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Abstract: In recent years, mathematical models of decision making, such as the diffusion model,
have been endorsed in individual differences research. These models can disentangle different
components of the decision process, like processing speed, speed–accuracy trade-offs, and duration
of non-decisional processes. The diffusion model estimates individual parameters of cognitive
process components, thus allowing the study of individual differences. These parameters are often
assumed to show trait-like properties, that is, within-person stability across tasks and time. However,
the assumption of temporal stability has so far been insufficiently investigated. With this work, we
explore stability and change in diffusion model parameters by following over 270 participants across
a time period of two years. We analysed four different aspects of stability and change: rank-order
stability, mean-level change, individual differences in change, and profile stability. Diffusion model
parameters showed strong rank-order stability and mean-level changes in processing speed and
speed–accuracy trade-offs that could be attributed to practice effects. At the same time, people
differed little in these patterns across time. In addition, profiles of individual diffusion model
parameters proved to be stable over time. We discuss implications of these findings for the use of the
diffusion model in individual differences research.

Keywords: diffusion model; cognitive modelling; individual differences; stability; longitudinal study

1. Introduction

Recently, the use of mathematical process models of cognition has seen an upsurge
in research on individual differences in cognitive abilities and intelligence (Ratcliff and
Childers 2015; Ratcliff et al. 2011; Schmiedek et al. 2007; Schubert and Frischkorn 2020; Voss
et al. 2013). It has been proposed that our understanding of intelligence and cognition can
profit from such modelling approaches, which disentangle different cognitive processes and
components involved in solving cognitive tasks (Frischkorn and Schubert 2018; Schubert
and Frischkorn 2020). One crucial aspect when employing mathematical models to estimate
cognitive parameters to further our understanding of individual differences is whether
these parameters have trait-like properties, that is, whether they measure processes which
are stable and consistent across tasks and time.

1.1. Brief Introduction of the Diffusion Model

One of the most prominent models of cognition is the diffusion model (Ratcliff 1978).
It is a stochastic model for the analysis of response times and accuracy rates in binary deci-
sion tasks, for example, a recognition memory task or a lexical decision task. It utilizes the
full empirical response time distributions and accuracy rates simultaneously to estimate dif-
ferent parameters, which map onto specific components of the decision process. One of the
main advantages of the diffusion model compared to the analysis of mean response times is
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that it can disentangle these different components. Most notably, speed–accuracy trade-offs
can be distinguished, that is, the fact that people sometimes show slower response times
because they are more cautious. Among others, the model provides separate estimates of
speed of information processing, decision caution (i.e., speed–accuracy trade-off), and the
time taken for encoding and motor response processes.

Figure 1 depicts the diffusion model and its core parameters. The decision process is
modelled as a stochastic sampling of noisy information. The two possible responses are
associated with the two decision boundaries named a and 0 in the graph. The drift rate (ν)
denotes the average speed of information accumulation towards one of the two boundaries.
The separation between the two boundaries (a) determines how much information is
sampled before a decision is taken, that is, when the noisy accumulation process reaches
one of the two boundaries. Thus, a is a measure of decision conservatism or caution. The
starting point, z, determines where the accumulation process starts, and maps a possible
bias in the decision process in favour of one of the two responses. Finally, the non-decision
time (τ) sums the duration of all non-decisional processes. On the top and the bottom of
the graph are presented two example response time distributions generated by the model
with a fixed parameter configuration. In addition to the parameters described above, the
full diffusion model also contains parameters for the across-trial variability in drift rates,
starting points and non-decision times, that help explain certain special patterns found in
empirical response time distributions, like quick or slow errors (Ratcliff and McKoon 2008;
Ratcliff and Rouder 1998).

Figure 1. The diffusion model. The accumulation process starts at starting point z, moves with
average slope ν and terminates when one of the two thresholds (0 or a) has been reached. τ denotes
the time taken for non-decisional processes, e.g., encoding and motoric response. On the top and the
bottom of the figure, the two response time distributions are shown.

In the past decades, the diffusion model has been applied in various contexts, for
instance, in studies on intelligence (Lerche et al. 2020; Ratcliff et al. 2010; von Krause
et al. 2020) or ageing studies (Ratcliff 2008; Ratcliff et al. 2004; Theisen et al. 2020) and
has found widespread use especially in the field of cognitive psychology (Ratcliff and
McKoon 2008; Voss et al. 2013). One particular question that crosses the boundaries of
cognitive research towards the study of individual differences concerns the interpretation
of diffusion model parameter estimates. Do they constitute reliable measures of trait-like
constructs reflecting meaningful inter- and intra-individual differences between and within
persons? A core aspect of traits as defined in the literature is their relative stability across
time and measurement methods (Allport 1937; John et al. 2008). While many studies have
demonstrated that diffusion model parameters show substantial correlations across different
experimental tasks (see, e.g., Lerche et al. 2020; Ratcliff et al. 2010; Schubert et al. 2016), the
question of temporal stability has received comparably little attention.

The first published results on the stability of diffusion model parameters were strong
test–retest correlations of around r = 0.70 found for all three main diffusion model parame-
ters in a lexical decision task across a time interval of up to one week (Yap et al. 2012). In
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another study across one week, medium to strong test–retest correlations were observed for
the main diffusion model parameters (ν, a, τ), with values ranging from r > 0.70 for drift
rates and boundary separation and r > 0.40 for non-decision time (Lerche and Voss 2017).
Schubert et al. (2016) conducted a systematic study of the trait properties of diffusion model
parameters over eight months, utilizing two different response time tasks and analysing
them via latent state-trait structural equation models. The results showed stability across
both tasks and time for all three main diffusion model parameters, with speed of informa-
tion processing (drift rate) showing the highest stability and consistency: the latent trait
factor generalizing over both time points and both tasks on average accounted for 44%
of the manifest variance in drift rate. Task-specific across time correlations ranged from
r = 0.44 to r = 0.71 for drift rates, from r = 0.20 to r = 0.60 for boundary separations and
from r = 0.26 to r = 0.63 for non-decision times (Schubert et al. 2016). These results suggest
that some diffusion model parameters show considerable stability at least over the range of
one week to eight months and might therefore in this regard be characterized as trait-like.
However, the findings warrant further research, because rank-order correlations across
time are only one aspect of stability.

