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Abstract: In many nations, grades and standardized test scores are used to select students for programs
of scientific study. We suggest that the skills that these assessments measure are related to success in
science, but only peripherally in comparison with two other skills, scientific creativity and recognition
of scientific impact. In three studies, we investigated the roles of scientific creativity and recognition of
scientific impact on scientific thinking. The three studies described here together involved 219 students
at a selective university in the Northeast U.S. Participants received assessments of scientific creativity
and recognition of scientific impact as well as a variety of previously used assessments measuring
scientific reasoning (generating alternative hypotheses, generating experiments, drawing conclusions)
and the fluid aspect of general intelligence (letter sets, number series). They also provided scores
from either or both of two college-admissions tests—the SAT and the ACT—as well as demographic
information. Our goal was to determine whether the new tests of scientific impact and scientific
creativity correlated and factored with the tests of scientific reasoning, fluid intelligence, both,
or neither. We found that our new measures tapped into aspects of scientific reasoning as we
previously have studied it, although the factorial composition of the test on recognition of scientific
impact is less clear than that of the test of scientific creativity. We also found that participants rated
high-impact studies as more scientifically rigorous and practically useful than low-impact studies,
but also generally as less creative, probably because their titles/abstracts were seemingly less novel
for our participants. Replicated findings across studies included the correlation of Letter Sets with
Number Series (both measures of fluid intelligence) and the correlation of Scientific Creativity with
Scientific Reasoning.

Keywords: intelligence; scientific impact; scientific reasoning; scientific creativity; fluid intelligence

1. Introduction

Science-technology-engineering-mathematics (STEM) reasoning is an important aspect of daily life,
not just for scientist and engineers, but for everyone. People are constantly being besieged not only by
bogus scientific claims that some believe are true—for example, supposedly scientific studies claiming
healthfulness of various kinds of foods (often funded by food-production companies)–but also by real
scientific claims (such as supporting the importance of timely administration of childhood vaccines).
True scientific claims are disputed by various celebrities, including actors, religious leaders, politicians,
pop vocalists, and many others. For the past several years, we have stressed the importance of studying
what we believe are the misunderstood processes of STEM reasoning (Sternberg and Sternberg 2017;
Sternberg et al. (2017, 2019)) that are needed for making accurate scientific claims to distinguish them
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from the many bogus claims one finds in the media and elsewhere (Kaufman and Kaufman 2019;
Shermer 2002).

The consequences of failing to understand STEM principles and how people reason about them
are great. Indeed, the consequences reach right up to the top: As this article is being written, even the
presidents of some nations are climate-change deniers (Worland 2019). Denial of human-caused climate
change has consequences throughout the world, such as rising temperatures, increased storm activity,
and increasingly rapid depletion of potable water in some areas (The Guardian 2018; Kolbert 2019;
Rettner 2019; Xia 2019).

In our past research, we have learned a number of facts about STEM reasoning, some of which
are contrary to popular conceptions (see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)).
Here is what we have found: First, reasoning about STEM seems to have a very weak and inconsistent
relationship with general intelligence. Second, in contrast, different aspects of STEM reasoning have a
moderate to strong relationship with each other. In particular, tests of hypothesis generation, experiment
generation, drawing conclusions, evaluating teaching, and reviewing articles all appear to measure a
core set of skills of scientific reasoning that cluster together factorially. Third, as might be expected, tests
of inductive reasoning, such as letter sets, number series, and the SAT/ACT also measure a core set of
skills that cluster factorially. Fourth, the factors for the two sets of clusters (scientific reasoning versus
general intelligence as measured by conventional psychometric tests) are typically distinct (see details in
Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)). Fifth, although the early studies examined
only reasoning in psychological science (see Sternberg and Sternberg 2017; Sternberg et al. 2017), a later
study (see Sternberg et al. 2019) showed that the results conceptually replicate and extend to reasoning
in other scientific fields as well. Sixth, assessments of skills in evaluating quality of teaching correlate
and factor with the scientific-reasoning measures rather than with the general-intelligence-based
measures (see Sternberg et al. 2017). Seventh, when the scientific-reasoning measures are presented in
multiple-choice format rather than in free-response format, their correlation with conventional tests
measuring general intelligence increases (see Sternberg et al. 2019). Eighth, by implication, failing
to measure skills in actual STEM reasoning may distort various kinds of admissions processes for
STEM educational programs (graduate or even undergraduate). Admissions offices tend to focus on
identifying students who are high in general intelligence and good at taking multiple-choice tests,
but not necessarily adept in the STEM reasoning processes that the students will need to be fully
successful in STEM educational programs.

These findings are important for the simple reason that proxy tests for general intelligence—or
measures of so-called general mental ability (Sackett et al. 2020)—are, in fact, used regularly for
admission to many undergraduate and graduate programs in STEM fields (Posselt 2018). Yet, the results
suggest that the cognitive skills tapped by such tests are not at the core of scientific reasoning and even,
in some cases, may be peripheral to it.

In our previous research, we tried to measure what we believed to be core scientific-reasoning
skills, namely, generating alternative hypotheses, generating experiments, and drawing conclusions,
as well as core skills for reasoning about quality of teaching. We also assessed skills involved in
reviewing and editing scientific articles. However, less than adequately measured in our chosen set of
skills were two sets of related skills that are particularly important in scientific research: those involved
in scientific creativity and those involved in recognition of scientific impact. In our current studies,
we sought to measure higher levels of scientific thinking skills than we did in our previous studies.

The first set of skills, those involved in scientific creativity, are essential in scientific thinking
(Kaufman and Sternberg 2019; Simonton 2003; Sternberg 2019; Sternberg and Kaufman 2018) and
in differentiating typical scientific thinkers from great ones (Simonton 2004). These skills include
generating hypotheses, generating experiments, and drawing conclusions. To conduct research,
one must be able to successfully complete each of these steps: generate initial hypotheses while
considering alternative hypotheses (to ensure that there are indeed alternatives); generate experiments
(to ensure that the research can yield strong conclusions); and draw conclusions (to make sure the
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researcher understands what the data are telling him or her). For example, in our subtest of Generating
Experiments, we had participants generate experiments, but we, as researchers, provided them with
each scientific problem and a corresponding hypothesis. The participants’ task was to design an
experiment in order to test the presented hypothesis regarding the scientific problem. In many
scientific-reasoning situations, at least among academic STEM professionals, the scientist her- or
himself is the one who generates the problem and the hypothesis regarding the solution to the problem.
Therefore, we believe it is important to extend our previous work to include a higher level of creativity,
where the problem and hypothesis are participant-generated rather than researcher-generated. To this
end, we created a new assessment called Scientific Creativity.

The second set of skills involves differentiating meaningful, high-impact scientific research from
research of lower impact (Sternberg 2018d; Sternberg and Gordeeva 1996). These skills are important
because one could be a good experimentalist, but for trivial research. For example, someone could
design an experiment comparing recall for five-letter words to recall for 6-letter words, but the
research likely would be trivial and have almost no impact. Some years back, Tulving and Madigan
suggested that much scientific research is, in fact, scarcely worth doing and has little or no impact
(Tulving and Madigan 1970). Impact provides a major heuristic benefit of scientific research, serving to
generate further research on a given topic and sometimes opening up new, related topics for exploration
(Sternberg 2016; Sternberg 2018b). It is often difficult to predict the impact of scientific research before
the research is done, but measures exist to assess scientific impact after the research is done. To this end,
we created a new assessment called Scientific Impact. We called upon two such measures for assessing
scientific impact.

Our first measurement of high impact involved inclusion of scientific work in prominent textbooks.
Authors of scientific textbooks have to be very selective in the work they include in their texts because
of the limited space they have to describe contributions to the field. Hence, the authors need to consider
which studies they, as experts in their field, consider to be those of highest impact. They rely on their
own judgment, of course, but also on the judgments of editors in their field and of other textbook
authors. In order to measure students’ ability to differentiate between high- and low-impact research,
we first provided students with a title and an abstract of each scientific work. Participants had to
indicate whether they thought the work was high-impact (i.e., cited consistently in multiple major
textbooks) or low-impact (not cited in major textbooks). Others also have used citations as measure of
scientific impact (e.g., Dennis 1958; Zuckerman 1977).

