage did not exceed the percentage associated with the ∆χ2 test, we concluded that
the performance of the AIC did not indicate bias in favor of the BF model over the HF
model. In a broader context, when the true model was part of the set of models being
compared, the relative fit indices AIC and BIC (and ∆χ2, where applicable) successfully
identified the true model approximately 95% of the time.

In conclusion, we found no evidence that fit measures were biased in general or that
they were biased against the HF model in favor of the BF model in particular. In the context
of the present simulation study, Explanation 2 was dismissed as a valid explanation for
the observation that BF models outperform HF models. The absence of bias simplified the
assessment of the remaining explanations.

5.2. Checking the Validity and Plausibility of Remaining Explanations

When the true model was the BF model, the HF versus BF comparison always showed a
preference for the BF model, regardless of whether the ∆χ2 difference test or the incremental
fit indices AIC or BIC were used. This result validated Explanation 1—the true model is
the bi-factor model. We assigned a low level of plausibility to this explanation, however,
because if Explanation 1 were true, the χ2-test is expected to show non-significant results
(exact fit is tenable), and therefore approximate and incremental fit indices should show a
perfect or near perfect fit. Contrary to this expectation, the empirical results from Cucina
and Byle (2017) demonstrate that in reality, exact fit is not tenable, and approximate and
incremental fit indices show “adequate” to “good fit”, rather than perfect or near-perfect fit
(see Table 2).

https://osf.io/xp869/
https://github.com/KJKan/pame_I
https://github.com/KJKan/pame_I
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Table 2. Summary of Fit Statistics from Past Bi-factor Research on the Wechsler Adult Scale of
Intelligence (WAIS; adapted from Cucina and Byle 2017).

Study Battery Higher-Order Factor Model Comparison Bi-Factor Model

CFI TLI NFI RMSEA AIC χ2 df ∆χ2 ∆df CFI TLI NFI RMSEA AIC χ2 df

Gignac and Watkins (2013) WAIS–IV 0.945 0.933 0.918 0.068 314.75 246.75 *** 86 99.47 *** 11 0.975 0.965 0.951 0.049 237.28 147.28 *** 75
Gignac and Watkins (2013) WAIS–IV 0.959 0.950 0.944 0.064 366.51 298.51 *** 86 101.30 *** 11 0.967 0.967 0.963 0.052 287.21 197.21 *** 75
Gignac and Watkins (2013) WAIS–IV 0.943 0.930 0.920 0.075 347.28 279.28 *** 86 118.85 *** 11 0.975 0.965 0.954 0.053 250.43 16.43 *** 75
Gignac and Watkins (2013) WAIS–IV 0.948 0.937 0.927 0.074 341.93 273.93 *** 86 78.98 *** 11 0.967 0.954 0.948 0.063 284.95 194.95 *** 75
Gignac (2005) WAIS-R 0.970 0.959 0.967 0.068 443.97 391.97 *** 40 229.69 *** 7 0.989 0.982 0.986 0.046 228.28 162.28 *** 33
Gignac (2006) WAIS–III 0.968 0.959 0.965 0.064 723.38 663.38 *** 61 215.13 *** 10 0.979 0.968 0.976 0.056 528.25 448.25 *** 51
Golay and Lecerf (2011) WAIS–III 0.965 0.956 0.957 0.059 359.50 301.50 *** 62 178.50 *** 9 0.990 0.985 0.983 0.035 199.00 123.00 *** 53
Niileksela et al. (2013) WAIS–IV 0.964 0.967 0.942 0.067 193.62 179.62 *** 71 10.76 † 5 0.966 0.966 0.945 0.062 192.86 168.86 *** 66

Note. Abbreviations: CFI = comparative fit index; TLI = Tucker–Lewis index; NFI = fit index; RMSEA = root-mean-
square error of approximation; AIC = Akaike information criterion; d f = degrees of freedom; WISC-IV = Wechsler
Intelligence Scale for Children—Fourth Edition; WAIS–IV = Wechsler Adult Intelligence Scale—Fourth Edition;
WAIS-R = Wechsler Adult Intelligence Scale—Revised Edition; WAIS-III = Wechsler Adult Intelligence Scale—
Third Edition. † p ≤ .10. *** p < .001.