1.2. Different Forms of Stability and Change in Individual Differences

While the notion of temporal stability remains a core feature of classical as well as
contemporary definitions of personality traits (Allport 1937; John et al. 2008), the idea that
traits are essentially fixed at a certain point in life and remain stable thereafter has come
under more and more scrutiny in the past two decades (Wagner et al. 2020). Thus, it is now
commonplace to study different forms of stability and change in personality traits to better
understand their development over time.

One approach to studying stability and change that has found considerable echo in
the literature was described by Roberts et al. (2008). Mainly referring to the Big Five, they
proposed to study four aspects of stability and change. First, rank-order stability (i.e., in
most cases, test–retest correlations) refers to the stability of people’s relative positions to
others on the trait continuum. Second, mean-level change is the development of aver-
age (i.e., across person) levels in a certain trait over time. For example, people tend to
become more agreeable and conscientious during young adulthood (Roberts et al. 2006).
Third, individual differences in change refer to the individual deviations in developmental
patterns from the mean-level change in the sample. Finally, profile stability refers to the
stability of the relative patterns of traits within a person across time: a person might stay
more extraverted than she is agreeable, although both traits show changes in their absolute
values. While the different forms of stability and change suggested by Roberts et al. (2008)
have (to different degrees) been extensively studied for Big Five traits, the literature on
diffusion model parameters has so far focused solely on rank-order stability over two
time points.

In the present paper, we expand the scope of previous longitudinal studies of the
diffusion model, and report findings on relative stability, mean-level change, individual
differences in change and profile stability in the main diffusion model parameters across
four time points over two years.

We focus on a specific decision task that the diffusion model has repeatedly been ap-
plied to: the Implicit Association Test (IAT; Greenwald and Farnham 2000; Greenwald et al.
1998, 2003; Klauer et al. 2007). In the IAT, participants make binary decisions, typically
classifying presented stimuli into one of two categories. In general, there are two differ-
ent classification tasks (e.g., old vs. young, quick vs. slow) that are combined in some
blocks of the experiment to form so-called congruent (e.g., old/slow) and incongruent (e.g.,
old/quick) combinations. The difference in mean response times between the congruent
and incongruent block is then interpreted as a measure of the implicit association between
the corresponding constructs (e.g., age and speed). The IAT has also been employed as a
measure of implicit personality (Nosek et al. 2007). In this case, the classification categories
are, for instance, “extraverted” vs. “introverted” on the one hand, and “me” vs. “other”
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on the other hand. The difference in response times between the blocks combining “me”
and “extraverted” versus those combining “me” and “introverted” is then interpreted as a
measure of implicit extraversion (Back et al. 2009).

When applying the diffusion model to the IAT, differences in performance can be
decomposed into differences in speed of information processing (ν), differences in decision
caution (a), and differences in non-decision time (τ). Previous studies have shown that the
IAT effect can mostly be attributed to differences in ν that are strongly linked to the D scores
usually employed to estimate the IAT effect (Klauer et al. 2007). At the same time, there
were also differences in a and τ for the congruent and incongruent blocks (Klauer et al.
2007; van Ravenzwaaij et al. 2011). Thus, the IAT could be an interesting example to study
the stability and change in diffusion model parameters. It can easily be analysed with the
diffusion model and such analyses improve the understanding of the underlying processes
when working on the task. The focus of this paper is, however, not on the task-specific
aspects and interpretation of the IAT, but on the longitudinal analysis of diffusion model
parameter estimates as cognitive process parameters involved in the IAT. Namely, in our
analyses we set aside the effects of the conditions (though we do include them in our
model), and study the across-task and across-block estimates of the parameters. In this way,
we account for the specific effects of each IAT condition and task, while keeping the results
focused on the overall cognitive processes, and the number of analyses circumscribed.

1.3. The Present Study

In this paper, we analyse the stability of the diffusion model’s measures for speed of in-
formation processing (drift rate), decision caution (boundary separation) and non-decision
time using data from an implicit personality IAT across four time points over a period of
two years. We employ state-of-the-art hierarchical Bayesian diffusion modelling in order
to represent the hierarchical structure of the data, maximize information utilization and
obtain principled uncertainty estimates. To our knowledge, this is the first study to assess
the development of diffusion model parameters over more than two time points and over
such an extended time period. We conducted analyses addressing four forms of stability
and change: rank-order stability, absolute mean-level change, individual differences in
change and profile stability, all with respect to drift rate (ν), boundary separation (a), and
non-decision time (τ), to receive a comprehensive picture of stability and change in the
cognitive parameters derived from the diffusion model.

2. Methods
2.1. Participants

The data used in this paper were collected in a large-scale longitudinal study that
focused on temporal aspects of personality. This study included a wide range of measures
of explicit and implicit personality traits, personality states and cognitive abilities. Several
papers drawing on these data have already been published (Lücke et al. 2020; Quintus
et al. 2017, 2020). These studies emphasized different aspects of personality processes and
personality development. However, none of these papers focused on cognitive parameters
or used the diffusion model in any of the analyses.

We recruited 382 participants via local newspapers, flyers in public places (cafés,
drug stores, vocational schools), Facebook-groups, mailing lists and from introductory
non-psychology courses for regular and senior students at the university of Mainz, Ger-
many (see Quintus et al. 2017). Participants received a compensation of up to 117 €
for completing the full study protocol, which also included up to 50 daily assessments
(see Quintus et al. 2020).