The second measurement of high impact involved scientific work that has been highly cited
in the scientific literature, without regard to whether it has been highly cited in textbooks (see also
Feist (1997) and Liu et al. (2018)). As a basis for determining citations, we used the database SCOPUS,
a science-citation index that is widely used in scientific research. SCOPUS describes itself as drawing
on 1.4 billion cited references dating back to 1970. It has additional entries going back even further
than that. It is probably the most well-known and respected data base for evaluating impact of work
and was recently used in a major article to evaluate who are the 100,000 most widely cited scientists in
the world (Ioannidis et al. 2019).

Scientific impact is key to scientific contribution (Sternberg 2003a, 2003b; Sternberg 2018b). It helps
to distinguish great scientists from not so great ones. Scientists who perform high-impact scientific
research not only design scientifically-sound empirical studies, but also studies that are heuristically
valuable to the field and hence are cited again and again (Sternberg 1997).

This article extends our previous work in looking beyond our past scientific-reasoning measures
to important aspects of scientific creativity and recognition of scientific impact. With regard to the
latter, we recognize an important difference between recognition of impact and designing research that
later will have impact. However, it is almost impossible to predict in advance which ideas will have
great impact, and moreover, it is unrealistic to expect college-student participants to be in a position
to design studies that later will be high-impact in science. Thus, we used a measure of recognition of
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scientific impact of ideas rather than of generation of scientifically impactful ideas. The latter measure
would not be realistic in the context of our work with undergraduate students as participants.

2. Theoretical Basis

The theoretical basis for this work is the theory of successful intelligence (Sternberg 2018c, 2020;
Sternberg et al. 2016). In this theory, creative intelligence combines with analytical intelligence and
practical intelligence to provide a basis for understanding and predicting human thinking and behavior.
In particular, there are seven metacomponents (executive processes) involved in scientific (and other
forms of) thinking: (1) recognizing the existence of a problem; (2) defining the problem; (3) mentally
representing the problem; (4) allocating resources to problem solution; (5) formulating a strategy
for solving the problem; (6) monitoring problem solving; and (7) evaluating the problem solving.
The previous studies we have done (see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019))
have emphasized reasoning and problem solving as realized in the latter metacomponents (the
metacomponents numbered 3–7 above). But prior to problem solving, in science as in everyday
life, there is a phase that is sometimes labeled problem-finding. This phase includes the first two
metacomponents described above (i.e., the metacomponents numbered 1–2 above), namely, problem
recognition and problem definition. These metacomponents involve realizing that there is a problem
to be solved and figuring out what the problem is (usually prior to actually solving it, but sometimes
as a result of redefining a problem that initially was incorrectly defined).

Conventional standardized tests emphasize problem solving (the latter five metacomponents)
but place little, if any, emphasis on problem finding (the first two metacomponents). Yet,
scientific thinking depends very heavily on the problem-finding, creative phase of research.
Moreover, diverse recent models of problem-solving place substantial emphasis on problem
finding (Abdulla and Cramond 2018; Abdulla et al. 2018; Arlin 1975; Arlin 1975–1976;
Mumford and McIntosh 2017; Mumford et al. (1991, 2012); Simonton 2004). Our goal, therefore, was
to place greater emphasis on this problem-finding phase in the current research.

In our past research (see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)), we found
that tests of scientific reasoning clustered with each other factorially, as did tests of fluid intelligence.
However, the two groups of tests clustered relatively independently. We sought in this study to
determine whether our new tests of scientific creativity and of prediction of scientific impact would
cluster with the scientific-reasoning tests, the tests of fluid intelligence, with both, or with neither.
We predicted that the test of scientific creativity would cluster with the scientific-reasoning tests.
We expected the same for the test of prediction of scientific impact. We tested these predictions with
both principal-components and principal-axis factor analysis (with results of the principal-components
analysis shown) based on tables of correlations (with results shown). We first used analysis of variance
to test for sex differences, simply to determine whether the data showed different means for men
and women. This was done to ensure that any results we obtained were not due to mean differences
between men and women, with sex operating as a moderator variable.

3. Study 1

3.1. Method

3.1.1. Participants

A total of 59 participants were involved in the study, 23 males and 36 females. The average age
was 20.2 and the range of ages was 18–26. All participants were students at a selective university in
the northeast of the United States. The participants were students in behavioral-science classes that
offered credit for experimental participation.
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3.1.2. Materials

The materials were as follows:
Informed-consent form

1. Psychometric tests

We used two psychometric tests, which we also used in our previous research (see
Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)) and which we found to be both reliable
and construct valid.

(a) Letter Sets. For each item, participants saw five sets of four letters. They had to circle one set of
letters that did not belong with the other four sets. For example, it might be that four sets of letters
each had one vowel and one set of letters had no vowels. This test, with 15 items, was timed for
7 min. The test measures the fluid aspect of general intelligence.

(b) Number Series. Participants saw series of numbers. They had to indicate which number came next
in each series. For example, they might be given a series of numbers in which each successive
number was a multiple of 3 of the previous number. They then would have to figure out that
the rule was “multiples of 3′′ and indicate the next multiple of 3. They wrote down what they
believed to be the correct number. This test, with 18 items, was timed for 7 min. The test, like
Letter Sets, measures the fluid aspect of general intelligence.

2. Assessing Scientific Impact

In this assessment, students were asked to evaluate scientific impact. “High-Impact” titles and
abstracts were from articles that were cited in at least two of three major introductory-psychology
textbooks: Myers (2011). Myers’ Psychology (2nd ed.). New York, NY: Worth; Weiten (2011). Psychology:
Themes and Variations (9th ed.). Belmont: Wadsworth Cengage Learning; and Coon and Mitterer (2013).
Introduction to Psychology: Gateways to Mind and Behavior (14th ed.). Boston: Cengage Learning.
“Low-Impact” titles and abstracts were from articles that had been cited zero times in the textbooks
and also less than five times in SCOPUS (average = 1.3 citations).

There were ten high-impact and ten low-impact items. So that students would have some
kind of reference point, we told them that half the items were high-impact, and half, low-impact.
This instruction was to avoid a situation where, having no reference point, they viewed all or almost
all the title/abstract combinations as either high or low in impact.

The titles and abstracts from both versions covered the following topics, with equal numbers of
abstracts from each topic: medicine, neuroscience, biology, and behavioral sciences, with all research
topics relevant to psychology. The participants were asked five questions about each title and its
corresponding abstract.

Here are the instructions and an example of an item we actually used:

“In psychological science, some studies have high impact and are cited many times. Other studies
have low impact and are hardly cited at all. We are seeking to determine whether students, after
reading abstracts of studies, can determine whether particular studies are high-impact or low-impact.
For each of the following studies, we would like to ask you five questions.

(1) Do you believe this study to be high-impact—cited many times—or low-impact—cited very
few times?

If you believe the study to be high impact, write an “H.”
If you have the study to be low impact, write an “L.”
There are 10 high impact abstracts and 10 low impact. At the end, you may want to count how

many times you put “H” and “L”. It should be 10 times for each.

(2) How confident are you in your rating?
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If you have high confidence in your rating, write a “3.”
If you have medium confidence in your rating, write a “2.”
If you have low confidence in your rating, write a “1.”

For the three following questions, please rate your answer on a scale of 1 to 3, as you did for the
previous question. For example, for “How creative do you believe this work to be?”, if you believe the
work to be highly creative, write a “3”, if you believe this to be somewhat creative work, write a “2,”
and if you believe this to be only slightly creative work, write a “1.”

(3) How creative do you believe this work to be?

3 = highly creative, 2 = somewhat creative, 1 = slightly creative

(4) How scientifically rigorous do you believe this work to be?

3 = highly rigorous, 2 = somewhat rigorous, 1 = slightly rigorous

(5) How practically useful do you believe this work to be in day-to-day life?

