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Abstract: Transfer of learning, the application of learning to different contexts over time, is important
to all learning for development. As 21st century skills specifically aim to be “generic,” there is an
assumption that they can be transferred from context to context. We investigate the process of transfer
in problem solving, with specific focus on mathematical problem solving tasks. Problem solving
is highly valued in 21st century workplaces, where mathematical skills are also considered to be
foundational in STEM and of paramount importance. This study examines the transfer of first
semester mathematics learning to problem solving in second semester physics at university. We report
on: (1) university students’ (n = 10) “think-aloud” accounts of the process of transfer; and (2) students’
(n = 10) and academics’ (n = 8) perspectives on transfer processes and problem solving. Think-aloud
accounts show students’ recursive use of interpretation, integration, planning and execution thinking
processes and highlight the meta-cognitive strategies used in transfer. Academics’ and students’
perspectives on transfer show disparities. Understanding these perspectives is important to current
initiatives to integrate and optimise 21st century learning within universities. We argue that renewed
attention on the concept of transfer is needed if the generic aims of 21st century skills are to be
understood and promoted.

Keywords: 21 century skills; transfer; problem solving; mathematics; science; interdisciplinary;
university; think-aloud

1. Introduction

This article focuses on the centrality and potential of transfer of learning for 21st Century (21C).
In particular we explore mathematics transfer, which is widely recognised as central to human
development, educational systems and economies, and has recently been the focus of many research
projects, policy and public campaigns internationally (Australian Industry Group 2013; Office of the
Chief Scientist 2013; National Research Council 2013; The Royal Society Science Policy Centre 2014;
U.S. Congress Joint Economic Committee 2012; U.S. Department of Education 2016). However, given
its importance, relatively little recent research exists that examines how mathematics learning is applied
in other contexts; and even less research that operationalises and explores transfer of learning within
authentic educational systems (Nakakoji and Wilson 2018). We argue that considering the transfer
of mathematics learning is critical to the development of 21C skills; and that attention to the role of
transfer more broadly, within holistic conceptions of 21C learning, is needed to progress understanding
in the field.

While looking at transfer between mathematics and physics, we also consider the relationship
between mathematics and science more broadly within the context of university. The importance of
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this relationship to industry and society is undisputed; and learning in these disciplinary areas is seen
as key to 21Century education. Yet, within universities, optimal productivity at the nexus between
mathematics and science is often assumed and rarely examined. Most universities, for example,
offer mathematics “service courses” to a wide range of degree programs and assume that learning
in mathematics courses is effectively applied across degree curriculum. However, sparse research
is published to support this assumption and less still that can inform practice in interdisciplinary
teaching and learning (Nakakoji and Wilson 2018).

This paper makes two contributions. First, we examine students’ think-aloud accounts of the
processes they use in transfer of learning tasks. Second, we examine both student and academic staff

perspectives on the mathematics/science relationship, including their views on factors that promote or
hinder transfer.

We take a process approach to examine transfer of learning, in relation to 21C problem solving
skills. The process-oriented approach (Sternberg 2000) aims to “isolate a finite set of competent
that can be combined in various ways to perform any cognitive task” (Meichenbaum 1980, p. 271).
We adopt a think-aloud protocol to collect data and document the cognitive processes used in transfer
of mathematics learning to science problem-solving tasks. This approach, in tandem with post-task
interviews, has strong practical relevance to education because it can identify barriers and stumbling
blocks to student learning.

This small-scale exploratory research is nonetheless significant given the historical relationship
between mathematics and science and the relative lack of research attention given to this important
interdisciplinary relationship. The study makes a preliminary contribution to applied understanding of
what can be done to promote the transfer of learning for 21C skills at this important disciplinary nexus.

1.1. Transfer and 21st Century Learning

Rapid technological advancement has changed the skills and knowledge used in workplaces.
The change requires employees to process various types of information, analyse big data, interact with
and communicate with people, and apply their prior knowledge and experience to a new situation
to solve the complex problem in different contexts. Industries demand graduates with generic
skills, such as higher-order critical thinking and problem solving, and also strong metacognitive and
communication skills. According to the Organization for Economic Co-operation and Development
(OECD), 21st century skills refer to “skills and competencies young people will be required to
have in order to be effective workers and citizens in the knowledge society of the 21st century”
(Ananiadou and Claro 2009, p. 8). Problem solving is consistently identified as central to these
requirements, and routinely listed as a desirable graduate attribute for employability and as an
integral component in 21C learning.

Transfer is viewed as critical for future education and central to the application of 21st century
skills (OECD 2018). Logic dictates that transfer is needed for the application of these generic and
“transferable” skills—although this has not, as yet, been as widely acknowledged in the academic
literature as might be expected. With predictions of rapidly evolving environments in our future,
the ability to apply prior learning to new contexts is essential. Transfer of mathematical learning is
the ability of students to apply mathematical skills, knowledge, and reasoning to other disciplines,
and this is likely to be particularly important to 21st century skills. Demonstration of this ability is a
central issue in mathematics and science education (Tariq 2013; King and Cattlin 2015).

1.2. The Relationship between Mathematics and Science

National reports suggest many countries are concerned about participation, standards,
and capacity building in mathematics and science for STEM related industry and labor markets
(Australian Industry Group 2013; National Research Council 2013; Office of the Chief Scientist 2013;
The Royal Society 2014; U.S. Department of Education 2016). This has increased research focus on
education in these fields. However, learning in these fields is not discrete, they are intertwined,



J. Intell. 2020, 8, 32 3 of 22

and we need to know more about how learning in mathematics and science is transferred and shared.
The study presented here is part of a larger project exploring learning at the mathematics/science nexus
at one Australian university (Nakakoji et al. 2014, 2018; Nakakoji et al. 2014).