The initial sample at the first time point (T1) comprised 382 participants (73% women,
all with a similar educational background, the German Abitur). Of these, 255 were young
adults (Mage = 21.57, SDage = 2.20, Minage = 17, Maxage = 32) and 127 were older adults
(Mage = 67.76, SDage = 5.31, Minage = 52, Maxage = 84). The sample size was based
on power analyses independent of the analyses reported in this paper. After six months
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(T2), 358 people from the original sample took part in the second time point. Both at T3
(one year after T1) and at T4 (two years after T1), 327 people participated. The sample
consisted of five different subgroups: young people in their first year at university (Group 1,
n = 113 at T1), young people in their second year at university (Group 2, n = 109), young
non-students (Group 3, n = 26), older first-year students (Group 4, n = 63), and older
non-students (Group 5, n = 58).

2.2. Procedure and Material

Laboratory data were collected in small age-homogeneous group sessions on a PC in a
university setting. All participants provided informed consent. The first session (at time 1)
took up to two hours, with initial questionnaires already provided to participants via mail.
Sessions three and four that were conducted online and at home took approximately one
hour. Participants worked on the IATs halfway through the sessions, with questionnaires as
filler tasks given after two IATs (i.e., for two traits). In addition, participants were prompted
to take breaks after completing each IAT. As was already mentioned, the study included
a wide range of measures, most of which focused on personality traits and states. An
overview of the instruments employed is available at https://osf.io/k9wsv/ (accessed
11 May 2021). In the following, we describe the Implicit Association Tests of the Big Five
personality traits.

The Big Five IATs (Schmukle et al. 2008) include five blocks of word classification
tasks, with 20 trials in all training blocks and 60 trials in both the congruent and the
incongruent test blocks, as is standard practice in IATs (Greenwald et al. 1998, 2003). Since
we disregarded the practice trials in our analyses, this led to a total trial number of 600 per
participant and time point (60 × 2 [congruent/incongruent] × 5 [Big Five traits]). For all
Big Five traits, the same target categories (i.e., “me” and “others”) were used with a set of
five different stimuli each (e.g., “I”, “they”). Attribute category labels were dependent on
the specific Big Five traits (e.g., “conscientiousness” vs. “carelessness”) and also included
five different stimuli for each of the traits (e.g., “helpful” for agreeableness or “reliable”
for conscientiousness). In all blocks, stimuli were always presented in random order and
then shuffled before the next presentation. In the test blocks, we alternated target and
attribute stimuli. One notable characteristic of the IAT data was the way error response
times were recorded. The stimuli remained on screen until the correct response was given.
In case of an error response, the trial did not terminate until the participant had corrected
their response. The latter was recorded along with an indicator variable for the erroneous
response. This coding is typical for IAT analyses but presents a particular challenge for
diffusion model analysis. This is important for the modelling approach we used, since we
tried to account for the differences in processes involved in creating the correct and error
response times.

2.3. Data Analysis

We used the programming language R (Version 4.0.3; R Core Team 2020) and the
R-packages BayesFactor (Version 0.9.12.4.2; Morey and Rouder 2018), blavaan (Version
0.3.12; Merkle and Rosseel 2018), correlation (Version 0.5.0; Makowski et al. 2020), papaja
(Version 0.1.0.9997; Aust and Barth 2018) and tidyverse (Version 1.3.0; Wickham et al.
2019) for all statistical analyses. For all Bayesian analyses, the prior distributions used are
available in the Appendix A. For the diffusion model parameters, we chose the default
priors provided by the Python package HDDM (Wiecki et al. 2013), which are based on the
recommendations by Matzke and Wagenmakers (2009).

2.3.1. Estimation of the Diffusion Model Parameters

We used the hierarchical Bayesian method provided in HDDM (Wiecki et al. 2013) to
estimate the diffusion model parameters. Prior to fitting the models, we removed trials
that had not been recorded for technical reasons and also trials with latency below 300 ms
or above 3000 ms, as these could be expected to qualitatively differ from the other trials

https://osf.io/k9wsv/
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regarding the processes involved in producing the answers. Separately for each time point,
we also excluded all data from participants with low accuracy (across all five Big Five IATs).
Low accuracy was defined as an accuracy rate lower than three interquartile ranges from
the first quartile of accuracy rates across participants per time point (Tukey 1977). Taken
together, these pre-processing steps lead to the exclusion of 2.91% of the total number of
trials. Finally, we excluded one warm-up trial per block per participant.

We fitted the same model separately for each time point. Using the Marcov chain
Monte Carlo method implemented in HDDM, we obtained four chains with 6000 samples
each from the posterior distribution per model. We discarded the first 1000 samples of
each chain as a burn-in period. For all diffusion model parameters, we obtained posterior
distributions both at group-level and at the person-level. We choose a parsimonious mod-
elling approach, including only the core diffusion model parameters: drift rate, boundary
separation, and non-decision time. The estimates of between-trial variability of the param-
eters are often unreliable and estimating them can actually have detrimental effects on the
reliability of the main parameter estimates (Lerche and Voss 2016). Thus, we fixed these
parameters to zero, as they were also of no theoretical interest for our analyses. We also
fixed the starting point to 0.5, as the decision boundaries were associated with correct and
error responses and thus no implicit bias towards one of the alternatives could be expected.

To model the different experimental conditions (i.e., the five different Big Five traits,
both in the congruent and the incongruent block), we used effect coding to estimate an
intercept and effects per condition for both boundary separation and drift rates. Further,
different non-decision times were estimated for correct and error responses. This was
necessary, as the latency for the initial (erroneous) response was not recorded, but only
the time of the corrected response. In our model, the time to correct the response is
included in the error non-decision time. We assume that the time it takes to give the
additional corrected response can be thought of as an additive constant that is part of
the non-decisional processes contributing to error response times. Figure 2 depicts our
model formulation.