3 = highly practically useful, 2 = somewhat practically useful, 1 = slightly practically useful

On the next several pages, you will find various abstracts from papers that have been highly cited
or have been rarely cited. They are in no particular order. Please answer the questions accordingly.”

1. ‘Can You See the Real Me? Activation and Expression of the “True Self” on the Internet’.

‘Those who feel better able to express their “true selves” in the Internet rather than face-to-face
interaction settings are more likely to form close relationships with people met on the Internet. Building
these correlational findings from survey data, we conducted three laboratory experiments to directly
test the hypothesized causal role of differential self-expression in Internet relationship formation.
Experiments 1 and 2, using a reaction time task, found that for the university undergraduates, the true
self-concept is more accessible in memory during Internet interactions, and the actual self more
accessible during face-to-face interactions. Experiment 3 confirmed that people randomly assigned
to interact over the Internet (vs. face-to-face) were better able to express their true-self qualities to
their partners.’”

[Quoted from Bargh et al. (2002). Can you see the real me? Activation and expression of the “true
self” on the Internet. Journal of Social Issues, 58, p. 33.] (Participants were not told the original source of
the title and abstract.)

Participants then answered the questions as described above.

3. Scientific-Creativity

The third kind of assessment we used was of scientific creativity. After evaluating the 20 titles
and abstracts and answering the five questions about each published study, the participants answered
three questions about a potential study they could design:

“What is a study about human behavior that you might like to design and conduct? What
is a question about human behavior that you consider important that you would like to
answer? How might you answer it through research?”

Because we never have used this assessment before, we describe the scoring guidelines for the
creativity test here. Ratings were holistic with regard to scientific creativity:

0 = missing
1 = answer unsatisfactory
2 = minimally satisfactory; answers question but is weak
3 = highly satisfactory; goes a step beyond minimum
4 = good; well beyond satisfactory answer
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5 = outstanding

The scores were partly based on whether participants addressed all of the parts of the study
design question. We used a single rater because our previous work (see Sternberg and Sternberg 2017)
had shown that a single rater yielded reliable results, with our reliabilities at 0.75 in the previous work
for multiple raters, suggesting a reliability of at more than 0.60 and less than 0.75 for a single rater.
The baseline score was a 3 (if a participant made an effort to answer each part and if their proposed
study made sense/was plausible). If they went above and beyond with creative detail, they were given
a 4. A 5 was creatively outstanding (and also rare).

4. Scientific Reasoning

The fourth kind of assessment, scientific-reasoning items, were taken from our previous research
(see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)). The scientific-reasoning assessments
included items that tasked students with evaluating research as well as using their own research
skills. They had to generate hypotheses, generate experiments, and finally, draw conclusions. Here are
sample items from among those we used:

• Generating Hypotheses

Participants were given brief descriptions of situations and had to create alternative hypotheses
to explain the behavior described in the vignettes. One example of a vignette, as used in our previous
research, is:

“Marie is interested in child development. One day, she notices that whenever Laura’s nanny
comes in to pick up Laura from nursery school, Laura starts to cry. Marie reflects upon how sad it is
that Laura has a poor relationship with her nanny.

What are some alternative hypotheses regarding why Laura starts to cry when she is picked up from
nursery school by the nanny?”

Quality of each answer was scored on a 1 (low) to 5 (high) scale.

• Generating Experiments

A second set of vignettes was also presented to the participants. The participants were given a
description of a situation with hypotheses, and students were tasked with designing an experiment to
test these hypotheses. Here is an example:

“Ella, a senior in college, observes that her roommate tends to perform better on an exam if
she has had a cup of coffee beforehand. Ella hypothesizes that drinking coffee before taking an
exam will significantly increase one’s exam performance. However, Ella does not know how to test
this hypothesis.

Please suggest an experimental design to test this hypothesis and describe the experiment in some
detail. Assume you have the resources you need to be able to do the experiment (e.g., access to students
and their academic records, sufficient funds to pay subjects, etc.).”

Quality of each answer was scored on a 1 (low) to 5 (high) scale.

• Drawing Conclusions

A third set of vignettes was presented to participants with results of studies. Students were asked
whether the conclusions drawn were valid (and if not, why not). Here is the first item presented:

“Bill was interested in how well a new program for improving mathematical performance worked.
He gave 200 students a pretest on their mathematical knowledge and skills. He then administered the
new program to them. After administering the program, he gave the same 200 students a posttest
that was equal in difficulty and in all relevant ways comparable to the pretest. He found that students
improved significantly in performance from pretest to posttest. He concluded that the program for
improving mathematical performance was effective.
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Is this conclusion correct? Why or why not?”

Quality of each answer was scored on a 1 (low) to 5 (high) scale.

• Demographic Questionnaire

A demographic questionnaire was administered at the end of the study asking about gender, age,
ethnicity, grade-point-average (GPA) at their university, relevant SAT and ACT scores, and experience
in research.

3.1.3. Design

The design of the study was totally within-subjects. All participants completed all assessments.
For analysis-of-variance purposes, the main independent variable was participant gender and the
main dependent variables were scores on the measures as described above. For purposes of factor
analysis, the goal was to determine the factors (latent independent variables) that could predict scores
on the various assessments.

3.1.4. Procedure

All studies were conducted in person at a large selective university in the Northeast. The materials
were arranged in the following order: (1) consent form; (2) letter-sets test; (3) number-series test;
(4) title/abstract evaluations; (5) scientific creativity—designing their own study; scientific reasoning:
(6) generating hypotheses; (7) generating experiments; (8) drawing conclusions; (9) demographic
questionnaire. Lastly, the experimenter passed out a debriefing sheet. The letter-sets test and the
number-series test were timed. The research assistants timed the students, telling them when to begin
and when to turn the page. The students had 7 min to complete as many of the letter-set problems
as possible, as well as 7 min to complete as many of the number-series problems as possible. None
of the other assessments had a time limit. The students were given either course credit or $20 for
their participation.

3.2. Results

3.2.1. Basic Statistics

Table 1 shows basic statistics. In the Scientific-Impact ratings, participants rated each study as
either high or low in impact. They were scored as to whether they gave the correct answer or the
incorrect answer. Hence, a chance score would be 50%. The first question we asked is whether the
mean scientific-impact scores differed significantly differently from 50% for each of the high-impact
and low-impact items. If the mean score did not differ significantly from 50%, then we would conclude
that the task was too hard and that participants were answering items at random. As this is a new
assessment, never used by us (and, to our knowledge, anyone else) before, it is important to establish
that participants even were able to do the task. The results of our analyses were z = 13.60, p < 0.001 for
the high-impact items and z = 11.71, p < 0.001, for the low-impact items. Thus, the test items apparently
were meaningful to the participants and they could answer correctly at above-chance levels.

We performed simple t-tests to determine whether there were significant sex differences on the
two main new measures of the study, Scientific Creativity and Scientific Impact. For Scientific
Creativity, we found t (56) = −0.72, p = 0.478. For the Scientific Impact measure, we found
t (56) = −0.01, p = 0.992. Thus, there were no significant differences between the sexes. This is
consistent with previous results in our work, where we have failed to find sex differences for our
measures (see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)). (Note: Degrees of freedom
are reduced because of participants who did not report their gender as male or female.)

We also examined whether there were differences in the ratings of Creativity, Scientific Rigor,
and Practical Usefulness for the impact ratings. The significance test results were, for Creativity,
t (58) = −5.93, p < 0.001, for Scientific Rigor, t (58) = 7.55, p < 0.001, and for Scientific Usefulness,
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t (57) = 13.00, p < 0.001. In other words, there was a significant difference in each case for the ratings of
high- versus low-impact items.