When the true model was the NW model, the HF versus BF model comparison
consistently showed a preference for the BF model, regardless of whether the ∆χ2 difference
test or the incremental fit indices AIC or BIC were used. This result validated Explanation
3. We considered the plausibility of this explanation to be high. As detailed in Appendix B,
the exact, approximate, and incremental fit statistics obtained from the NW simulations
were comparable to those reported in the literature: both our results and the results in
Cucina and Byle (2017) show that (1) obtaining an exact fit for the factor models is untenable
and (2) approximate and incremental fit indices display an imperfect fit. Moreover, the
average fit values of the BF and HF models when the true model was the NW model were
numerically closer than in the situation when the BF model was the true model.

5.3. Conclusions

Based on the results of our simulations, we deemed Explanation 2 (fit indices are
biased) to be invalid. Both Explanation 1 (the BF model is the true model) and Explanation 3
(the NW model is the true model) were judged to be valid. The plausibility of Explanation 1
was considered low, while that of Explanation 3 was high, or at least higher than that of
Explanation 1.

6. Discussion

Using Monte Carlo simulation, we examined the validity and plausibility of three
competing explanations for why bi-factor models of intelligence outperform higher-order
factor models of intelligence. These explanations were as follows: (1) the bi-factor model is
the true model, (2) fit indices are biased against the higher-order g factor model, and (3) the
true model is a network model. We found no evidence for the second explanation: all fit
statistics behaved as expected and the relative fit statistics worked as intended. The absence
of statistical bias simplifies the evaluation of the two remaining explanations.

The empirical observation that bi-factor models outperform higher-order g factor
models in over 90% of cases (Cucina and Byle 2017) aligns with the hypothesis that a
bi-factor model, rather than a higher-order g factor model, represents the true underlying
structure. However, the plausibility of this hypothesis is low: when a true model is fitted
to the data, exact fit measures should reject this model only about 5% of the time, while
approximate and incremental fit measures should indicate a fit that is perfect or near-perfect.
Empirical results, as shown in Table 2, reveal that this is not the case. The implication is
that there must be some model misspecification in the reported bi-factor models, resulting
in an imperfect fit. This misspecification may be local or global, but small, making an exact
fit unattainable while approximate fit remains acceptable. Nonetheless, these findings
suggest that there is additional complexity or inadequacy, which is not captured by the
specified bi-factor models. This misspecification only highlights the possibility that the
true data-generating mechanism is a network (Explanation 3).
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This network explanation was validated by directly comparing the bi-factor model
with the higher-order g factor model when the true model was a non-nested network model.
In this scenario, the bi-factor model was consistently selected as the preferred model. We
also deemed the network explanation plausible, as the results from our network simulations
closely align with the fit values reported in the literature. At least, the plausibility of the
network explanation is higher compared to the explanation that the bi-factor model repre-
sents the true underlying data-generating mechanism, as the latter would predict a perfect
or near-perfect fit for the bi-factor model, which is in contrast with the empirical findings.

6.1. Limitations

In the end, the true data-generating mechanism can never be uncovered by statistical
analysis alone, since one can always come up with equivalent models, that is, models
with an identical or comparable fit (MacCallum et al. 1993). Given a table such as Table 2,
proponents of a higher-order g factor model may argue that the possibility remains that
a higher-order factor model represents the true underlying data-generating model, albeit
a different one than was considered. For instance, the possibility remains that certain
cross-loadings or correlated error terms were not specified. Likewise, given the imperfect
fit that was observed, advocates of bi-factor models may argue that it is still possible that a
bi-factor model, rather than a network model, underlies the data, but, again, a different or
more complex bi-factor model than was considered. We call for more simulation studies, in
line with the setup of Murray and Johnson (2013), in which the true model is not included in
the set of candidate models. In this way, one can not only examine whether untrue bi-factor
models tend to outperform untrue higher-order factor models, but also whether untrue
factor models tend to be outperformed by untrue network models. In other words, such
a setup would allow for the investigation of the fit propensities (Falk and Muthukrishna
2021) of network models.