Figure 2. The hierarchical Bayesian model used for estimation of the diffusion model parameters.
The inner plates relate to the trial level, the outer plate to the person level. On the outside are the
group-level parameters. ν = drift date, a = boundary separation, τ+/− = non-decision time for
correct and error responses, N = number of participants at a certain time point, S+/− = number of
correct/error trials per person. xij denotes a single trial. The figure does not show the effects on
drift rate and boundary separation estimated at the group-level and person-level for the different
experimental conditions and traits.
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To ensure convergence of the Markov chains to the target posterior, we used several
steps to inspect the group-level and individual parameters of drift rates, boundary sepa-
rations and non-decision times (Kruschke 2015). First, we visually inspected each chain
via caterpillar plots. Second, we checked the R̂ statistics and excluded estimates with a R̂
value larger than 1.01 (Vehtari et al. 2020). Third, we computed the bulk effective sample
sizes and excluded estimates with fewer than 400 effective samples (i.e., 100 per chain). To
obtain full sets of the main diffusion model parameters for each participant at each time
point, we excluded the individual parameter estimates of all of a, ν and the two τs if signs
of non-convergence were evident for any of these four parameters in a person (at a certain
time point). Taken together, all preprocessing steps led to the exclusion of 7.44% of the total
individual parameter vectors. The corresponding statistics and plots can be found in the
supplementary material.

To further assess model fit (generative performance), we conducted posterior predic-
tive checks. For each time point, we randomly selected 500 samples from the joint posterior
distribution of parameters and used each of these to generate person-specific simulated
response times and response choices. As in the empirical data, 600 trials existed for each
person at each time point (unless outlier trials had been removed as described above), we
also obtained 600 trials per person for each of the 500 samples from the posterior distribu-
tion of diffusion model parameters (i.e., 60 for each of the trait/condition combinations
with their specific effects). We then computed RT quartiles and error rates for each person
and time point from both the empirical and simulated data. Figure 3 shows the resulting
scatter plot of RTs for T1, the remaining plots can be found in the Appendix A. As can be
seen, the patterns found in the observed data closely match those found in the simulated
data, indicating an adequate model fit. This seems especially noteworthy given the fact
that we used a parsimonious model, ignoring possible across-trial variabilities in drift rates
or non-decision times. Our theoretically grounded model thus seems to achieve a good
balance between parsimony and goodness of fit.

Figure 3. Posterior predictive check of RTs for T1. Error quantiles are based on far less data, with the
median accuracy rate being 96 percent. Participants with 10 or less errors are omitted from the error
response time plots. See Appendix A for posterior predictive checks for the other time points.
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Following model evaluation, we extracted, for each time point, each person’s indi-
vidual posterior medians for the three diffusion model parameters. We used the intercept
parameter estimates irrespective of condition and trait for a and ν, and the non-decision
times of correct responses. We did not further analyse error non-decision times because
estimates were based on a low number of trials. We then utilized these posterior medians as
summaries of the full posteriors in most of the further analyses. While it is true that such a
two-step procedure makes no use of uncertainty estimates provided by Bayesian sampling
procedures, it must be noted that our models already contained several thousands of
parameters to be estimated for each time point and were thus very complex to estimate
and converge.

To account for possible drop-out effects also due to non-converged chains only at
later time points, we conducted Bayesian t-tests addressing whether the persons who had
missing values at at least one of the later time points differed from the rest of the sample in
any of the three diffusion model parameters. People with missing values had higher drift
rates (BF = 5.86), higher boundary separation (BF = 3.24) and higher correct non-decision
times (BF = 195.03). To account for this fact, we repeated all our analyses including
the non-converged chains. No differences in the pattern of results emerged, notably also
not for the pattern of mean-level changes across time. In addition, when not excluding
the non-converged chains, there were no more differences in means of diffusion model
parameter for people dropping out (all BFs < 1).

2.3.2. Statistical Analyses of Stability and Change

To test the rank-order stability of the diffusion model parameters, we obtained
Bayesian correlation estimates (between individual posterior medians). Hypothesis testing
was performed with Bayes factors (instead of p values) using the R packages correlation
(Makowski et al. 2020) and BayesFactor (Morey and Rouder 2018). As the sample contained
different sub-groups of participants (old/young, student/non-student, see above), we
conducted separate analyses for each of the sub-groups to study whether the overall rank-
order stability between participants might be due to the stability of differences between
sub-groups. To analyse mean-level change, we compared the full posterior distributions
of the group-level parameter estimates (i.e., across participants) across time points.

To study possible individual differences in stability and change in diffusion model
parameters, we then estimated Bayesian growth curve models using the blavaan package
(Merkle and Rosseel 2018), separately for each parameter (ν, a and τ). The individual
posterior medians at each time point served as observed variables in the model. We fixed
all (unstandardized) loadings on the intercept factor to 1. For the slope factor (which
reflects growth or change over time), we fixed the loading to 0 for T1 and to 1 for T2. We
freely estimated the factor loadings for T3 and T4, as we did not have any hypotheses
on the nature of change. Figure 4 shows a graphical representation of our growth curve
models. For each of the models, we used three MCMC chains and obtained 10000 samples,
discarding the first 5000 samples as burn-in (Merkle and Rosseel 2018). To check the fit
of the Bayesian growth curve models, we inspected the bCFI and bGammaHat metrics as
advised by Garnier-Villarreal and Jorgensen (2020).