The surprise in these ratings is that the difference for Creativity ratings went in the direction
opposite to that expected. Participants rated low-impact titles/abstracts as more creative. This pattern
of ratings may have resulted because our participants, university students and mostly freshmen and
sophomores, weighed novelty, a first factor in creativity, very heavily, and usefulness, a second factor
in creativity, not so much. Some of the low-impact studies were indeed quite novel, with titles, for
example, such as “The positive effects of physical training on life quality of a 92-year-old female
patient with exacerbation of chronic heart failure” or “Is painting by elephants in zoos as enriching
as we are led to believe?” but the studies nevertheless were perhaps not as practically useful as the
high-impact studies.

Table 1. Descriptive Statistics Study 1.

Assessment N Mean SD

Scientific Creativity 58 2.60 0.79
Letter Sets 59 10.19 2.51
Number Series 59 10.49 3.01
Scientific Reasoning–Hypotheses 59 6.59 2.91
Scientific Reasoning–Experiments 59 6.34 2.19
Scientific Reasoning–Conclusions 59 6.97 1.60
Scientific Reasoning (Total) 59 19.90 5.32
Impact Ratings High 58 7.34 1.38
Impact Ratings Low 58 7.17 1.92
Average of confidence ratings for high impact items 59 2.21 0.32
Average of confidence ratings for low impact items 57 2.16 0.35
Average of creativity ratings for high impact items 59 1.94 0.29
Average of creativity ratings for low impact items 59 2.24 0.35
Average of rigor ratings for high impact items 59 2.09 0.33
Average of rigor ratings for low impact items 59 1.74 0.25
Average of usefulness ratings for high impact items 59 2.36 0.29
Average of usefulness ratings for low impact items 58 1.70 0.27
Age 59 20.24 1.78
GPA 59 3.39 0.47
SAT Reading 40 702.25 70.51
SAT Math 40 734.75 49.30
ACT Reading 28 32.07 4.15
ACT Math 28 33.25 3.09
What is the number of lab courses you have taken? 55 2.18 2.39
How many scientific articles do you read per month? 58 5.55 8.64

3.2.2. Reliabilities

The new scales in this assessment are Scientific Creativity and Scientific Impact. The reliability
of the Scientific Creativity measure could not be computed because it comprised only one item.
The reliability of the Scientific Impact measure was 0.69 (computed by correlating scores for the
two half-tests–low-impact items correlated with scores for high-impact items and corrected by the
Spearman-Brown formula). Guttman lambda-5 reliability was 0.69. Letter Sets and Number Series were
timed and thus equal halves needed to take into account that many people did not finish. The Guttman
lambda-5 reliability of Letter Sets was 0.69 and of Number Series was 0.77. Some people also did not
finish the Scientific-Reasoning items. The lambda-5 reliability of Scientific Reasoning was 0.85.

3.2.3. Correlations

Table 2 shows correlations among the most important variables in Study 1. The expanded table of
correlations is presented in the Appendix A (Table A1). It should be kept in mind that any conclusions
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drawn from these correlations are limited by the power of the correlational tests. That said, the patterns
of correlations for the psychometric tests and creative measure are akin to those in earlier studies from
our research group with much larger samples (Sternberg and The Rainbow Project Collaborators 2006).
As always, one cannot draw any clear conclusions from nonsignificant correlations. There are four key
results, we believe:

(1) Our new Scientific-Creativity scores did not correlate significantly with scores on any of the
conventional ability tests (SAT, ACT, Number Series) except Letter Sets (r = 0.32, p < 0.05) or with
scores on our Scientific Impact measure. However, our Scientific Creativity scores did correlate
significantly with our total Scientific Reasoning score (r = 0.49, p < 0.01).

(2) Our new Scientific Impact measure also did not correlate significantly with any of the conventional
ability tests but did correlate significantly with our Scientific Reasoning scores (r = 0.27, p < 0.05).
As always, one cannot draw any clear conclusions from nonsignificant correlations.

(3) Our Scientific Reasoning measure (total score) further did not correlate significantly with any of
the conventional ability tests.

(4) Surprisingly, the SAT and ACT scores did not correlate significantly with the Letter Sets and
Number Series scores (see Appendix A), although the samples were reduced because not everyone
took either the SAT or ACT, some took one test of the other, and some took both. Letter Sets
did correlate significantly with Number Series (r = 0.38, p < 0.01); SAT Reading and SAT Math
correlated significantly with each other (r = 0.39, p < 0.05) and SAT Math correlated significantly
with Number Series (r = 0.49, p < 0.01).

Table 2. Key Correlations Study 1.

Assessment Sci. Creat. LS NS Sci Reas. Sci Imp.

Sci. Creat. 1.00 0.32 * 0.09 0.49 ** 0.07
Letter Sets 0.32 * 1.00 0.38 ** 0.05 0.21
Num. Ser. 0.09 0.38 * 1.00 0.22 0.23
Sci. Reas. 0.49 ** 0.05 0.22 1.00 0.27 *
Sci. Imp. 0.07 0.21 0.23 0.27 * 1.00

* p < 0.05; ** p < 0.01; all tests two-tailed; Note: Correlations in the table are presented with pairwise deletion.

3.2.4. Factor Analyses

We did two types of factor analyses, principal-components analysis and principal-factor analysis,
each of which makes slightly different assumptions about the nature of the data. The difference is
whether a 1 (principal-components analysis) or a communality (principal-factor analysis) is placed in
the diagonal of the correlation matrix to be factor-analyzed. The results are shown in Table 3. The factor
analyses did not include SAT or ACT scores because too few participants had taken the tests and did
not include undergraduate GPA because many of the participants were freshmen and thus did not yet
have a university GPA.

The results of principal-components (and principal-factor analyses, not shown at the request of
the editor) suggested largely the same things:

(1) A first factor comprised Letter Sets, Number Series, and Scientific Impact (the last more weakly in
the principal-factor analysis).

(2) A second factor comprised Scientific Creativity and Scientific Reasoning.
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Table 3. Study 1: Rotated Principal Components.

Assessment Component

I II
Letter Sets 0.77 0.16
Number Series 0.77 0.04
Scientific Reasoning 0.15 0.84
Scientific Creativity 0.09 0.88
Scientific Impact 0.64 0.10
Extraction Method: Principal-component analysis
2 Components Extracted
Rotation Method: Varimax with Kaiser Normalization
Rotation converged in 3 iterations
Percentage of Variance Account for: 62%.

Factors included for Eigenvalues >1. These were also the most interpretable factors.

3.3. Discussion

To summarize these results, there were no sex differences in the key measures but significant
differences in ratings of Creativity, Scientific Impact, and Practical Usefulness for high- versus
low-impact items. We found that high-impact studies were judged as less creative, more scientifically
rigorous, and more practically useful than low-impact studies.

Our new Scientific Creativity measure correlated significantly with our old Scientific Reasoning
measures, as used in past research (see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019)).
The new Scientific Impact measure related as well to our Scientific Reasoning measures. The new
measures did not show significant correlations with the psychometric tests except for one correlation
significant at the 0.05 level with Letter Sets. Factorially, Scientific Creativity and Scientific Reasoning
drew on the same set of latent skills.

Scientific Impact factored with the fluid-intelligence tests. This may be in part because the test was
largely an analytical one—that is, participants did not create high-impact studies but rather analyzed
which of already existing studies were high- (or low-) impact. So, the Scientific Impact measure may
have drawn more on fluid intelligence than we had expected it would.

A surprise in the ratings was that the difference for Creativity ratings went in the direction opposite
to that expected. This may be because our participants, university students and mostly freshmen
and sophomores, weighed novelty, a first factor in creativity, very heavily, and usefulness, a second
factor in creativity not so much. As noted, some of the low-impact studies were indeed quite novel,
for example, “Itch Relief by Mirror Scratching: A Psychophysical study,” but they were of limited
practical usefulness.

4. Study 2

Study 2 provided a kind of conceptual replication of Study 1. As described earlier, instead of
using textbook references, SCOPUS citations were used to decide which publications were high-impact.
Although the two measures are similar in some ways, they are distinctly different in other ways.