Because our study was restricted to a particular intelligence test battery (i.e., the
WAIS–IV), we also call for future simulations based on the psychometric properties of
other test batteries that have undergone factor and network analysis, for instance, the
Woodcock–Johnson (McGrew et al. 2023; Schrank and Wendling 2018). In such simulation
studies, we recommend, for example, the exploration of parameter values. Although the
principle behind network models is supported by theory (Savi et al. 2021; Van der Maas et al.
2017, 2006), whether (all) the specific parameter values are meaningful is a separate matter,
which still requires critical evaluation. This issue extends beyond network models of intel-
ligence and applies broadly, including network models in the domain of psychopathology
(Borsboom 2022). While psychometric network modeling holds promise, it is also impor-
tant to acknowledge that current network models of intelligence and psychopathology are
in an early stage of development. We argue that this actually holds true for bi-factor models
of intelligence (and psychopathology) as well, because bi-factor models are incongruent
with g theory (Decker 2020; Hood 2008) (p theory within the field of psychopathology;
Dolan and Borsboom 2023). Thus, to date, it remains uncertain whether the latent vari-
ables and parameters in bi-factor models of intelligence (and psychopathology) can be
interpreted in a meaningful way.

6.2. Strengths

Substantive theory has formed (valid) reasons (e.g., Jensen 1998; Murray and Johnson
2013) to prefer higher-order g factor solutions over bi-factor solutions. Of course, the better
fit of bi-factor models (Cucina and Byle 2017), should be taken into account, but it should
not dominate the discussion and caution is necessary (e.g., Morgan et al. 2015). Researchers
have alerted fellow researchers about the possibility that fit indices are biased against this
model, favoring bi-factor models too easily. While we have found no evidence of bias in
the fit indices themselves, we agree that biased inferences can arise from the comparison of
fit statistics. We here note that exact, approximate, and even incremental fit indices serve
as tools to help decide whether a model offers a satisfactory description or explanation of
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the observed variance-covariance structure. In our view, they are not intended to serve as
relative fit measures, and therefore should not be used in model selection procedures. If one
does so, however, the results can indeed yield biased inferences, as Figure 5 illustrates. From
this figure, one can determine that if we had used the NFI as if it were a relative fit index,
we would have inferred that the bi-factor model outperformed the higher-order g factor
in more than 99% of the comparisons, when, in fact, the true model was a higher-order g
factor model. Although not as extreme as the NFI, the use of the TLI, CFI, and RMSEA as
relative indices would also have led to biased inferences, notably when nested models are
compared. These results underscore our position that model selection procedures should
rely on relative fit indices.

Figure 5. Preference for a Model in a Statistical Comparison Among Three Competing Models when
Approximate (RMSEA), Incremental (NFI, TLI ,CFI), or Relative (BIC and AIC) Fit Statistics are
Used. Note. The rows indicate which model generated the data, while the columns and colors
represent the fitted model. Abbreviations: BIC = Bayesian Information Criterion; AIC = Akaike’s
Information Criterion; NFI = normed fit index; TLI = Tucker-Lewis index; CFI = comparative fit index;
RMSEA = root–mean–square error of approximation; BF = bi-factor model; HF = higher-order g factor
model; NW = psychometric network model.

We can imagine that researchers may harbor skepticism regarding the better relative
fit of network models compared to factor models. Since network models often (but do
not necessarily) contain a larger number of parameters than factor models, one might
be inclined to assume that “because of the greater complexity” in terms of the number
of estimated parameters network models will outperform factor models. That is, one
might suspect that fit measures will be biased in favor of network models over factor
models. However, as previous research (Kan et al. 2019) and the present simulation study
(see Appendix B) have shown, there is no evidence of such bias. When the bi-factor model
was the true model, a direct comparison between the bi-factor model and the network
model showed that the AIC favored the network model in only 0.3% of cases (Figure A6).
The BIC never favored the network model. Moreover, when the bi-factor model was the
true model, a direct comparison between higher-order g factor model and the network
model resulted in a preference for the more parsimonious, too simplistic, higher-order g
factor model, rather than the ‘overly complex’ network model (in terms of number of
parameters in the model). In other words, measures of relative fit, particularly the BIC,
effectively guard against the inclusion of excessive complexity.