Finally, we calculated q correlations of individual posterior medians to study profile
stability (Burt 1937). In the q correlation framework, variables (i.e., ν, a, and τ) serve as
cases which vary in relative strength and time points constitute the columns in separate
datasets for each participant. In this way, it is possible to calculate the stability of the
relative strength of the values (i.e., ν, a, and τ), compared to one another. To this end, we
first z-standardized the individual posterior medians, separately for each parameter, to
make their relative strength comparable. We then calculated (frequentist) q correlations via
the multicon package, separately for each participant, and created descriptive statistics and
plots of correlations across participants. In order to reflect the exploratory nature of these
calculations, we do not conduct inferential analyses of q correlations, but purely report the
descriptive results.
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Figure 4. Growth curve model used for all three diffusion model parameters. T1 to T4 refer to the
individual posterior medians of the respective diffusion model parameter at a certain time point.
I = Intercept, S = Slope. The slope loadings t3 and t4 are treated as free parameters and thus estimated.

3. Results

All data and analysis scripts can be found on the paper’s OSF page (https://osf.io/
cnr2a/, accessed on 11 May 2021). We report results on the rank-order stability, mean-level
change and individual differences in change for each of the three main diffusion model
model parameters (ν, a, τ). For all these analyses, we used Bayesian methods to obtain our
results. We also conducted all analyses using a frequentist, p-value based approach. This
did not alter the interpretation of our findings. Finally, we report findings on the profile
stability of the three parameters across time.

Table 1 shows the descriptive statistics of the individual posterior medians for the
three diffusion model parameters for each of the four time points across the entire sample.
Tables A2–A6 in the Appendix A contain the corresponding information, split up for each
of the five sub-groups.

Table 1. Summary statistics of the individual posterior medians of diffusion model parameters for
each time point across all groups.

Parameter Symbol (Time Point) N M SD Minimum Maximum

Drift Rate ν (T1) 359 2.09 0.42 0.82 3.28
ν (T2) 334 2.21 0.46 0.94 4.07
ν (T3) 293 2.21 0.50 0.94 3.82
ν (T4) 282 2.21 0.50 0.98 3.65

Boundary Separation a (T1) 359 2.04 0.55 1.21 4.79
a (T2) 334 1.89 0.51 1.03 3.98
a (T3) 293 1.87 0.54 0.99 4.04
a (T4) 282 1.85 0.56 0.97 4.39

Non-Decision Time τ (T1) 359 0.43 0.08 0.29 0.72
τ (T2) 334 0.42 0.08 0.28 0.78
τ (T3) 293 0.44 0.09 0.25 0.72
τ (T4) 282 0.43 0.09 0.27 0.75

Note: M = mean. SD = standard deviation. Time 2 = Time 1 + 6 months. Time 3 = Time 1 + 12 months. Time 4 =
Time 1 + 24 months.

https://osf.io/cnr2a/
https://osf.io/cnr2a/
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3.1. Rank-Order Stability

Table 2 shows the rank-order stability estimates of the diffusion model parameters
for the entire sample. We report Bayesian correlation estimates, using a uniform prior
for the correlation (see Table A1) and individual posterior medians as variables. Rank-
order stability was high for drift rates (ν; all rs >= 0.64) across the entire time span, with
correlations getting slightly smaller for larger time periods (e.g., r = 0.79 from T1 to T2,
but only r = 0.64 from T1 to T4). We found the same pattern for boundary separation (a):
Rank-order stability was high (all rs >= 0.83), with correlations getting slightly smaller
across larger time periods (e.g., r = 0.90 from T2 to T3, but only r = 0.83 from T1 to T3).
For non-decision times (τ), stability was again high (all rs >= 0.80) across the entire time
span, with correlations once more getting smaller for larger time periods (e.g., r = 0.90
from T2 to T3, but only r = 0.80 from T1 to T4). All correlations showed Bayes factors >999
when compared to a null-model.

Table 2. Correlation matrices of diffusion model parameters across four time points across all participants.

Time 1 Time 2 Time 3

ν Time 2 0.79 [0.76–0.82]
ν Time 3 0.73 [0.69–0.78] 0.78 [0.75–0.82]
ν Time 4 0.64 [0.59–0.70] 0.71 [0.66–0.76] 0.71 [0.65–0.76]
a Time 2 0.85 [0.82–0.87]
a Time 3 0.83 [0.80–0.86] 0.90 [0.88–0.91]
a Time 4 0.84 [0.82–0.87] 0.88 [0.86–0.91] 0.85 [0.82–0.88]
τ Time 2 0.88 [0.86–0.90]
τ Time 3 0.87 [0.84–0.89] 0.90 [0.88–0.92]
τ Time 4 0.80 [0.76–0.83] 0.86 [0.83–0.88] 0.84 [0.81–0.87]

Note: Means of Bayesian correlation estimates and 95% credible interval are reported. All Bayes factors are >999.
Time 2 = Time 1 + 6 months. Time 3 = Time 1 + 12 months. Time 4 = Time 1 + 24 months.

Tables A7–A9 show the estimates of rank-order stability separately for the three
diffusion model parameters and split up across the five sub-groups studied. Generally, the
interpretation of the pattern of results did not differ across groups, although within-group
correlations often were slightly smaller than correlations for the total sample. Especially
due to the smaller samples sizes, Bayes factor were also sometimes lower, for example, as
low as BF = 3.07 for the correlation of drift rates at T2 to the ones at T4 in Group 3 (n = 19,
r = 0.46).