First, studies can be highly cited in in the scientific literature and hence have high citation counts
through SCOPUS for reasons that are not necessarily positive. As examples, work might be cited for
failure to replicate, or because the work is in a fad area at a given time, because the work presents a
useful new method of data analysis, or because the results are highly controversial either scientifically
or socially. In contrast, work cited in introductory-psychology textbooks tends to have been replicated
(if replication has been attempted), generally has risen above temporal fads, and tends to be substantive
rather than methodological. It may be scientifically controversial but perhaps is less likely to be socially
controversial because of a preference of textbook publishers not to lose sales by offending potential
users (Sternberg 2003b; Sternberg and Hayes 2018).
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Second, studies cited in textbooks often tend to be those thought to be of most interest to the
largely undergraduate audience for the textbooks. So, studies of interest to the readership may be
over-represented. Highly technical articles of any kind would be less likely to be cited in textbooks.

Third, SCOPUS does not capture all scholarly citations. It covers many but not all journals.
Hence, it is comprehensive but not complete. Google Scholar, for example, covers more sources than
does SCOPUS.

4.1. Method

4.1.1. Participants

In this study, there were 54 participants, 18 males and 36 females. (Three participants were
eliminated because they failed to complete any items at all on at least one task—that is, they simply
did not engage the tasks.) The average age was 20.6 and the range of ages was 18–29. None of the
participants had been involved in Study 1. The participants were students in behavioral-science classes
that offered credit for experimental participation.

4.1.2. Materials

There were 20 titles and abstracts in all. The “High-Impact” titles and abstracts were from articles
that, according to SCOPUS, were cited over 1500 times. The average “High-Impact” article in Version 2
was cited 7009 times. The “Low-Impact” articles, according to SCOPUS, were cited less than 10 times,
for an average of 1 time per published study.

As in Study 1, the abstracts from both versions covered the following topics, with equal numbers
of abstracts from each topic: medicine, neuroscience, biology, and behavioral sciences. The participants
were asked five questions about each abstract. These questions were the same as in Study 1.

4.1.3. Design and Procedure

The design and procedure were the same as in Study 1. The only substantive difference between
the two studies were the titles and abstracts presented to the participants, who, of course, were also
different from those in Study 1.

4.2. Results

4.2.1. Basic Statistics

Table 4 shows basic statistics. As in Study 1, we computed whether the mean impact ratings for
high- and low-impact items differed significantly from a chance score of 50%. For the high-impact
items, the result was z = 14.50, p < 0.001. For the low-impact items, the result was z = 12.44, p < 0.001.
That is, in both cases, the items were meaningful to the participants in that they performed above a
chance level.

As in Study 1, we tested for sex differences in the Scientific Creativity and Scientific Impact
measures, the measures that are new to this work. The results were not significant, t (52) = 0.87,
p = 0.387 for Scientific Creativity and t (50) = 0.48, p = 0.635, for Scientific Impact.

Also, as in Study 1, we tested for the significance of differences in ratings of Creativity, Scientific
Impact, and Rigor for the high- versus low-impact items. All three, as in Study 1, were statistically
significant, with, once again, the low-impact studies being rated as less creative but more scientifically
rigorous and practically useful than the high-impact studies: for Creativity, t(53) = −7.392, p < 0.001,
for Scientific Rigor, t(53) = 8.340, p < 0.001, and for Practical Usefulness, t(53) = 13.134, p < 0.001. As in
Study 1, the creativity ratings were a surprise, suggesting that the novelty of the low-impact studies
may have played a role in their perceived creativity.
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Table 4. Descriptive Statistics Study 2.

Assessment N Mean Std. Deviation

Scientific Creativity 54 2.46 0.77
Letter Sets 54 9.72 2.29
Number Series 54 10.63 3.13
Hypotheses 54 6.85 2.80
Experiments 54 6.39 1.90
Conclusions 54 6.24 1.16
Scientific Reasoning 54 19.48 4.06
Impact_high 53 7.72 1.47
Impact_low 53 7.55 1.60
Average of confidence ratings for high impact items 54 2.18 0.37
Average of confidence ratings for low impact items 54 2.19 0.39
Average of creativity ratings for high impact items 54 1.88 0.37
Average of creativity ratings for low impact items 54 2.34 0.33
Average of rigor ratings for high impact items 54 2.20 0.29
Average of rigor ratings for low impact items 54 1.74 0.29
Average of usefulness ratings for high impact items 54 2.47 0.29
Average of usefulness ratings for low impact items 54 1.74 0.31
Age 54 20.59 2.00
GPA 54 3.39 0.50
SATReading 38 702.89 67.50
SATMath 40 718.50 84.02
ACTMath 20 32.60 5.01
ACTReading 20 32.50 3.89
GRE 4 300.50 50.72
What is the number of lab courses you have taken? 52 1.90 1.76
How many scientific articles do you read per month? 50 6.06 11.40

4.2.2. Reliabilities

The reliability of the Scientific Creativity measure could not be computed because it comprised
only one item. The reliability of the Scientific Impact measure was 0.78 (computed by correlating scores
for the two half-tests–low-impact items correlated with scores for high-impact items and corrected by
the Spearman-Brown formula). Split-half reliability was 0.68 (again correcting by the Spearman-Brown
formula). Letter Sets and Number Series, as in Study 1, were timed and thus equal halves needed to take
into account that many people did not finish. Some people also did not finish the Scientific-Reasoning
items. The Guttman lambda-5 reliability of Letter Sets was 0.63 and of Number Series was 0.82.
The lambda-5 reliability of Scientific Reasoning was 0.74.

4.2.3. Correlations

There were five key results in the correlations, shown in Table 5. A full table of correlations
is shown in the Appendix A (Table A2). It should be kept in mind that any of these conclusions is
limited by the power of the correlational tests. As always, one cannot draw any clear conclusions from
nonsignificant conclusions.

(1) Scientific Creativity correlated significantly with Scientific Reasoning—Generating Experiments
(r = 0.33, p < 0.05), which makes sense because both assessments required participants to generate
experimental designs, with the former requiring participants to generate their own scientific
problem and the latter providing the problem and hypothesis.

(2) Unlike in Study 1, Scientific Reasoning correlated significantly with SAT Reading (r = 0.33,
p < 0.05).

(3) SAT Reading and Math correlated highly with each other (r = 0.77, p < 0.01); ACT Reading and
ACT Math also correlated highly with each other (r = 0.53, p < 0.05). (SAT and ACT were generally
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taken by different participants, so the correlations between them are based on small N’s and are
not meaningful.)

(4) Letter Sets and Number Series correlated moderately with each other (r = 0.32, p < 0.05). Letter
Sets also correlated moderately with Scientific Reasoning—Conclusions (r = 0.29, p < 0.05) but it
did not correlate significantly with Scientific Reasoning overall.

(5) Scientific Impact correlated with ACT-Reading (0.51, p < 0.05) but did not correlate significantly
with any of the other psychometric tests.

Table 5. Key Correlations: Study 2.

Assessement Sci. Creat. LS NS Sci Reas. Sci Imp.

Sci. Creat. 1.00 0.22 0.03 0.22 0.00
Letter Sets 0.22 1.00 0.32 * 0.16 −0.10
Num. Ser. 0.03 0.32 * 1.00 0.04 0.11
Sci. Reas. 0.22 0.16 0.04 1.00 0.14
Sci. Imp. 0.00 −0.10 0.11 0.14 1.00

* p < 0.05; ** p < 0.01; all tests two-tailed. Note: Correlations in the table are presented with pairwise deletion.

4.2.4. Factor Analyses

Principal-components, shown in Table 6, were used as in Study 1. (Principal-factor analysis
showed similar patterns of results but are not shown at the request of the editor.) There were three
factors, which were similar for both components and factors. Again, SAT, ACT, and undergraduate
GPA were not included for lack of sufficient numbers of cases:

(1) The first factor was for the fluid-intelligence tests.
(2) The second factor was for Scientific Creativity and Scientific Reasoning.
(3) The third factor was a specific factor for Scientific Impact.

Table 6. Study 2: Rotated Principal Component Matrix.