Interdisciplinary relationships between mathematics and science are critically important as
mathematics is applied in diverse disciplines and these relationships lead to advancements across
disciplines (National Research Council 2013). Both mathematics and science educators need to consider
the implications of this interdisciplinarity in terms of effective teaching and learning in schools and
universities. For example, U.S. primary and secondary education standards require teachers to enhance
the synergy between these disciplines by application of mathematics to science, e.g., mathematical
modelling and statistics (Stage et al. 2013). The close relationship is also evident in the fact that
mathematical learning in high schools and university is a strong predictor of attainment in science;
with mathematics scores explaining between 43 and 87 percent of the variance in a range of science
subjects (Nakakoji et al. 2014; Sadler and Tai 2007). Furthermore, there is currently a flux of research
into STEM and internationally many universities conduct educational research in these disciplines
in order to improve their teaching (King and Sen 2013). As part of this, it is widely recognised
that effective communication and collaboration between academics in STEM disciplines is important
(Anderson et al. 2011; Blumberg et al. 2005; Orton and Roper 2000).

The strong correlations found between mathematics and science learning (Nakakoji et al. 2014;
Sadler and Tai 2007) can be attributed to both the underlying shared general and specific intelligence
factors (Nisbett et al. 2012) and the transfer of specific learning and skills between these disciplines
(Roberts et al. 2007; Nakakoji and Wilson 2018), including, for example, the common and shared
use of problem solving schemata and other cognitive strategies. The g factor or general ability is
the underlying foundation to diverse cognitive abilities that directly or indirectly affects all learning,
including in mathematics and science. According to Cattell-Horn-Carroll theory, g is the strongest
factor analytical construct in the hierarchical model of intelligence (see for example, Taub et al. 2008).
Furthermore, the g factor has been shown to be highly correlated with international assessments of
educational attainment, such as PISA and TIMSS, and IQ tests (Rindermann 2007). When examining
two different educational attainments it is unsurprising to see high levels of correlation, due the fact
that both will draw on the g factor.

The relationship between mathematics and general ability has been examined empirically and
is particularly strong. The g factor was correlated with 25 secondary school subjects in the UK;
and mathematics had the strongest association with g (r = 0.77), explaining approximately sixty percent
of the variance in general ability (Deary et al. 2007). This suggests that among educational attainments,
mathematics is particularly linked to g and that this might also explain how mathematics would be a
strong predictor of other educational attainments.

Complicating this picture of correlated educational attainments is the unique relationship between
mathematics and science. As these are highly cognate disciplines, they may share additional factors.
These may contribute to g, and they may also be specific intelligence factors which explain additional
achievement variance beyond g. Taub and colleagues (2008) have demonstrated how cognitive ability
factors, including fluid reasoning and processing speed, are highly associated with mathematical
attainment. Science and mathematics problem-solving assessments may share requirements for
fluid reasoning and processing speed (which contribute to g). Science and mathematics may also
both draw on specific factors, like gq (quantitative knowledge), so we might expect higher levels of
correlation between them than between other, less cognate disciplines. We might also expect these
factors to be drawn on in transfer of learning tasks (Richmond et al. 2011) and in problem solving
tasks (Decker and Roberts 2015).

1.3. University Mathematics Service Courses and Science Courses

In many countries, including Australia, universities and higher education institutions adopt a
“service course” model. In this model, first year mathematics courses are provided by mathematics
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departments to students from diverse STEM disciplines, such as biology, chemistry, engineering,
and physics. These courses cover calculus, differential equations, and linear algebra; and can be
offered at different levels (fundamental, intermediate, advanced) according to these students’ prior
learning in high school mathematics and the requirements for their degree programs (see for example
Nakakoji et al. 2014). As sciences are viewed as mathematically cognate disciplines, many institutions
have mandatory requirements for science students to study first year mathematics service courses
where mathematical skills, knowledge, and reasoning are developed so that they can be applied in
other disciplinary learning. This approach often goes unchallenged, and yet it is built upon a range
of assumptions, including: (i) students engage with service courses and effective learning occurs;
(ii) skills and understanding in mathematics service courses are transferred to other disciplines;
(iii) transfer of skills and understanding is assessed in other disciplinary areas, and (iv) the
mathematics learnt in service courses is useful in building 21C skills for professions and working
life. Interrogating these assumptions within one Australian university, we examined the correlation
between mathematics and science learning (Nakakoji et al. 2014; Nakakoji et al. 2014) and looked for
evidence of transfer of learning between them. Using extant university exam assessments, we were
able to demonstrate transfer of learning in some science courses, but not others, dependent on the
requirements for mathematical reasoning and calculation evident within the course assessments
(Nakakoji and Wilson 2018). Specifically, we found assessment of mathematical learning and transfer
of learning was evident in only engineering and physics course assessments; and mathematics was
not assessed in biology and biochemistry courses in a way that enabled testing and demonstration of
transfer from the mathematics service courses.

The larger project employed mixed method design to explore transfer of mathematical
learning in a range of different ways (see Nakakoji et al. 2014), and findings demonstrated the
importance and predictive power of mathematics to the subsequent learning in university science
(Nakakoji et al. 2014, 2018). In Nakakoji et al. (2014), multiple regression analysis confirmed strong
relationships between mathematics and science attainment. For example, 84% of the variance in second
semester biology was explained by first semester biology and mathematics marks; with mathematics
uniquely explaining 3.8 percent. In addition, in Nakakoji and Wilson (2018), transfer was quantitatively
measured, using a previously established Transfer Index (Roberts et al. 2007). Our research applied
this index to pre-existing university tests and exam data; demonstrating, for the first time, that these
can be used to assess transfer. We were able to identify transfer of mathematics learning to physics
and engineering; however, in biology and biochemistry, the papers provided no opportunity to assess
transfer. Path analyses showed significant direct-transfer effect in the advanced physics course, i.e.,
the final marks in the course increased by a 0.67 standard deviation when transfer was increased
by one standard deviation. This analysis relied on data from marks in exams and demonstrated the
importance of mathematics to science learning; however, it did not examine the processes of transfer.