3.2. Mean Level Change and Individual Differences in Change

Figure 5 shows the group-level posterior distributions (i.e., across participants) for the
three diffusion model parameters across the four time points. As can be seen, drift rates
seem to rise after T1 (with the corresponding 95% highest density interval (HDI) showing
no overlap with those of the other time points) and to a lesser degree also after T2 and
T3. The pattern reverses for the boundary separation parameter, with a decline from T1
to the later time points. For non-decision times, no clear pattern of mean level change is
evident. It should be noted that the group-level posterior distributions are not equivalent
to the means of individual parameter posterior medians, due to the hierarchical modelling
approach and due to the exclusion of individual parameter estimates with non-converged
traces. However, the general pattern of results was the same for both group-level posteriors
and means of individual posterior medians.

Table 3 shows the parameter estimates and fit indices for the Bayesian growth curve
model of drift rates. The latent intercept and latent slope exhibited only a very weak
estimated correlation, indicating that drift rates at T1 did not relate to the developmental
patterns of drift rates. As the 95% CI of the covariance between intercept and slope included
zero, we fixed this parameter to zero to help model convergence. All estimated parameters
had effective sample sizes >5000 and R̂ values below 1.01, indicating that the chains had
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converged. Furthermore, model fit was good according to the mean Bayesian GammaHat
estimate >0.99 and the mean Bayesian CFI estimate >0.99.

ν T4

 ν T3

 ν T2

 ν T1

1.75 2.00 2.25 2.50

(a)

 a T4

 a T3

 a T2

 a T1

1.50 1.75 2.00 2.25

P
ar

am
et

er
s

(b)

τ T4

 τ T3

 τ T2

 τ T1

0.35 0.40 0.45 0.50

Parameter values

(c)

Figure 5. Group-level posterior plots of diffusion model parameters across time. (a) = Drift Rates.
(b) = Boundary Separations. (c) = Non-Decision Times. The 95% highest density intervals are shown.
T2 = T1 + 6 months. T3 = T1 + 12 months. T4 = T1 + 24 months.

Latent slope loadings at T3 and T4 were estimated as 1.142 and 1.297. Both the
mean level (intercept) of the latent intercept parameter and of the latent slope parameter
were estimated as positive and their 95% credibility intervals (CIs) did not include zero.
This indicates that drift rates were generally positive at T1 (as would be expected) and
tended to increase over time. The latent intercept showed considerable variance, indicating
that people differed in their speed of information accumulation at T1. The latent slope
parameter also indicated variance, meaning that people differed in their developmental
patterns of drift rates across time—the 95% CI did not include zero.
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Table 3. Parameter estimates and model fit of the drift rate growth curve model.

Variable Estimate Posterior SD 95% CI Std. Est.

Loadings Intercept ν (T1) 1.000 - 0.944
ν (T2) 1.000 - 0.852
ν (T3) 1.000 - 0.797
ν (T4) 1.000 - 0.751

Loadings Slope ν (T1) 0.000 - 0.000
ν (T2) 1.000 - 0.340
ν (T3) 1.142 0.143 0.875–1.439 0.364
ν (T4) 1.297 0.177 0.974–1.668 0.389

(Residual) Variances ν (T1) 0.020 0.007 0.008–0.033 0.110
ν (T2) 0.036 0.005 0.026–0.046 0.158
ν (T3) 0.060 0.007 0.046–0.075 0.233
ν (T4) 0.082 0.010 0.064–0.103 0.284
I 0.164 0.014 0.139–0.191 1.000
S 0.026 0.007 0.014–0.041 1.000

Covariance I and S 0.000 - 0.000
Intercepts ν (T1) 0.000 - 0.000

ν (T2) 0.000 - 0.000
ν (T3) 0.000 - 0.000
ν (T4) 0.000 - 0.000
I 2.104 0.022 2.06–2.148 5.202
S 0.112 0.015 0.081–0.142 0.691

bCFI = 0.998, bGammaHat = 0.997

Bayesian parameter estimates. Std. Est = completely standardized solution. I = latent intercept. S = latent slope. CI = credible interval.

Table 4 shows the parameter estimates and fit indices for the Bayesian growth curve
model of boundary separations. The latent intercept and and latent slope exhibited only a
very weak estimated correlation, indicating that boundary separation at T1 did not relate
to the developmental patterns of boundary separation. As the 95% CI of the covariance
between intercept and slope included zero, we fixed this parameter to zero to help model
convergence. As the variance of the slope factor was also estimated to be zero and the
model showed divergent transitions when estimating it, we also fixed this parameter. All
estimated parameters had effective sample sizes >5000 and R̂ values below 1.01, indicating
that the chains had converged. Model fit was good, with the mean Bayesian GammaHat
estimate >0.99 and the mean Bayesian CFI estimate >0.99.

Latent slope loadings at T3 and T4 were estimated as 1.233 and 1.334. The mean level
(intercept) of the latent intercept parameter was estimated as positive, while the mean level
(intercept) of the latent slope parameter was estimated as negative. Both their 95% CIs did
not include zero. This indicates that boundary separations were generally positive at T1
(as would be expected) and tended to decrease over time. The latent intercept showed
considerable variance, indicating that people differed in their decision criteria at T1. As
was already mentioned, the latent slope parameter was estimated and then fixed to be zero.

Table 5 shows the parameter estimates and fit indices for the Bayesian growth curve
model of non-decision times. Latent intercept and latent slope showed a very low estimated
correlation, indicating that non-decision time at T1 did not relate to the developmental
patterns of non-decision times. As the 95% CI of the covariance between intercept and
slope included zero, we fixed this parameter to zero to help model convergence. As the
variance of the slope factor was also estimated to be zero and the model showed divergent
transitions when estimating it, we also fixed this parameter.
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Table 4. Parameter estimates and model fit of the boundary separation growth curve model.

Variable Estimate Posterior SD 95% CI Std. Est.