Assessment I II III

Letter Sets 0.75 0.31 −0.26
Number Series 0.86 −0.13 0.22
Scientific Reasoning 0.03 0.72 0.33
Scientific Creativity 0.05 0.78 −0.16
Scientific Impact 0.02 0.05 0.92
Extraction Method: Principal-component analysis.
3 components extracted.
Rotation Method: Varimax with Kaiser normalization.
78Rotation converged at 5 iterations.
Components accounted for 73% of variance in data.
Factors included for Eigenvalues >1. These were also the most interpretable factors.

4.3. Discussion

The results for means were as in Study 1, with no sex differences in the key measures and
significant differences in ratings of Creativity, Scientific Impact, and Practical Usefulness for high-
versus low-impact items. Again, with regard to our new measure of Scientific Impact, higher
impact studies were rated as less creative, more scientifically rigorous, and more practically useful.
Scientific Creativity correlated significantly with Scientific Reasoning—Generating Experiments, but
the correlations did not reach significance with the other Scientific Reasoning measures. This time there
were three factors, with the fluid-intelligence tests again factoring together, the Scientific Reasoning
and Scientific Creativity tests factoring together, and Scientific Impact as its own factor.
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We sought in this study to investigate scientific reasoning more broadly than in our previous
studies. In particular, we introduced two new measures to examine aspects of scientific thinking,
a Scientific Creativity assessment and a Scientific Impact assessment. We found that the Scientific
Creativity measure clustered with the Scientific-Reasoning measures, as predicted. The Scientific
Impact measure appears largely to tap into skills not measured by existing tests. The former required
participants to formulate and design a scientific experiment. The latter required participants to rate
whether particular title/abstract combinations were of high or low impact. The overall pattern of data
suggests that these measures are useful ways of assessing scientific reasoning beyond the measures we
have used previously (hypothesis generation, experiment generation, drawing conclusions, reviewing
articles, and editing articles—see Sternberg and Sternberg 2017; Sternberg et al. (2017, 2019). We do not
know how simpler creative tasks would have fared, such as divergent tasks that require participants to
generate unusual uses of a paper clip or to complete a drawing. But we and others have argued in the
past that such measures tend to tap into a somewhat more trivial or, at least, limited aspect of creativity
than that required in STEM research (Sternberg 2017; Sternberg 2018a, 2018c, 2018e). Creativity tests
measure divergent thinking in a way that is divorced from scientific and even most everyday contexts
(Sternberg 2018e). This has been shown to be true from both social-psychological (Amabile 1996) and
cognitive perspectives (Ward and Kolomyts 2019).

5. Study 3

Studies 1 and 2 lacked the power for us to draw firm conclusions. We therefore did a third study,
Study 3, which had a substantially larger number of participants than did the preceding two studies.
But we also introduced another substantial change. Instead of providing participants with both titles
and abstracts of high- and low-impact studies, we provided just the titles. We therefore addressed the
question of whether it was possible just from the titles of studies for participants to infer whether the
studies were high- or low-impact.

Although our methodology largely replicated that of the previous studies, except for the change
in the Scientific Impact items, our main concerns were to clarify results from the two previous studies.
In particular, our main concerns in this study were four-fold: (a) to replicate whether our new test of
Scientific Creativity does indeed factor with our tests of Scientific Reasoning and thus can be added
to a battery of scientific-reasoning tests (convergent validity); (b) to determine whether this test of
Scientific Creativity continued to show discrimination with respect to the standard psychometric tests
(discriminant validity); (c) to assess whether our modified test of assessing Scientific Impact would
be answered at better than chance levels; (d) to determine the factorial loadings of the new Scientific
Impact measure, which were not so clear in the longer items (including titles and abstracts) of the
previous studies.

5.1. Method

5.1.1. Participants

A total of 106 participants were involved in Study 3, 25 males and 81 females. The average age was
19 and the range of ages was 18–22. All participants in this study were students at a highly selective
university in the northeastern United States. Ethnicities were recorded as follows: 33% European or
European American; 33% Asian or Asian American; 10% African or African American; 9% Hispanic or
Hispanic American; 8% Other; 7% No Response.

5.1.2. Materials

Letter Sets and Number Series were as in the previous studies.

(a) Scientific Impact Items
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The main goal of this section of the study was to have participants evaluate scientific impact.
To accomplish this, participants were given 20 items, which consisted of titles (but unlike in the
previous two studies, no abstracts) of scientific articles of studies that have been published in refereed
journals. Ten of the items were considered low impact by the definition that the article had been
cited fewer than 10 times by other academics. The other 10 items were considered high impact by the
definition that the article had been cited more than 1000 times. Citation numbers were according to
Web of Science and Research Gate.

The participants were told that there were 10 of each type of item (low-impact and high-impact) in
order to provide a reference point for them and to prevent participants from putting the same answer
for all the items. For each item, participants had to indicate whether the article title was high-impact or
low-impact. All aspects of science were covered, ranging from psychology to academic medicine.

Additionally, participants were also asked to rate, on a scale from 1 to 3, confidence in their choice,
creativity of the title, scientific rigor of the title, and practical usefulness of the title. The premise
behind these additional questions was to find additional correlations. For example, there was interest
in whether impact was correlated with people’s own ideas of creativity or if impact was correlated
with people’s own definitions of usefulness.

The questions asked for each item were the same as in the previous studies.
Here is an example of an item we used:

(1) “An investigation of pesticide transport in soil and groundwater in the most vulnerable site
of Bangladesh

Do you believe this study to be high-impact—cited many times—or low-impact— cited very few
times (H or L)?”

Other questions were as in the previous studies.

(b) Scientific Creativity (Open-Ended):

This measure was as in the previous studies.
The Scientific-Reasoning items were also as in the previous studies:

(c) Scientific Reasoning: Generating Hypotheses:

(d) Scientific Reasoning: Generating Experiments

(e) Scientific Reasoning: Drawing Conclusions

(f) Demographic Questionnaire:

At the end of the study a demographic questionnaire was administered which asked for the
following information: gender, age, year of study, GPA, SAT scores, ACT scores, GRE scores, experience
in lab courses, number of articles read per month, and ethnicity. Participants were given a debriefing
form that outlined the purpose of the study and asked for their consent to use, analyze, and possibly
publish their data anonymously. All 106 participants agreed and provided their signature.

5.1.3. Design

For the overall design, the independent variable of gender was evaluated for each of the
assessments. For the internal validation, test scores were used as observable variables to discover the
latent variables underlying them.

5.1.4. Procedure

All studies and testing were conducted in person by a proctor at a selective university in the
northeastern United States. The materials were administered in the following order: (1) informed
consent form; (2) letter-sets test; (3) number-series test; (4) title-impact evaluations; (5) scientific
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creativity—designing their own study; (6) generating hypotheses; (7) generating experiments;
(8) drawing conclusions; (9) demographic questionnaire; (10) debriefing form.

The Letter Sets test and Number Series test were both individually timed by a research assistant.
Participants received seven minutes for each test and were told by the proctor when to turn the page
and begin the test as well as when to stop writing and end the test. No other sections had time
constraints. Participants received credit in their courses as compensation for their time.

5.2. Results

Our goal in this study was to determine what results from the previous two studies replicated
and which did not, so our emphasis is on this replicability of key findings from those previous studies.
We have included substantially more participants in this study in order to ensure more stability for the
data in assessing the replicability of findings and to determine whether merely presenting titles was
sufficient for participants to distinguish high- from low-impact studies.

5.2.1. Basic Statistics

Table 7 shows basic statistics for the study. First, we wanted to determine whether there were
significant sex differences. There were no significant differences on any of the cognitive tests. Once again,
we failed to find meaningful differences between men and women.

Table 7. Basic Statistics for Study 3.