In this paper, we report on students’ think-aloud accounts of transfer and the views of students
and academics from across this range of science courses. We focus specifically on a problem-solving
physics task requiring mathematical curriculum from the service courses. This sort of challenging task
requires complex higher-order thinking and utilization of problem-solving schemata.

The study presented here examines the processes involved in transfer, using a think-aloud method
(Van Someren et al. 1994) to see how students articulate their thinking while attempting a task requiring
transfer (task details are provided later). Think-aloud is a method that can be used to explore and
examine the cognitive processes of thinking by asking participants to constantly verbalise what they
are thinking while doing assigned tasks (Van Someren et al. 1994). Think-aloud reports provide rich
information on cognition during complex problem solving tasks (Lohman 2000). This method was
originally used in psychology (ibid.), and is currently applied in education, psychology, and learning
science research on metacognitive skills (Bannert and Mengelkamp 2008), collaborative problem solving
(Siddiq and Scherer 2017), the process of schematic representation (Anwar et al. 2018), web-based
learning (Young 2005), and science text and diagrams (Cromley et al. 2010). However, in relation to
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mathematics education, there are few studies using think-aloud (e.g., Brennan et al. 2010; Ke 2008;
Monaghan 2005) and these papers focus on primary school mathematics. We were unable to find prior
research using the think-aloud method in the context of university mathematics education.

Analysis of the think-aloud accounts is framed by mathematical problem-solving theory
(Mayer 1992; Okamoto 2008; Seo 2010) and also Bloom’s taxonomy (Bloom et al. 1956). We also
use qualitative data from interviews to further explore student and academic perspectives on problem
solving, transfer, and the broader relationship between mathematics and science learning. We address
the following research questions:

1. What are the processes of transfer (if any) evident in students’ “think-aloud” accounts while
solving physics exam questions requiring knowledge and understanding from their mathematics
service courses?

2. What are the challenges in transfer of learning reported by students and by academics?
3. What teaching and learning factors do students and academics believe to enhance transfer?

2. Literature Review

We present a brief review of literature relating to transfer of learning, including important
theoretical explanations of how transfer might occur and what factors are involved in it. The review
focuses specifically on the research examining transfer in mathematical and science contexts, although a
vast corpus of literature exists on transfer more generally.

2.1. Transfer of Learning

Many researchers in education and psychology have investigated transfer since the late nineteenth
century. In a broad sense, as learning involves the application of prior learning to new similar or
different contexts, transfer is related to all learning. Accordingly, transfer can be seen as the central
or primary goal in education (Bransford et al. 1999; De Corte 1995, 2003; Engle 2012; Mestre 2003;
Siler and Willow 2014). The acknowledgment that 21C learning will require adaption to rapidly
evolving environments means that transfer of learning is key to efficient and effective education in the
future. Teaching and learning that is able to optimise transfer of learning is an important goal. In their
account of 21C learning, Saavedra and Opfer point out:

Students must apply the skills and knowledge they gain in one discipline to another and
what they learn in school to other areas of their lives. A common theme is that ordinary
instruction doesn’t prepare learners well to transfer what they learn, but explicit attention to
the challenges of transfer can cultivate it.

(Saavedra and Opfer 2012, p. 10)

As transfer can be related to all learning, the list of factors associated with it can be extensive and we
review here only some indicative starting points. Billing (2007) identifies nine major factors to facilitate
transfer based on his survey of several hundred papers. They are (i) motivation, (ii) metacognitive
strategies and skills, (iii) learning in context, (iv) principles, rules, and schemata acquisition, (v) similarity
and analogy, (vi) varied examples and contexts, (vii) reduced cognitive load, (viii) active learning,
and (ix) learning by discovery. In addition, transfer can be promoted by the necessity of prior knowledge
(see Mestre 2003) and learning with deep understanding (Barnett and Ceci 2002; Brown and Kane 1988;
Chi et al. 1989, 1994).

2.2. Cognitive Explanations of Transfer

Undoubtedly, transfer involves higher order thinking (Anderson et al. 2001; Bloom et al. 1956),
as does mathematical problem solving (Mayer and Wittrock 1996). Consequently, to analyse transfer
in the problem-solving task in this study, we use both a framework for mathematical problem
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solving (Seo 2010) and Bloom’s seminal cognitive taxonomy which outlines lower and higher-order
thinking (Bloom et al. 1956).

2.2.1. Higher Order Thinking and Bloom’s Taxonomy

The taxonomy of educational objectives developed by Bloom and colleagues (Anderson et al. 2001;
Bloom et al. 1956; Krathwohl et al. 1964) has been influential in providing the foundations to
understand transfer of learning (Krathwohl 2002). Bloom’s taxonomy (1956), which is one of the most
seminal books in education (Anderson 2002), presents a framework that is used for various purposes,
including assessment, curriculum development, instruction, and learning theory (Seaman 2011).
Importantly, Bloom’s taxonomy is a useful tool to understand the different levels of cognitive processes
related to higher order thinking. The taxonomy recognises three major domains in cognitive functioning:
the cognitive domain (Bloom et al. 1956), affective domain (Krathwohl et al. 1964), and psychomotor
domain. The first domain is relevant to this study as it is helpful to classify lower and higher order
thinking. The cognitive domain entails “the recall or recognition of knowledge and the development of
intellectual abilities and skills” (Krathwohl 2002, p. 7). The taxonomy categorises and ranks increasing
levels of higher order thinking: (i) knowledge, (ii) comprehension, (iii) application, (iv) analysis,
(v) synthesis, and (xi) evaluation. The taxonomy hierarchy is cumulative and easy to understand,
with many examples listed by Bloom and colleagues (1956), a wealth of supporting empirical studies
(e.g., Kropp et al. 1966; Miller et al. 1979), and well established validity (Seaman 2011). A summary,
with explanations and some mathematical examples, is shown in Table 1. Research suggests that
learners need to use all these cognitive processes, including the higher order thinking, for effective
transfer of learning.