6.3. Conclusions

Our message concerning the use of fit statistics is two-fold. Firstly, if researchers
believe that the true model is among those being compared, they should rely on relative
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fit indices (such as AIC or BIC), rather than approximate or incremental measures of fit
(see also Murray and Johnson 2013). Secondly, if researchers entertain the idea that the true
model is not within the set of models being compared—perhaps due to their adhering to
the notion that “all models are wrong (but some are useful)”—they should be aware that
more complex models generally exhibit a higher likelihood than nested, simpler models.
In the latter scenario, the choice revolves around whether they prefer an untrue model
that is relatively parsimonious or one that is relatively complex. This preference may be
somewhat arbitrary, or based on theoretical considerations, or related to the researcher’s
overarching objectives, such as predictive accuracy (see, e.g., Eid et al. 2018; Van der Maas
et al. 2014).

Returning to the objectives of models of intelligence discussed in the introduction, we
reiterate that, historically, higher-order factor models and bi-factor models have served
distinct objectives. The objective of the higher-order factor modeling approach (Schmid
and Leiman 1957) has been to explain the positive correlations between the factors in a
first-order factor model, aligning models of intelligence with Spearman (1904)’s g theory.
The objective of the bi-factor analysis was to decompose observed variance into variance
components (Holzinger and Swineford 1937). As such, bi-factor analysis was used as a
diagnostic tool to assess the quality of items or subtests within a test battery. These different
objectives of higher-order factor modeling and bi-factor analysis are both beneficial to the
field, as they both expand our knowledge about the structure of intelligence. However,
we need to keep in mind that the latent variables obtained through bi-factor analysis are
nothing beyond variance components, while—from a (g) theoretical perspective—the latent
variables in a measurement or higher-order factor model represent hypothesized sources
(‘causes’) of variance. These different types of latent variables should not be conflated
(Van der Maas et al. 2014). Discerning the strong correlation between, for example, one’s
verbal ability and general intelligence is directly detectable from a higher-order factor
model, but not from a bi-factor model. This is especially true when the orthogonal group
factor on which the verbal tests load shares the label “Verbal” with the first-order factor
“Verbal” in the measurement and higher-order g factor models (see also, Van Bork et al.
2017). We concur with Decker (2020) that, if the objective is to explain the structure of
intelligence, a bi-factor model should only be considered in a model selection procedure if
the researcher genuinely believes it is a candidate (approximately) true model, supported
by theory as much as its rivaling models. It is therefore worth noting that bi-factor models
present more challenges in aligning with intelligence theories than higher-order g factor
models and network models. Consequently, we advocate for the inclusion of network
models in future model selection processes, if not instead then alongside bi-factor models.
The superior fit of bi-factor models, compared to higher-order factor models, may stem
from mutualistic processes underlying the data. A better fit of a psychometric network
model would lend support for such scenario. The bi-factor modeling results would then
summarize the variance–covariance structure without the bi-factor model providing an
explanation of this structure (and the same would hold for the higher-order g factor model).

Although the mutualistic network approach to intelligence is now over a decade
old, empirical tests to evaluate psychometric network models against factor models are
relatively new. However, exemplary analyses exist (e.g., Bulut et al. 2021; Kan et al. 2019,
2020; Schmank et al. 2019). As Schmank et al. (2019) note, a fair evaluation would con-
sist of comparing confirmatory, theoretical inspired models. We therefore call for more
confirmatory network studies, both within and outside the field of intelligence.

As the present study has shown, network modeling not only can describe and explain
the structure of individual differences in intelligence, but can offer new insights into
longstanding debates. We believe that adding a network perspective can shed light on
many robust yet puzzling findings that exist within the factor analytic literature, of which
the outperformance of the higher-order g factor model by the bi-factor model is merely
one example.
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Appendix A

Table A1. WAIS–IV intercorrelations as implied by the higher-order g factor model (lower triangle)
and the bi-factor model (upper triangle).