Assessment N Mean Standard Deviation

s 106 10.12 2.51
Number Series 106 10.58 2.92
LS+NS 106 20.70 4.45
Hypotheses 105 7.40 3.35
Experiments 106 6.80 1.38
Conclusions 105 6.91 1.47
Sci. Reas. Tot. 104 21.10 4.80
Impact_Low 106 7.09 1.61
Impact_High 105 7.51 1.61
Impact Total 105 14.62 2.75
Confidence_High 106 23.16 3.12
Confidence_Low 106 22.70 3.44
Creativity_High 106 20.28 3.22
Creativity_Low 105 20.81 3.81
Rigor_High 103 21.86 3.32
Rigor_Low 106 19.57 3.13
Practicality_High 103 24.68 2.96
Practicality_Low 106 18.58 3.41
Age 106 19.41 1.128
GPA 77 3.56 0.36
SATReading 60 712.67 55.54
SATMath 63 745.87 63.90
SAT/ACTCombined 96 64.63 5.39
ACTReading 48 32.79 2.91
ACTMath 49 33.00 2.82
LabCourses 105 1.76 1.75
Articles 101 3.81 5.55

Second, we wanted to show that, on the impact ratings, participants scored better than chance.
The mean score for the participants was 14.62. A chance score would have been 10. The standard
deviation, as shown, was 2.75. The result was z = 17.11, z < 0.001. Thus, participants, on average,
performed at a level that was clearly above chance. They could distinguish high- versus low-impact
items merely by titles without the abstracts as provided in Studies 1 and 2.
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Third, we wanted to determine whether the various ratings of items differed from one another.
Creativity ratings were higher for low-impact items than for high-impact items. The two means were
20.28 for high-impact items and 20.81 for low-impact items. The difference was in the predicted
direction, given the first two studies, but did not reach statistical significance, t(104) = −1.37, p = 17.
For Scientific Rigor, the high-impact studies were rated as more scientifically rigorous than the
low-impact ones, t(103) = 7.06, p < 0.001. For usefulness, the difference was significant, with the
high-impact studies rated as more useful than the low-impact ones, t(103) = 15.92, p < 0.001. These
latter two results were as in the previous studies.

5.2.2. Reliabilities

For simplicity, and at a reviewer’s request, we used Cronbach’s alpha for all tests. Cronbach’s
alpha was 0.64 for Letter Sets, 0.69 for Number Series, 0.58 for Scientific Impact, 0.78 for ratings of
confidence, 0.75 for ratings of scientific creativity, 0.76 for ratings of scientific rigor, 0.70 for ratings of
usefulness, and 0.78 for the test of Scientific Reasoning, these internal-consistency reliabilities were
roughly comparable to the earlier studies reported above. For Scientific Creativity, the correlation
between raters was 0.82. There was no need for inter-rater reliability for the Scientific Impact test
because it was scored correct-incorrect.

At a reviewer’s request, we used two raters to determine whether the two raters would show
commonality in their ratings for those tests in which ratings were applicable. The correlations between
raters were 0.98 for Scientific Hypotheses, 0.89 for Generating Experiments, and 0.87 for Drawing
Conclusions, indicating that the raters were largely consonant with each other. These correlations were
similar to those in previous research (see Sternberg and Sternberg 2017; Sternberg et al. 2017).

5.2.3. Correlations and Factor Analyses

Table 8 shows the correlation matrix of the main variables. A more extensive correlation matrix
including SATs as used in the factor analysis is in the Appendix A (Table A3). Although we used SAT
in these analyses, we also did factor analyses with ACT scores and by combining SATs and ACTs using
a conversion table. The results were comparable.

Table 9 shows the results of principal-components analysis. The results are similar although
not identical to those of the preceding studies. In the principal-component analysis, the first rotated
component was for three psychometric tests: SAT Reading, SAT Math, and Number Series. The second
rotated principal component was for our Scientific Reasoning and Scientific Creativity measures. The
third principal component was for Scientific Impact and Letter Sets. Principal-factor analysis yielded
similar results.

Table 8. Correlation Matrix for Factor- Analyzed Variables.

Assessment LS NS Sci. Rea. Sci. Creat. Impact

Letter Sets 1 0.26 * 0.32 * 0.04 0.21
Number Ser. 0.26 * 1 0.26 * 0.07 0.10
Sci. Reason. 0.32 * 0.26 * 1 0.32 * 0.08
Sci. Creativ. 0.04 0.07 0.32 * 1 0.06
Impact 0.21 0.10 0.08 0.06 1

* p < 0.05, ** p < 0.01.
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Table 9. Rotated Principal Component Matrix.

Component

I II III

Letter Sets 0.20 0.23 0.71
Number Series 0.73 0.20 0.19
Sci. Reason. 0.08 0.79 0.26
Sci. Creativity 0.02 0.80 −0.11
SATReading 0.73 −0.05 0.27
SATMath 0.83 −0.00 −0.22
Impact −0.02 −0.07 0.76

Extraction Method: Principal Component Analysis; Rotation Method: Varimax with Kaiser Normalization; Rotation
converged in four iterations, accounting for 64% of the variance in the data.

5.3. Discussion

As before, there were no meaningful sex differences. Rated Scientific Rigor and Usefulness were
rated higher for high-impact items than for low-impact items. Rated Scientific Creativity was not
significantly lower for the High-Impact items.

Again, our Scientific Reasoning measures tended to cluster with our Scientific Creativity measure,
our psychometric tests tended to cluster together (although this time Letter Series behaved somewhat
differently), and our Scientific Impact measure did not show a clear factorial pattern with respect to
the other measures. Both Letter Sets and Number Series showed significant correlations with our
Scientific Reasoning measure, showing that general-intellectual processes presumably play some role
in scientific reasoning, a conclusion that seems plausible given that almost all cognitive processing
involves at least some degree of general intelligence. In this study, Scientific Reasoning was correlated
with the Letter Sets and Number Series measures. These latter measures were correlated with SAT
scores, as would be expected.

These results, for the most part, are consistent with our previous findings. Our main interest in
this new work was with regard to our new measures of Scientific Creativity and of Scientific Impact.
The former, Scientific Creativity, seems to fit in with our Scientific Reasoning battery. The latter,
Scientific Impact, probably will need further convergent-discrimination validity analysis to figure out
exactly what it measures.

6. General Discussion

The main replicated findings included the correlation of Letter Sets with Number Series (both
measures of fluid intelligence) and the correlation of Scientific Creativity with Scientific Reasoning.
The results suggest that the measure of Scientific Creativity we used fit very well with our previous
Scientific Reasoning measures, perhaps because it directly measures creative thinking, as did our
previous measures. The picture with the Scientific Impact measure is less clear. In Study 1, it factored
with the fluid-intelligence tests; in Study 2, it factored on its own. In Study 3, it factored with Letter
Sets in one analysis (principal-components) and did not cluster with it in another (principal-factor).

On the one hand, recognition of scientific impact is important in scientific research, as those who
fail to recognize it may be as apt to pursue trivial research as to pursue scientifically meaningful
research. On the other hand, our task required analysis of impact rather than creative production of
impactful ideas, which may be why the Scientific Impact measure did not factor as clearly with our
other measures of scientific thinking. That said, we of course cannot guarantee and, in fact, seriously
doubt that the studies we chose to represent the high-and low-impact domains were representative of
all scientific research in those domains. For example, we did not choose any titles/abstracts that would
have been largely incomprehensible to our audience of undergraduates because of their heavy use of
highly technical terms.
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Our studies were limited in other ways as well. The samples were relatively small and limited
to students in one university, we did not draw from all domains of scientific endeavor, and we used
only a single item in our new Scientific Creativity measure (because of the amount of time it took
participants to find a scientific problem to solve and then to state how they would solve it). Future
research will address some of these issues. Most notably, we need to follow up on the finding of a
negative correlation between rated creativity and impact, and plan to do a study where we define
creativity for our participants along the usual lines of the definition of creativity in terms of novelty
and usefulness (Simonton 2010; Lubart 2001; Kaufman and Sternberg 2019).