In mathematics education, Bloom’s taxonomy has been widely used for teaching and assessment
for over a half century (Thompson 2008). However, it has faced criticism with claims that the
taxonomy fails to distinguish between the different levels of mathematical reasoning (Suzuki 1997).
Another issue is its apparent inaccuracy in predicting which of the cognitive processes students use
to solve problems in mathematics tests (Gierl 1997). To address these weaknesses when analysing
transfer of mathematical learning, we use Bloom’s cognitive taxonomy alongside more specific theory
of mathematical problem-solving.

2.2.2. Mathematical Problem-Solving Theories and Transfer

We use mathematical problem-solving theory to analyse students’ accounts of the transfer task to
address the criticisms of Bloom’s taxonomy, and also because the nature of the exam questions used in
the task is built around a problem-solving approach.

Problem-solving is defined as “cognitive processing directed at achieving a goal when no solution
method is obvious to the problem solver” (Mayer and Wittrock 1996, p. 47). Sub-processes of
problem-solving cover representation, planning, and executing (Mayer and Wittrock 1996), all of
which can involve metacognition which is “cognition on cognition” or “thinking about thinking.”
Metacognition enhances student performance via conscious and deliberative problem-solving strategies
in planning, monitoring, and evaluating (Ali et al. 2018). In order for successful transfer to occur, a learner
selects appropriate previous skills and knowledge, applies them into new problems, and monitors the
appropriate general and specific cognitive processes to solve the problems (Mayer and Wittrock 1996).

Literature on mathematical problem-solving falls into three categories (Okamoto 2008):
mere calculation problems (e.g., Brown and Burton 1978), algebraic word problems (e.g., Kintsch 1986),
and geometric problems (e.g., Owen and Sweller 1985). Metacognition is thought to be more deeply
involved with word problems and geometric problems than calculation problems (Okamoto 2008).
Some literature provides additional detail on four levels of cognitive processes in this mathematical
problem solving (e.g., Mayer 1992; Okamoto 2008) and a specific model of cognitive sequencing and
flow, see Figure 1, which is translated from Seo (2010).
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Table 1. Summary of Bloom’s original taxonomy (1956) with mathematics application examples.

Classification Explanation Examples

1. Knowledge
(i) Knowledge of specifics
(ii) Knowledge of ways and means of dealing
with specifics
(iii) Knowledge of the universals and
abstractions in a field

Knowledge contains behaviours and tests
situations which emphasize the remembering,
either by recognition or recall, of ideas, material,
or phenomena (p. 62).

(i) To define technical terms in mathematics
by giving their attributes, properties, or
relations.
(ii) Knowledge of the mathematical
techniques and methods used by scientists in
seeking to answer questions about the world.
(iii) The recall of major theorems in
mathematics (pp. 64–77).

2. Comprehension
(i) Translation
(ii) Interpretation
(iii)Extrapolation

The emphasis is on the grasp of the meaning and
intent of the material (p. 144).

(i) The ability to translate abstract concepts in
mathematics by giving an illustration or
example.
(ii) The ability to interpret various types of
numerical data.
(iii) Skill in predicting continuation of trends
using mathematical models. (pp. 92–96).

3. Application
Remembering and bringing to bear upon given
material the appropriate generalizations or
principles (p. 144)

(i) The ability to apply scientific principles,
postulates, theorems in mathematics, or other
abstractions to new situations
(ii) The ability to apply the laws of
trigonometry to practical situations

4. Analysis
(i) Analysis of elements
(ii) Analysis of relationships
(iii) Analysis of organizational principles

Emphasizes the breakdown of the material into
its constituent parts and detection of the
relationships of the parts and of the way they are
organized. (p. 144)

(i) Ability to distinguish a conclusion from
statements which support it.
(ii) Ability to detect logical fallacies in
arguments and proof in mathematics.
(iii) Ability to recognize form and pattern in
mathematics as a means of understanding
their meaning (pp. 146–48)

5. Synthesis
(i) Production of a unique communication
(ii) Production of a plan, or proposed set
of operations
(iii) Derivation of a set of abstract relations

Definition: the putting together of elements and
parts so as to form a whole.
In comparison with the subordinate
classifications, this classification is less practical
and more emphasis on uniqueness and originality.
(p. 162)

(i) Skill in writing, using an excellent
organization of ideas and statements in
mathematics.
(ii) Ability to integrate the results of an
investigation into an effective plan or solution
to solve a problem in mathematics.
(iii) Ability to make mathematical discoveries
and generalizations.
(pp. 169–72)

6. Evaluation
(i) Judgments in terms of internal evidence
(ii) Judgments in terms of external evidence

Definition: the making of judgments about the
value, for some purpose, of ideas, works,
solutions, methods, material, etc.
In addition, the process may require behavior
classified in other subordinate categories (p. 185)

(i) Judging internal standards, the ability to
assess the quality of quantitative data analysis
in relation to the experiments conducted.
(ii) The comparison of major theories,
generalizations and facts in mathematics
and science.
(Based on pp. 189, 192)

Source: (Bloom et al. 1956).