Loadings Intercept a (T1) 1.000 - 0.906
a (T2) 1.000 - 0.966
a (T3) 1.000 - 0.939
a (T4) 1.000 - 0.927

Loadings Slope a (T1) 0.000 - 0.000
a (T2) 1.000 - 0.000
a (T3) 1.233 0.127 1.008–1.505 0.000
a (T4) 1.334 0.142 1.077–1.638 0.000

(Residual) Variances a (T1) 0.060 0.006 0.049–0.072 0.180
a (T2) 0.020 0.003 0.014–0.026 0.067
a (T3) 0.036 0.004 0.029–0.046 0.118
a (T4) 0.045 0.005 0.036–0.055 0.141
I 0.274 0.021 0.235–0.318 1.000
S 0.000 - 0.000

Covariance I and S 0.000 - 0.000
Intercepts a (T1) 0.000 - 0.000

a (T2) 0.000 - 0.000
a (T3) 0.000 - 0.000
a (T4) 0.000 - 0.000
I 2.053 0.030 1.995–2.111 3.922
S −0.123 0.015 −0.153–−0.093 -Inf

bCFI = 0.999, bGammaHat = 0.999

Bayesian parameter estimates. Std. Est = completely standardized solution. I = latent intercept. S = latent slope. CI = credible interval.

Table 5. Parameter estimates and model fit of the non-decision time growth curve model.

Variable Estimate Posterior SD 95% CI Std. Est.

Loadings Intercept τ (T1) 1.000 - 0.932
τ (T2) 1.000 - 0.967
τ (T3) 1.000 - 0.931
τ (T4) 1.000 - 0.894

Loadings Slope τ (T1) 0.000 - 0.000
τ (T2) 1.000 - 0.000
τ (T3) −0.358 0.354 −1.216–0.157 −0.000
τ (T4) 0.509 0.291 −0.092–1.053 0.000

(Residual) Variances τ (T1) 0.001 0.000 0.001–0.001 0.131
τ (T2) 0.000 0.000 0–0.001 0.066
τ (T3) 0.001 0.000 0.001–0.001 0.133
τ (T4) 0.002 0.000 0.001–0.002 0.201
I 0.006 0.000 0.005–0.007 1.000
S 0.000 - 0.000

Covariance I and S 0.000 - 0.000
Intercepts τ (T1) 0.000 - 0.000

τ (T2) 0.000 - 0.000
τ (T3) 0.000 - 0.000
τ (T4) 0.000 - 0.000
I 0.436 0.004 0.428–0.445 5.526
S −0.010 0.002 −0.014–−0.006 -Inf

bCFI = 0.984, bGammaHat = 0.971

Note: Bayesian parameter estimates. Std. Est = completely standardized solution. I = latent intercept. S = latent slope. CI = credible interval.
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All estimated parameters had effective sample sizes >5000 and R̂ values below 1.01,
indicating that the chains had converged. Model fit was good, with the mean Bayesian
GammaHat estimate >0.97 and the mean Bayesian CFI estimate >0.98.

Latent slope loadings showed an unclear pattern, with loadings at T3 and T4 estimated
as −0.358 and 0.509. The mean level (intercept) of the latent intercept parameter was
estimated as positive, while the mean level (intercept) of the latent slope parameter was
estimated as negative. Both their 95% CIs did not include zero. This indicates that non-
decision times were generally positive at T1 (as would be expected). Given the unclear
pattern of loadings on the slope factor, no clear interpretation of the negative intercept
of the latent slope factor emerged. The latent intercept showed considerable variance,
indicating that people differed in their non-decision time at T1. As was already mentioned,
the latent slope parameter was estimated and then fixed to be zero.

In summary, we found notable individual differences in growth curve model intercepts
for drift rates, boundary separations, and non-decision times. Regarding growth curve
model slopes (i.e., rates of change), we only found individual differences for drift rates, but
not for boundary separations or non-decision times.

3.3. Profile Stability

We estimated q correlations of the z-standardized individual posterior medians for
the three diffusion model parameters across all possible combinations of time points
(T1 with T2/T3/T4, T2 with T3/T4, T3 with T4). Table 6 shows the means, standard
deviations, and medians across participants. Profile stability was generally high, with all
median q correlations >0.85. However, there was also considerable variance in correlations
across participants (all SDs > 0.42), with lower mean correlations than median correlations.
Figure 6 shows density plots of the individual q correlations for all six periods. As can be
seen, a large part of the densities lies close to 0.95, but there are also much lower coefficients
of stability and also participants showing negative q correlations.

Table 6. Descriptives of q correlations of main diffusion model parameters across time.

Time Mean SD Median N

Time 1–Time 2 0.73 0.43 0.91 318
Time 1–Time 3 0.68 0.46 0.89 286
Time 1–Time 4 0.65 0.47 0.86 275
Time 2–Time 3 0.70 0.50 0.93 277
Time 2–Time 4 0.68 0.48 0.91 268
Time 3–Time 4 0.66 0.53 0.91 249
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Figure 6. Density plots of q correlations.
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4. Discussion

In this article, we studied stability and change of cognitive processes as measured
by the three main diffusion model parameters-processing speed (i.e., drift rates), decision
caution (i.e., boundary separations), and speed of encoding and motor response (i.e.,
non-decision times), using four different indices of stability and development. To our
knowledge, this is the first study to analyse diffusion model parameters (i) over such a long
time period, (ii) across more than two time points, and (iii) in such a large, heterogeneous
sample (n = 359 at Time 1). Moreover, our main statistical analyses relied on modern
Bayesian estimation methods which offer multiple advantages compared to traditional
methods. Overall, our analyses aimed to investigate whether the cognitive constructs
encoded by diffusion model parameters exhibit a measurable trait-like nature. In the
following, we briefly summarize the gist of our results.