We believe that the new Scientific Creativity and Scientific Impact measures are worthy of further
investigation. These measures provide further understanding of important aspects of scientific thinking.
Our results suggest that investigators, just by considering the titles of their projects/articles, could
make some prediction as to whether the studies are more likely to be high- or low-impact. Although
we suspect that no one can guess well what studies will be highly cited, the titles do provide a good
diagnostic as to which studies will be low-impact. The low-impact titles were generally ones for studies
of very narrow problems or whose generalizability was confined to narrow geographic locations.

Our goal is, ultimately, to show that scientific thinking in STEM disciplines is so important,
and so different from the kinds of thinking involved in standardized tests, that it would behoove
STEM programs, especially at the graduate level, to seek to assess not only general mental ability and
knowledge base in the sciences, but also the core skills involved in scientific thinking, as measured
by tests such as Hypothesis Generation, Experiment Generation, Drawing Conclusions, Scientific
Creativity, and Scientific Impact.
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Appendix A

Table A1. Correlations Study 1.

Assessment Sci. Creativ. GPA SATRea SATM ACTRea ACTMat Let Sets Num Ser Hyp Exper Concl SciRe Tot Imp Hi Imp Lo Tot Imp

Sci. Creat 1.00 −0.16 0.23 0.00 0.30 0.36 0.32 * 0.09 0.36 ** 0.46 ** 0.34 ** 0.49 ** −0.01 0.11 0.07
GPA −0.16 1.00 0.36 * 0.39 * 0.50 ** 0.20 −0.01 0.27 * 0.06 0.15 −0.12 0.06 0.23 0.08 0.16
SATR 0.23 0.36 * 1.00 0.39 * 0.82 ** −0.30 −0.03 0.11 0.22 0.11 0.11 0.20 0.11 −0.09 −0.01
SATM 0.00 0.39 * 0.39 * 1.00 0.49 0.53 0.25 0.49 ** 0.06 0.19 −0.02 0.10 0.13 0.06 0.10
ACTR 0.30 0.50 ** 0.82 ** 0.49 1.00 0.34 0.00 −0.03 0.30 0.40 * −0.15 0.29 0.16 −0.02 0.07
ACTM 0.36 0.20 −0.30 0.53 0.34 1.00 0.17 0.35 0.18 0.35 0.27 0.32 0.07 0.09 0.10
Let Sets 0.32 * −0.01 −0.03 0.25 0.00 0.17 1.00 0.38 ** −0.13 0.22 0.10 0.05 0.12 0.23 0.21
Numb Ser. 0.09 0.27 * 0.11 0.49 ** −0.03 0.35 0.38 ** 1.00 0.08 0.40 ** 0.02 0.22 0.17 0.23 0.23
Hyp 0.36 ** 0.06 0.22 0.06 0.30 0.18 −0.13 0.08 1.00 0.50 ** 0.42 ** 0.88 ** 0.23 0.12 0.19
Exps 0.46 ** 0.15 0.11 0.19 0.40 * 0.35 0.22 0.40 * 0.50 ** 1.00 0.30 * 0.78 ** 0.18 0.15 0.18
Concs 0.34 ** −0.12 0.11 −0.02 −0.15 0.27 0.10 0.02 0.42 ** 0.30 * 1.00 0.65 ** 0.21 0.32 * 0.31 *
Sci Reason Total 0.49 ** 0.06 0.20 0.10 0.29 0.32 0.05 0.22 0.88 ** 0.78 ** 0.65 ** 1.00 0.26 * 0.22 0.27 *
Impact HI −0.01 0.23 0.11 0.13 0.16 0.07 0.12 0.17 0.23 0.18 0.21 0.26 * 1.00 0.53 ** 0.83 **
Impact Lo 0.11 0.08 −0.09 0.06 −0.02 0.09 0.23 0.23 0.12 0.15 0.32 * 0.22 0.53 ** 1.00 0.92 **
Sci Impact Total 0.07 0.16 −0.01 0.10 0.07 0.10 0.21 0.23 0.19 0.18 0.31 * 0.27 * 0.83 ** 0.92 ** 1.00

* p < 0.05; ** p < 0.01; all tests two-tailed; Note: Correlations in the table are presented with pairwise deletion.

Table A2. Correlations: Study 2.

Assessment Sci. Creat GPA SATR SATM ACTR ACTM LS NS Hyp Exp Concl Sci Reas Imp Hi Imp Lo Sci Imp Tot

Sci. Creat. 1.00 0.07 0.19 0.05 −0.20 −0.11 0.22 0.03 0.02 0.33 * 0.17 0.22 0.00 0.00 0.00
GPA 0.07 1.00 0.32 * 0.20 −0.06 0.51 * 0.14 0.36 ** 0.01 0.15 −0.18 0.03 −0.02 0.15 0.08
SATR 0.19 0.32 * 1.00 0.77 ** 0.75 * 0.94 ** 0.22 0.37 * 0.37 * 0.15 0.09 0.33 * 0.08 0.15 0.14
SATM 0.05 0.20 0.77 ** 1.00 0.21 0.35 0.12 0.54 ** 0.23 −0.01 0.10 0.17 −0.05 −0.06 −0.06
ACTR −0.20 −0.06 0.75 * 0.21 1.00 0.53 * −0.38 −0.03 0.28 0.27 −0.26 0.23 0.46 * 0.53 * 0.51 *
ACTM −0.11 0.51 * 0.94 ** 0.35 0.53 * 1.00 −0.01 0.64 ** −0.04 0.09 −0.54 −0.21 0.34 0.42 0.40
Letter Sets 0.22 0.14 0.22 0.12 −0.38 −0.01 1.00 0.32 * 0.07 0.07 0.29 * 0.16 −0.04 −0.13 −0.10
Num. Series 0.03 0.36 ** 0.37 * 0.54 ** −0.03 0.64 ** 0.32 * 1.00 0.02 0.05 0.01 0.04 0.14 0.06 0.11
Hyp 0.02 0.01 0.37 * 0.23 0.28 −0.04 0.07 0.02 0.00 0.19 0.17 0.83 ** 0.22 0.06 0.15
Exp 0.33 * 0.15 0.15 −0.01 0.27 0.09 0.07 0.05 0.19 1.00 0.13 0.64 ** 0.00 0.23 0.14
Concl 0.17 −0.18 0.09 0.10 −0.26 −0.53 * 0.29 * 0.01 0.17 0.13 1.00 0.46 ** −0.09 −0.08 −0.10
Sc. Reas. Tot 0.22 0.03 0.33 * 0.17 0.23 −0.21 0.16 0.04 0.83 ** 0.64 ** 0.46 ** 1.00 0.12 0.12 0.14
Impac Hi 0.00 −0.02 0.08 −0.05 0.46 * 0.34 −0.04 0.14 0.22 0.00 −0.09 0.12 1.00 0.64 ** 0.90 **
ImpactLow 0.00 0.15 0.15 −0.06 0.53 * 0.42 −0.13 0.06 0.06 0.23 −0.08 0.12 0.64 ** 1.00 0.91 **
Sci. Imp. Tot 0.00 0.08 0.14 −0.06 0.51 * 0.40 −0.10 0.11 0.15 0.14 −0.10 0.14 0.90 ** 0.91 ** 1.00

* p < 0.05; ** p < 0.01; all tests two-tailed; Note: Correlations in the table are presented with pairwise deletion.
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Table A3. Correlation Matrix for Factor- Analyzed Variables.

Assessment LS NS Sci Reas Sci. Creat. SATReading SATMath Impact

Letter Sets 1 0.26 * 0.32 * 0.04 0.27 * 0.02 0.21
Number Ser. 0.26 * 1 0.26 * 0.07 0.38 ** 0.41 ** 0.10
Sci. Reason. 0.32 * 0.26 * 1 0.32 * 0.06 0.04 0.08
Sci. Creativ. 0.04 0.07 0.32 * 1 0.06 0.04 0.06
SATReading 0.27 * 0.38 ** 0.06 0.06 1 0.39 ** 0.15
SATMath 0.02 0.41 ** 0.04 0.04 0.39 ** 1 -0.04
Impact 0.21 0.10 0.08 0.06 0.15 -0.04 1

* p < 0.05; ** p < 0.01.
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