In this study, we use Seo’s model as a theoretical framework, alongside Bloom’s taxonomy,
to analyse the processes of transfer. Whilst Seo’s model comes from the Japanese literature on
mathematical learning, it shows some remarkable similarities to the OECD PISA problem solving
assessment framework (De Bortoli and Macaskill 2014). The model covers basic procedural steps, and it
was anticipated that this could frame students’ descriptions in their think-aloud accounts. This was
considered appropriate for a first pass application of think-aloud to transfer, some of the more complex
models of problem solving (e.g., Ichikawa et al. 2009) may be appropriate for follow-up research.

In particular, a problem schema is seen as important in mathematical learning (Okamoto 2008;
Silver 1987) and is defined as patterned knowledge about structures of problems and ways of
solving problems (Seo 2010). The schema referred to in Seo’s model is “a cluster of knowledge
representing a particular generic procedure, object, percept, event, sequence of events, or social situation”
(Thorndyke 1984, p. 167), which is featured by five characteristics: abstraction, instantiation, prediction,
induction, and hierarchical organization (Reed 1993). This schema is understood to be especially
useful in solving word problems (Seo 2010) and geometric problems (Okamoto 2008). Students with
insufficient problem schema may experience mathematical learning difficulties. Many primary and
secondary students, although good at calculations, have difficulties with word problems (Seo 2010).
This is because they fail to understand the meaning of problems and form the representation of the
whole problems (Seo 2010). This is related to the translation and integration procedures in Figure 1,
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which involve use of a problem schema. According to schema theory, transfer of learning is heavily
subject to whether appropriate anticipatory schemata are activated (Salomon and Perkins 1989).
For example, vertical transfer (transfer of basic knowledge to higher level understanding) needs to
activate procedural schemata which have been developed previously (Royer 1979).
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Figure 1. Four levels of procedures of mathematical problem solving. (Seo 2010, p. 230 translated by
Yoshitaka Nakakoji).

2.3. Socio-Cultural Explanations of Transfer

Socio-cultural theories of transfer emphasise the importance of social and cultural learning
interactions and contexts. In particular, situated learning (for example, see Greeno 2011;
Greeno et al. 1993; Lave 1988; Lave and Wenger 1991) and the actor-oriented approach to transfer
(Karakok 2009; Lobato 2006, 2008a, 2008b) are relevant to transfer of mathematical learning. In this
study, these perspectives are useful for understanding the context of transfer in mathematics and
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science education at university. These theories highlight the importance of individuals’ personally
constructed learning and the interplay between their understanding of mathematics and the process of
solving transfer tasks.

Lave (1988) first pointed out a paucity of transfer studies in natural settings and academic disregard
of the need for problem-solving in daily life situations. Lave’s research on situated learning makes
it clear that learners, their thinking, and learning activities are not independent from their contexts,
thus “cognition and performance are context-specific, in a fundamental sense” (Evans 1998, p. 270).
Greeno et al. (1993) expanded and articulated the situatived perspective on transfer, emphasising not
only the importance of the situation where learning occurs, but also the learner’s ability to interact
with other people and the various materials available for learning (Marton 2006). In relation to our
study, this perspective acknowledges that while mathematical learning occurs in formal course settings,
including university lectures and tutorials with interactions between lecturers, tutors, and peers,
but we cannot view this learning as complete. In addition, learning can be constructed when students
study by themselves, or with others, at home, in a library, or elsewhere, and by utilising physical and
online materials.

In experimental studies, researchers have highlighted difficulties in observing transfer (see for
example, Detterman and Sternberg 1993; Hatano and Greeno 1999; Lobato 2006). The sociocultural
actor-oriented approach attempts to overcome this difficulty, and some other weaknesses in
understanding transfer, by shifting to a learner-centred perspective. This approach specifically
examines transfer processes by looking at how learners relate to learning experiences within novel
situations. Thus, this approach enables researchers to consider the occurrence of transfer even if
students provide incorrect or non-standard performance in tasks, while this situation would be treated
as failure of transfer in experimental studies where transfer is measured as a dichotomised absolute.
Adopting an actor-oriented approach, Karakok (2009) identified transfer of students’ understanding
of the concepts in linear algebra to quantum physics contexts. In this paper, although we utilise
cognitive theoretical frameworks for analysis of individuals’ account of transfer processes, socio-cultural
perspectives, acknowledging individuals own constructions of their learning, and the importance of
context, frame the study more fully.

3. Methods

3.1. Research Design

There are two data collection strategies employed. First, student interviews look at both the
processes of transfer tasks, using a think-aloud method, and a post-task interview data is also gathered
on students’ perceptions about the relationship between mathematics and science and the issues
related to transfer. Second, interviews with academic teaching staff explored the relationship between
mathematics and science; and factors promoting and hindering transfer.

3.2. Student Think-Aloud Study

We examined first-year university students’ transfer processes by giving them physics exam
questions and getting them to think-aloud while they completed this task. Post-task interviews were
conducted with questions exploring student perspectives of mathematics and science learning and
transfer between these.

3.2.1. Sample

Ten students in STEM degrees at an Australian university agreed to participate in this study.
We purposively selected student cohorts studying first semester mathematics service courses and second
semester physics courses and recruited volunteers from classes. Relevant background information was
collected: age (mode = 21, range 19–32), gender (female 30%), and degree (all were Bachelor of Science,
three in advanced courses and two in degrees combined with arts or education).
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3.2.2. Data Collection

Individual interviews were conducted to collect the following information. First, a short half-page
questionnaire was used to collect the background information of students. Second, a cognitive interview
was conducted using the think-aloud method to examine the learning processes of transfer; this is
explained in detail in the following sections. A third element was a post-task interview used to identify
the strategies used and difficulties faced by students in the transfer task.