BD SI DS MA VO AR SS VP IN CD LN FW CO CA PC

BD 1.00 0.42 0.43 0.48 0.44 0.49 0.35 0.60 0.43 0.38 0.42 0.55 0.39 0.32 0.43
SI 0.44 1.00 0.42 0.43 0.71 0.48 0.35 0.38 0.60 0.38 0.42 0.48 0.66 0.31 0.35
DS 0.47 0.46 1.00 0.44 0.45 0.56 0.36 0.39 0.43 0.38 0.70 0.49 0.39 0.32 0.35
MA 0.50 0.41 0.44 1.00 0.45 0.50 0.36 0.46 0.44 0.39 0.43 0.52 0.40 0.32 0.38
VO 0.47 0.71 0.48 0.43 1.00 0.51 0.37 0.40 0.63 0.40 0.44 0.51 0.69 0.33 0.37
AR 0.43 0.42 0.59 0.40 0.44 1.00 0.41 0.44 0.49 0.44 0.51 0.56 0.45 0.37 0.40
SS 0.39 0.38 0.41 0.36 0.40 0.37 1.00 0.32 0.36 0.63 0.35 0.41 0.33 0.49 0.29
VP 0.51 0.42 0.44 0.47 0.44 0.41 0.37 1.00 0.39 0.35 0.38 0.53 0.35 0.29 0.43
IN 0.40 0.61 0.42 0.37 0.64 0.38 0.35 0.38 1.00 0.38 0.42 0.49 0.58 0.32 0.35
CD 0.40 0.39 0.41 0.37 0.41 0.38 0.62 0.38 0.35 1.00 0.38 0.44 0.35 0.46 0.31
LN 0.46 0.44 0.63 0.42 0.47 0.57 0.39 0.43 0.40 0.40 1.00 0.48 0.39 0.31 0.35
FW 0.57 0.46 0.49 0.53 0.49 0.45 0.41 0.53 0.42 0.42 0.48 1.00 0.45 0.36 0.44
CO 0.43 0.65 0.44 0.40 0.69 0.40 0.37 0.40 0.59 0.38 0.43 0.45 1.00 0.29 0.32
CA 0.31 0.30 0.32 0.29 0.32 0.29 0.48 0.29 0.27 0.49 0.31 0.32 0.29 1.00 0.26
PC 0.43 0.35 0.37 0.40 0.37 0.34 0.31 0.40 0.32 0.32 0.36 0.45 0.34 0.24 1.00

Note. BD = Block Design, SI = Similarities, DS = Digit Span, MA = Matrix Reasoning, VO = Vocabulary,
AR = Arithmetic, SS = Symbol Search, VP = Visual Puzzles, IN = Information, CD = Coding, LN = Letter Number
Sequencing, FW = Figure Weights, CO = Comprehension, CA = Cancellation, PC = Picture Completion.

https://osf.io/xp869/
https://github.com/KJKan/pame_I
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Table A2. WAIS–IV intercorrelations as implied by the psychometric network model.

BD SI DS MA VO AR SS VP IN CD LN FW CO CA PC

BD 1.00
SI 0.42 1.00
DS 0.35 0.34 1.00
MA 0.48 0.30 0.33 1.00
VO 0.38 0.72 0.36 0.30 1.00
AR 0.40 0.39 0.56 0.37 0.41 1.00
SS 0.34 0.30 0.31 0.30 0.32 0.31 1.00
VP 0.59 0.34 0.37 0.46 0.32 0.39 0.29 1.00
IN 0.37 0.59 0.37 0.30 0.63 0.50 0.31 0.33 1.00
CD 0.38 0.37 0.43 0.40 0.42 0.42 0.63 0.34 0.37 1.00
LN 0.34 0.34 0.70 0.31 0.36 0.47 0.26 0.34 0.35 0.36 1.00
FW 0.55 0.41 0.48 0.53 0.41 0.60 0.32 0.54 0.43 0.41 0.49 1.00
CO 0.38 0.66 0.39 0.31 0.69 0.43 0.29 0.34 0.60 0.37 0.42 0.46 1.00
CA 0.39 0.25 0.25 0.27 0.26 0.26 0.49 0.28 0.25 0.46 0.22 0.29 0.24 1.00
PC 0.46 0.38 0.28 0.30 0.35 0.31 0.38 0.43 0.38 0.35 0.26 0.36 0.34 0.30 1.00

Note. BD = Block Design, SI = Similarities, DS = Digit Span, MA = Matrix Reasoning, VO = Vocabulary,
AR = Arithmetic, SS = Symbol Search, VP = Visual Puzzles, IN = Information, CD = Coding, LN = Letter Number
Sequencing, FW = Figure Weights, CO = Comprehension, CA = Cancellation, PC = Picture Completion.