3.2.3. Think-Aloud Tasks

Students were asked to speak aloud about what they were thinking, while solving two physics
questions extracted from first year second semester past exams (see Figure 2). These physics questions
required mathematical skill, knowledge, and reasoning learned in mathematics service courses. The first
question involved calculation of a partial derivative. The second question could be mathematically
answered by solving Schrödinger equation; however, the application of mathematics to solve the
second question was not obvious and an intuitive approach to physics could be employed as an
alternative. To extract more insight into the students’ thinking, a follow-up interview was also used to
retrospectively explore how the question was attempted.

3.2.4. Data Analysis

In order to look at the processes of transfer, the six categories in Bloom’s taxonomy (see Table 1)
and the four levels of processes of mathematical problem-solving (based on Seo 2010, see Figure 1)
were used as descriptive categories for the various processes students described in their think-aloud
accounts. Drawing on both the think-aloud transcripts and the working out evident on the transfer task
answer sheets, each process was also coded by the language used (words and phrases), mathematical
expressions, formulae, or graphs (see some examples in Table 2). In addition, qualitative thematic
analysis was used to identify themes generated from the post-task interview data.

Table 2. Examples of words, phrases, and mathematical expression associated with coding four
processes in solving transfer questions 1 and 2.

Processes Words or Phrases Mathematical Expression

1. Interpretation I know the meaning of I’m not sure about c = fλ
y = exp (−kx), where k > 0

2. Integration This question means I can’t understand the question.
Requires rearrangement of I (f, T)
Understanding of a graph of y = exp
(−kx), k = (

√
2m (V−E))/h̄

3. Planning
I know how to do
Show
No idea about

∂I/∂f = 0 at f = f max
Preparation of drawing the graph with
considering how it changes with respect
to m, V, and E.

4. Execution Substitution of into (Partial) derivative of λ = c/f, dλ/df = −c/f 2

Actual sketch of the graph

3.3. Interviews with Academics

An interview survey was conducted to ascertain academic practitioners’ views on teaching and
learning. The academics were experts in their own research fields, and experienced in higher education
teaching and learning. Almost all of them held post-graduate qualifications in higher education
teaching and learning and they were able to provide informed and articulate comment on learning
issues and challenges. However, it needs to be acknowledged and emphasized that whilst they
provided a range of authentic practitioner perspectives, none were expert on transfer of learning.
Academic teaching staff had been involved in, and interviewed, previous teaching and learning
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research, but not research on transfer of mathematical learning. This study addresses that gap with a
preliminary, small sample.
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3.3.1. Sample

The sample included eight senior teaching academics across four disciplines (5 mathematics,
1 IT, 1 physics, and 1 bioscience; 4 males and 4 females) who were invited to participate in this
study and were required to meet the three conditions: (i) knowledge and experience with the issues
under investigation; (ii) capacity and willingness to participate; (iii) sufficient time to participate in
the interviews.

3.3.2. Data Collection and Analysis Methods

There were two rounds of interviews asking experts fifteen open-ended questions in total. In the
first round, sample questions covered “What mathematical knowledge and skills taught in first year
mathematics do you think are most relevant to study in biology, biochemistry, engineering and physics?”
and “What factors enhance or hinder students’ application of mathematical skills and knowledge in
biology, biochemistry, engineering and physics?” On the basis of analysis of responses, a second round
of questions were made for clarification. For their convenience, participants were invited to answer
these questions by e-mail. This email interview technique has been used in other studies on teaching
and learning mathematics (Petocz et al. 2006). The interview data transcribed was analysed with using
thematic analysis, according to the principles outlined by Braun and Clarke (2006).

4. Results and Discussion

We present our findings and discussion around the four research questions.

4.1. Research Question 1: What Are the Processes of Transfer (If Any) Evident in Students “Think-Aloud”
Accounts While Solving Physics Exam Questions Requiring Knowledge and Understanding from Their
Mathematics Service Courses?

For each student, their progression through the elements of Seo’s theory (2010) interpretation,
integration, planning, and execution was coded and presented in a temporal model (see Figure 3a for
question 1(a) and in Figure 3b for question 1(b). The coding of the processes was based on categorisation
of phrases and synonyms relating to each of Seo’s four processes. For example, the students’ think-aloud
account was categorised as interpretation if they reported “I’m reading the question and I’m thinking
about the relationship between frequency and wavelength” (Student 1) or planning if they stated “we
just need to replace in the formula where the wavelength is used, . . . and . . . to multiply it by dλ df”
(Student 2).

To interpret Figure 3a,b, the reader can view each students’ progression, and/or recursive
movement, from left to right; this reflects their reported thinking over time as they attempted to answer
the physics question. Comments provide additional important information and the transfer column
highlights whether any transfer of mathematics learning to the physics task was evident. All students
followed the interpretation, integration, planning, and execution processes highlighted in Seo’s model.
But, there was one small exception, student 4, who missed the integration process. Further, some
students (e.g., 5) made errors at various points (see dotted line boxes) and others still (e.g., 1) took
recursive steps to modify their approach to the problem when they made initial errors.

The extent to which transfer was demonstrated varied among students and this may be related
to question difficulty. In the sub-question 1(a), five students out of ten got correct answers, therefore
demonstrating transfer, while in the sub-question 1(b) only three students managed this. The small
proportion demonstrating transfer in the latter question was not surprising given the increased
complexity of the calculation. Two students in the former and three students in the latter also were
able to demonstrate understanding related to transfer to some extent; socio-cultural theories of transfer
suggest this can be considered partial transfer.
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This variation in how transfer was demonstrated among students is consistent with socio-cultural
studies on transfer, in particular the actor-oriented approach to transfer (see for example, Karakok 2009),
which highlights diversity in how transfer of learning is constructed within individuals learning.
Furthermore, analysis of the think-aloud accounts made it evident that metacognition was also an
important part in all four of the transfer processes. For example, students reviewed their planning
and calculation, some of them more than once, and this reflects their conscious monitoring of their
own thinking.
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There were students who couldn’t solve the questions. For example, some students had the right
approach, but couldn’t fully demonstrate transfer (see cases 6 and 7 in Figure 3b). It is important to
consider what made the questions difficult for these students. There were five main issues identified
from the analysis of the transfer processes: (i) lack of mathematical knowledge, related to the first
and foundational category of Bloom’s taxonomy—knowledge; (ii) difficulties in understanding the
question, i.e., issues in translation and integration processes, related to the second category of Bloom’s
Taxonomy—comprehension (iii) issues in recalling prior learning, which are also related to the first
category of Bloom’s taxonomy as well as planning and execution processes; (iv) a lack of procedural
knowledge to solve the question—or poor use of problem schema; (v) a lack of practice and/or a
technical error in calculation, related to the execution process. In the post-task interviews, students
mentioned difficulties in understanding the problem, for example:

“in the first question with the Planck’s formula, it’s difficult to understand the question to
begin with. So reading through the question is a lot to figure out. And you also have to
recognise lots of different symbols, maths symbols which I’m sure if I didn’t know what they
were I would be very lost, even more than I was.”

In regard to problem schema, another student also stated that “I understand what it’s asking me
to do. I just don’t know how to do it.” These issues, mentioned by students, are consistent with the
difficulties in mathematical learning outlined by Seo (2010). These difficulties are orientated to the
nature of the question task as questions 1(a) and (b) relied mostly on calculation. However, as we
will explain, these contrasted substantially with difficulties in Question 2, which had much greater
demands on reasoning abilities.

Question 2 (see Figure 2), required thinking about probability distributions and exponential
decay, however, no students were able to solve this question using mathematical formula in physics or
mathematical reasoning in an explicit way. This led to difficulty in conducting the analysis and transfer
could not be observed. For question 2, the students preferred recalling their basic knowledge of physics
and tended to utilise an intuitive approach to solve the physics questio—rather than employing the
mathematical methods taught in their service course in the previous semester. Although it is important
for students to understand the concepts in physics in their disciplinary ways, the understanding of
mathematical expressions behind the physical world is equally important and of perhaps greater utility
in terms of development of their generic 21C skills.

The students’ inability to approach Question 2 with mathematical understanding may be related
to a disparity between mathematical service courses and physics courses, wherein the content taught
in mathematics classes is assumed and not reinforced within the physics classes. In other words,
conceptual understanding in physics may be overemphasised or presented without in-depth exploration
and reinforcement of the relevant mathematical aspects. This issue was touched on by one academic
who suggested in interview: “I suppose there is so much to test conceptually in the sciences in an
examination that educators do not want students to spend time on mathematical working.”

It is impossible to verify if this was the case. We can only report that for Question 2, the analysis
of transfer of mathematical learning was not possible because mathematical reasoning was not evident
in the students’ think-aloud accounts.

4.2. Research Question 2: What Are the Challenges in Transfer of Learning Reported by Students and by
Academics?

Interviews explored students’ and academics’ perspectives on what would hinder and enhance
transfer of learning. This was done through a series of open-ended questions which generated a large
amount of data. After coding students and academics responses separately and producing highly
synthesised themes, we compare and contrast these in Table 3.
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Table 3. Potential factors promoting or hindering transfer.

Factors Enhance Transfer Factors Hinder Transfer

Academics’ perspective

Interdisciplinary learning
Showing relevance of maths
Practice
Confidence & self-belief
Prior leaning

Anxiety
Poor feedback
Poor explanation
Translation
Disparity of pedagogy
Mismatch of expectation
Surface learning approaches
Poor maths preparedness

Students’ perspective

Importance of understanding the question
Memory or recall
Prior learning
Intuition

Anxiety
Mismatch of expectation
Difficulty in understanding the problem
Difficulty in recalling maths knowledge & skills

The factors reported here were consistent with a range of educational research studies and theories.
For example, Hattie (2009) syntheses of meta-analyses in education also highlights teacher clarity and
feedback as among the most influential teaching factors. Unsurprisingly, mathematical anxiety was
mentioned by both students and academics. Academics are aware of their students’ mathematics
anxiety: “I imagine this is to do with a perceived lack of mathematical understanding, and fear of
mathematics, among students (and society in general)” (Academic 2). Both students’ and academics’
comments on mathematics anxiety made it clear that this was an issue central to teaching and learning.
We wondered if students’ fear of mathematics and academics’ sensitivity to this fear was related to the
low level of science academics’ inclusion of mathematics in science assessments. We reviewed a range
of science exam papers in the university and found there were no questions aligning with the tertiary
mathematics taught in mathematics service courses in either biology or bio-chemistry, despite the
fact that students were required to undertake those university mathematics courses. In physics,
just a few questions were aligned with the university mathematics service courses, with high-school
level mathematics (advanced and extension courses) more evident in the first-year physics papers.
If mathematical learning is not assessed in the science disciplinary context, why are mathematics
courses compulsory for science students at university? Unfortunately, in the interviews academics
provided no direct replies to this question. What was evident is that first, both students and academics
acknowledge the importance of mathematics, but academics think that understanding concepts in their
disciplines is more important than mathematical application. Second, scientist academics think that
mathematical skills and understanding should be assessed in mathematics service courses, not science
courses. Academics also acknowledged that it is very problematic and difficult to provide mathematics
courses to accommodate learning needs for students from diverse backgrounds and disciplines, such as
science and engineering.

Finally, “translation” emerged as an important theme for academics (see Table 3), and although
students did not mention it in interview, it did emerge as an issue for students in the think-aloud task.
Translation was seen as important as science problems with mathematical content can be expressed in
the form of word problems. One academic commented: “the most difficult problem for many students
is not with the maths but converting from words to maths and back” (Academic 3). Our analysis of the
transfer processes showed translation was an important strategy for successful transfer of learning and
problem-solving (see student 1 in Figure 3a).