Appendix B. Performance of Fit Indices

This appendix describes how we addressed (potential) bias in fit measures. We
distinguished between (1) exact fit, as indicated by the χ2 test statistic, (2) approximate fit,
as indicated by the Root Mean Square Error of Approximation (RMSEA), (3) incremental
fit, as indicated by the Normed Fit Index (NFI), the Comparative Fit Index (CFI), and the
Tucker–Lewis Index (TLI), and (4) relative fit, as indicated by the χ2 difference test statistic
(only when nested models were compared) and Akaike’s Information Criterion (AIC) and
the Bayesian Information Criterion (BIC).

Appendix B.1. Expectations

We had the following expectations. Whenever we fit a true model, we expected the χ2

values to be distributed around its degrees of freedom (df ), the associated p-values to have
a uniform distribution, and, hence, using α = 0.05, the rejection rate to be 5%. We then
expected the approximate and incremental fit indices to indicate perfect or near-perfect fit
(i.e., RMSEA values of 0 or close to 0, and NFI, TLI, and CFI values of 1 or close to 1).

Whenever we fit an untrue model, we expected the χ2 values to be distributed around
a higher value than the number of degrees of freedom, the associated p-values to have
a skewed distribution (to the right), and a rejection rate higher than 5%. The exception
was when we fit the BF model while the true model was the nested HF model. Because of
this nesting, we then expected, for both the BF and HF models, a uniform distribution of
p-values, a rejection rate of 5%, and a perfect or near-perfect fit according to the RMSEA,
NFI, TLI, and CFI.

When a true model was included in a model selection procedure, we expected the
following. The AIC and BIC were expected to select the true model. If the true model was
the bi-factor (BF) or the nested higher-order g factor (HF) model, and these models were
tested against each other, the χ2 test was applicable. If the true model was the HF factor
model, we expected these differences in χ2 values to be distributed around the difference in
degrees of freedom between the models (∆d f = 11), and the associated p-values to have a
uniform distribution. Furthermore, using a significance level of α = .05, we expected to
reject the HF model (in favor of the BF model) about 5% of the time. If the BF factor model
was the true model, we expected the p-values of the HF model to be skewed to the right,
and thus a rejection rate of greater than 5% for the HF model.

When a true model was not included in a model selection procedure, we had no
particular expectations, apart from the following: if the NW model were the true model,
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and the BF and nested HF were being compared, the AIC, BIC and χ2 test were expected to
favor the BF model.

We defined the degree of bias in terms of the relative fit statistics favoring untrue
competitor(s) over the true model. Thus, the degree of bias against the HF model in favor
of the BF model was defined in terms of the relative frequency with which the ∆χ2 test and
the information criteria AIC and BIC would select the BF model when the true model was
the HF model. Bias was considered present if this frequency (the degree of bias) exceeded
the nominal significance level of 5%.

If bias was present against the HF model in favor of the BF model, we considered
Explanation 2 (the statistical bias explanation; see the main document) to be a valid expla-
nation for the observation that bi-factor models outperform higher-order g factor models.
If there was no bias against the HF model in favor of the BF model, then we considered
Explanation 2 to be an invalid explanation—at least for present purposes.

Appendix B.2. Results

Figure A1 shows the distributions of the χ2 statistics within each condition, and
Figure A2 shows the distributions of the corresponding p-values. As expected, when a true
model was fitted, the χ2-values were distributed around the number of degrees of freedom,
while the associated p-values were uniformly distributed. In addition, when an untrue
competitor was fitted, the χ2 values were generally much larger than the number of degrees
of freedom, resulting in an abundance of significant results (p-values < .05). The exception
was when we fitted the BF model and the true model was the HF model. As expected, the
p-values were then also uniformly distributed.

Figure A1. Distributions of the χ2 Statistic. Note. The plot shows the distribution of χ2-values within
the nine conditions for the 1000 replications of the simulation design. The rows indicate which model
generated the data, while the columns and colors indicate which model was fitted. The conditions
in which a true model was fitted are on the diagonal and are shown in a darker shade. The dashed
line represents the degrees of freedom of the fitted model (hence the expected χ2-values for the true
model). Abbreviations: BF = bi-factor; HF = higher-order factor; NW = network.
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Figure A2. Distributions of the p-values Pertaining to the χ2 Statistic (see Figure A1). Note. The plot
shows how the p-values of the χ2 statistic (see Figure A1) are distributed within the nine conditions.
The rows indicate which model generated the data, while the columns and colors indicate which
model was fitted. The conditions in which a true model was fitted are on the diagonal and are shown
in a darker shade. Abbreviations: BF = bi-factor; HF = higher-order factor; NW = network.

Figure A3 shows the distribution of the approximate fit index RMSEA. As expected,
and in general, we obtained (near) perfect fit values (values of 0 or close to 0) when fitting
a true model. We also obtained (near) perfect fit values when fitting the BF model while the
true model was the HF model, which was also as expected.

Figure A3. Distributions of Approximate Fit Values (RMSEA). Note. The graph shows the distribution
of the RMSEA values within the nine simulation conditions for 1000 replications. The rows indicate
which model generated the data, while the columns and colors indicate which model was fitted.
The rows indicate which model generated the data, while the columns and colors indicate which
model was fitted. The conditions in which a true model was fitted are on the diagonal and are
shown in a darker shade. Abbreviations: BF = bi-factor; HF = higher-order factor; NW = network.
Abbreviations: RMSEA = root–mean–square error of approximation; BF = bi-factor; HF = higher-order
factor; NW = network.
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The distributions of the incremental fit indices CFI, NFI, and TLI showed similar
patterns to the RMSEA (see Figure A4, which shows the CFI distributions). That is, the
incremental fit values indicated (near) perfect fit when fitting a true model (and when
fitting the BF model while the true model was the HF model).

Figure A4. Distributions of Incremental Fit Values (CFI). Note. The graph shows the distribution
of the CFI values for the 1000 replications within the nine simulation conditions. The rows indicate
which model generated the data, while the columns and colors indicate which model was fitted.
The conditions in which a true model was fitted are on the diagonal and are shown in a darker shade.
Abbreviations: CFI = comparative fit index; BF = bi-factor; HF = higher-order factor; NW = network.

Regarding the relative fit measures, we first address the comparison between the
BF model and the HF model in the situation where one of them is the true model. As
Figure A5 shows, when the BF model was the true model, the ∆χ2 test rejected the HF
model and thus favored the true BF model in 100% of the time (implying that power was
not an issue). When the true model was the HF model, the p-values were approximately
uniformly distributed, and the ∆χ2 test resulted in a rejection rate of the HF model in favor
of the BF model 5.90% of the time, which did not deviate from the nominal significance
level of 5% (χ2 = 1.521, d f = 1, p = 0.218, CI95 = [4.56%, 7.56%]). The BIC selected
the true model 100% of the time, showing perfect performance (see Figure A6). The AIC
also performed well, but not perfectly. It showed a preference for the BF model 3.30% of
the time when the true model was the HF model. Since this percentage did not exceed
the percentage associated with the ∆χ2 test, we judged this performance as not showing a
true bias.
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Figure A5. Distributions of the ∆χ2 values (top) and corresponding p-values (bottom) when testing
the higher-order factor model against the bi-factor model in three situations: When the true model
is (1) the higher-order factor model (left), (2) the bi-factor model (middle), and (3) the network
model (right). Note. For all comparisons, ∆df = 11 (represented by the dashed line). Significant
results in red. The dotted line represents either the critical value (19.675) of the ∆χ2 test (top) or
the significance level (.05) (bottom). Abbreviations: HF = higher-order factor model; BF = bi-factor
model; NW = networ model.