4.3. Research Question 3: What Teaching and Learning Factors Do Students and Academics Believe to
Enhance Transfer?

Interviews also explored students and academic perspectives on what would enhance transfer
of learning, shown in Table 3. Overall, the reported factors are consistent with a range of
educational theories; for example, transfer theory suggests that higher order thinking, like application
of understanding in real world problems and rehearsal (repeated practice) are enablers of
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transfer. Furthermore, students’ self-beliefs and confidence are important in learning in general
(Malmberg et al. 2013); as is prior learning (Martin et al. 2013). Thus early experiences in mathematical
learning are likely to be a key to successful transfer of mathematical understanding in university.

There was one noticeable gap between student and academic perspectives. While academics
expect students to: “try to see wider connections and the historical development of mathematics in
science, rather than only focus on a narrow disciplinary context” (Academic 4); the student perspective
suggests that in relation to science learning “the basics of maths that I’ve done [are] very useful, but the
stuff I’m doing right now is not quite so” (Student 10). In interviews, academics identified the relevance
of mathematics and interdisciplinary learning as important; by contrast, students did not mention
these as important to promoting transfer (Table 3). This demonstrates an apparent gap in how the
utility of mathematics is perceived by students and academics. Socio-cultural theories of transfer
suggest that students need to value learning in order to transfer it effectively. If academics are not able
to communicate the value and potential of the mathematics learning, this presents a barrier to transfer.

There are factors identified in research as important to transfer, which were not apparent in these
academics’ and students’ responses. First, although socio-cultural theories emphasise the importance
of learning contexts, none of the interview respondents mentioned contextual factors like interaction
with lecturers, tutors and/or peers in lectures, tutorials, or other situations and material available
for learning.

Also unexpectedly, neither students nor academics mentioned metacognition in the interviews.
This is despite the fact that research literature views metacognitive knowledge and activities,
such as monitoring and control, as essential to mathematical learning and transfer (Billing 2007;
Mayer and Wittrock 1996; Okamoto 2008; Seo 2010). It was evident in think-aloud that students
employed metacognitive strategies; for example, when monitoring calculation a student stated “Did I
do something wrong?” (Student 3). However, they may not have been aware of this strategy and did
not discuss this in the post-task interviews. As education systems shift to focus on transferability of
generic skills, they are likely to promote a stronger focus on metacognitive skills.

5. Conclusions

Although it is ubiquitous to all conceptions of learning, “transfer of learning” is in keener
focus within the modern conception of 21C skills due to their aims to provide generic skills and
competencies. Such skills need to be carried and applied, or transferred, to a wide range of contexts.
It is anticipated that the demands of future learning, within rapidly changing environments, will require
increasing competence in transfer of learning. Our experience exploring “transfer of learning” between
mathematics and science at one university has highlighted a range of issues and possibilities.

Firstly, through this study, we were able to demonstrate how a process-oriented approach
(Sternberg 2000) to learning could be applied in an authentic educational context, documenting student
thinking during a mathematical problem-solving transfer task. Although small in scale, the findings
demonstrate how a larger study using this approach could be used to provide diagnostic information
to strengthen teaching and learning. Using Seo’s problem-solving theory and Bloom’s taxonomy,
students’ thinking pathways and stumbling blocks in this process could be analysed by teacher
academics. Common difficulties can be identified and teaching and learning designed to rectify them.
While diagnostic assessments for school and adult literacy and numeracy have been available for
decades, there remains potential to develop similar methods for practitioners teaching for 21C skills,
including transfer of learning. There are already a range of assessments of problem-solving skills that
might be adapted to this purpose.

Our findings provide the opportunity to reflect on models for the teaching of mathematics in
universities. We argue that transfer of learning between mathematics and science is a neglected area of
enormous potential. Given societal demands for increasing STEM capacity, it is critical and inevitable
that we reflect on the following questions: What are the key challenges in mathematics learning for
sciences? How should mathematics be taught to university science students? Transfer of learning,
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and associated cognitive and socio-cultural theories, provide a conceptual framework through which
these questions can be considered and explored.

The close relationship between mathematics and intellgience factors, the demands for numeracy
and data skills from industry, and the potential of mathematics in problem-solving all suggest that
reforms in mathematics education are needed and should be discssed as part of the 21C skills agenda.
There are currently different models for higher education mathematics across countries and institutions.
For some countries, such as Australia, mathematics service courses are provided, particularly for first
year undergraduate students. These aim to enable students to apply mathematics to diverse contexts,
but might make it difficult for students to see the connection with their own discipline. In other
countries, such as Japan, it is more common that each discipline teaches mathematics, and courses
are embedded into each discipline’s degree programs. This may help students to apply mathematics
to their own disciplinary context, but may restrict the applicability of mathematics to more diverse
contexts. Investigations into the effectiveness of each approach would be useful, as would broader
contemplation of how mathematics might be positioned within interdisciplinary learning and strategy
for developing 21C skills.

Finally, this project has led us to believe that greater attention could, and should, be paid to
the concept of “transfer of learning” in order to promote 21C skills. While there is a long literature
on transfer, there are enormous gaps in relation to how transfer might be measured, evaluated,
and promoted within schools and universities. Now is the time to bring what we know of transfer into
the realm of educational practice; and where understanding is lacking we must develop a program
of research. In particular, interdisciplinary learning, which has been positioned as a key goal for the
future (as technology and industry developments are expected to morph and transform traditional
disciplinary boundaries) has not been thoroughly explored at the level of institutional practice.

While 21C skills lauded as critical for the new century include problem-solving skills, and recent
educational rhetoric continues to exhort the value of integrated interdisciplinary learning, particularly
in STEM, there remains a need for research examining if, and how, pursuit of these goals is evident in
current educational practice.
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