Figure A6. The Preference for a Model in a Statistical Comparison Between Two Competing Models
when the Fit Statistics BIC and AIC were used. When the true model was a network, an HF vs. BF
comparison favored the BF model, validating the network explanation; when the true model was a
bifactor model, an HF vs. BF comparison favored the BF model, validating the bi-factor explanation;
when a true model was included in a comparison, the true model was selected in more than 95% of the
cases as being the preferred model, invalidating the statistical bias explanation. Note. Abbreviations:
AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; HF = higher-order
factor model; BF = bi-factor model; NW = network model. Shaded background: Comparisons in
which the true model was included. White background: Comparisons in which the true model was
not included. 1 Results relevant to Explanation 1—the bi-factor model is the true model. 2 Results
relevant to Explanation 2—fit measures are biased (against the HF model in favor of the BF model).
3 Results relevant to Explanation 3—a network underlies the data.
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Comparing all three models, we found the following. Once again, the BIC showed
perfect performance, selecting the true model 100% of the time. Again, the AIC also
performed well, although it did not show perfect performance. When the true model was
the HF model, it showed a preference for the BF model 3.30% of the time (but never for the
NW model). In all other cases, the AIC selected the true model.

In summary, the exact, approximate, incremental, and relative fit measures performed
as expected. We found no evidence that relative fit measures were biased in general, or that
they were biased against the higher-order g factor model in favor of the bi-factor model
in particular.

Notes
1 When the WAIS–IV higher-order g factor model is respecified as a bi-factor model, the stan-

dardized loading on g′ of, for instance, subtest SI (λSI,g′ ) would be equal to the standardized
factor loading of V on g (γV,g) multiplied by the standardized factor loading of SI on V (λSI,V)
in the higher-order g factor model: λSI,g′ = γV,g · λSI,V . The standardized bi-factor loading
on variable V′ (λSI,V ′ ) would also be equal to a constant multiplied by the standardized factor

loading of SI on V, namely λSI,V ′ =
√
(1 − γ2

V,g) · λSI,V . If we define the ratio (proportion) of the

factor loadings on the g′ and V′ as pg′ ,V ′ =
λSI,g′
λSI,V′

, then it holds that this ratio is equal to the ratio

of the factor loadings on the g′ and V′ for the subtests VO, IN, and CO. Thus, the proportion-

ality constraints in the variance decomposition would include
λSI,g′
λSI,V′

=
λVO,g′
λIN,V′

=
λIN,g′
λSI,V′

=
λCO,g′
λCO,V′

.

Similarly,
λBD,g′

λBD,PO′
=

λMA,g′
λMA,PO′

=
λVP,g′

λVP,PO′
=

λPC,g′
λPC,PO′

=
λFW,g′

λFW,PO′
,

λDS,g′
λDS,WM′

=
λAR,g′

λAR,WM′
=

λLN,g′
λLN,WM′

, and
λSS,g′
λSS,PS′

=
λCD,g′
λCD,PS′

=
λCA,g′
λCA,PS′

. Instead of freely estimating 15 + 15 = 30 factor loadings, 15 loadings
and 4 proportions are being estimated, giving an additional 11 degrees of freedom.

2 This possibility does not exist in most standard statistical software programs. As far as we know,
a direct comparison is only possible in R (R Core Team 2022) using package OpenMx (Boker et al.
2011) or psychonetrics (Epskamp 2021).

3 We note that this network model lacks the rich history that the factor models have and that the
use of the term “confirmatory” here is somewhat ambiguous; one might consider the method
that was applied as an example of the exploratory mode of confirmatory techniques (Raykov
and Marcoulides 2012). On the other hand, the confirmatory factor models of intelligence also
originate from prior exploratory factor analyses conducted on other data sets and could also be
viewed as cross-validations. Importantly, the different routes taken toward the parameter values
do not affect the validity of the simulations or our argumentation. The essence of our simulation
study is that, in order to evaluate the fit statistics of the network model effectively, the data
generation should produce parameter estimates that are empirically plausible. This evaluates
the fit statistics of the network model possible; hence, the provided fit statistics are not biased
and, provided Explanation 3 is valid, the evaluation of the plausibility of this explanation is also
unbiased. Furthermore, the fact that the configuration of the network model can be replicated
across different samples strengthens the generalizability of our findings.
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