Regarding rank-order stability, we found robust temporal stability of the main diffu-
sion model parameters. Generally speaking, temporal correlations were high for all three
parameters. This held true even when the entire period of the study (i.e., two years) was
considered. The correlations we found were in many cases markedly higher than those
previously reported in the literature (Lerche and Voss 2017; Schubert et al. 2016; Yap et al.
2012). Especially for non-decision times, previous studies had sometimes found rank-order
stability to be low (r < 0.50 across one week in Lerche and Voss 2017). In contrast, our results
indicate that non-decision times show even higher correlations across long time periods
(rs > 0.80) than drift rates. This finding is worth discussing, since drift rates have so far been
considered as the most “trait-like” parameters of the diffusion model (Schubert et al. 2016).

The latter difference might be attributable to several features of our study. First, in
contrast to previous studies, we employed Bayesian hierarchical diffusion model estimation
methods that in the past have been found to provide more robust results in correlational
studies (Ratcliff and Childers 2015; Wiecki et al. 2013). Bayesian methods incorporate
prior knowledge on probable parameter values. Hierarchical Bayesian methods make use
of shrinkage of the individual parameter estimates towards the group-level posteriors,
balancing out extreme individual parameter estimates that might reflect noise in the data
(Kruschke 2015).

Second, we used a comparatively large number of response times for each participant
at each time point (600 trials), which necessarily leads to more precise estimates. Finally,
our sample included a large number of participants and exhibited a greater heterogeneity,
especially in relation to age. The variance of parameter estimates might account for the
higher correlations. However, it must be noted that correlations remained strong-though
sometimes notably lower or even within sub-groups as small as around 20 participants
(see Appendix A). Thus, the present results cannot be attributed solely to sample size
and sample heterogeneity. In the end, our estimates of (correct) non-decision times might
be more reliable than the ones reported in previous studies, while boundary separation
values might have already been estimated very reliably there. Conversely, drift rates
might not show greater stability than in previous studies because of the specific content
of the task: differences in drift rates also reflect differences in implicit personality, as their
developmental patterns were the original focus of the study.

When looking at the raw data, rank-order stabilities of mean accuracies and median
correct and error response times are also quite high (r posterior means between 0.77 and
0.96, see Table A10), which speaks in favour of the assumption that our high number of
trials per person enables us to obtain reliable parameter estimates. At the same time, it
is interesting to note that the stabilities of the diffusion model parameters might jointly
contribute to the very high across-time stability of the raw data summary statistics.

Regarding mean-level stability and change, we found evidence for systematic changes
in both drift rates and boundary separations. Group-level drift rates increased from the
first time point to the second time point six months later. The pattern of increase continued
throughout the next two time points, but the posterior distributions showed much overlap
there. The increase in drift rates might be interpreted as a practice effect. People tended
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to process the information needed to solve the IAT tasks more efficiently after they had
completed the first time point. Conversely, group-level boundary separations decreased
from the first to the second time point and to a lesser degree (once more marked by overlap
in the posteriors) thereafter. That is, people tended to apply more liberal decision criteria
and gathered less information until they made their decisions in the second to fourth time
points. We suppose that participants reduce their decision caution at later time points
mainly in response to the increased drift rate: that is, participants notice that they may
lower their response criteria without deteriorating accuracy. Additionally, a decrease in
accuracy motivation over time might also contribute to the reduction of decision caution.

In the literature on the diffusion model, practice effects in the form of increasing drift
rates and decreasing boundary separations (but sometimes also non-decision times and
shifting starting points) have repeatedly been reported (Dutilh et al. 2009, 2011; Evans and
Brown 2017; Lerche and Voss 2017; Petrov et al. 2011). However, none of these previous
studies focused on training effects across such long time periods as in our study, but
investigated primarily within-session training effects. It is interesting to note that training
effects seem to be stable over months. Evans and Brown (2017) found that people often
first adopt non-optimal decision criteria when working on a new task, that is, they are
overly cautious and try to avoid mistakes, as is mirrored in high boundary separation in
the diffusion model. Having practiced the task many times, people then adapt more lenient
decision criteria that are closer to the optimum. Thus, a possible interpretation of our
results states that people tend to keep the more lenient decision criterion when returning
to the task months or even a year later.

Finally, we did not find systematic changes in non-decision times. Group-level pos-
terior distributions remained roughly the same across the two year time period studied.
This is in contrast to the results found in earlier studies on training effects that sometimes
found decreasing non-decision times (Dutilh et al. 2009, 2011). Task-specific aspects of the
IAT might be responsible for our findings. For instance, Dutilh et al. (2011) found that the
effects on non-decision times were partly task-specific as well as item-specific.

Regarding inter-individual differences in intra-individual change, our growth curve
models indicate that inter-individual differences are mainly based on across-time intercepts:
We found substantial variance in the latent intercepts of all three diffusion model parame-
ters. For boundary separation and non-decision times, people varied in their intercepts
(which contribute equally to all time points) but not in their slope parameters, which reflect
the rate of change across time. The slope parameter for boundary separation showed a
negative trend; this means that the decrease in boundary separation, that is, the use of
more liberal decision criteria, is close to universal in our data. As the estimated slope factor
loadings in the non-decision time model mirror the unclear and mostly stable group-level
trends found for this parameter, the slope factor is hard to interpret. In any case, its variance
was estimated to be zero. The slope factor in the drift rate growth curve model was the
only slope factor to show substantial inter-individual differences.

Thus, people seem to differ in the ways they profit from training effects in terms of
task-related information processing. In post-hoc analyses, we regressed the slope factor
on age and found a clear and strong positive correlation. This means that older people
tended to increase their drift rates more than their younger counterparts. As older adults
did not show lower mean level drift rates (Ratcliff et al. 2004; Schubert et al. 2020; von
Krause et al. 2020), this implies that they generally profited more from practice. Of course,
these post-hoc analyses must be interpreted cautiously and warrant further developmental
research. To sum up, people tended to show great inter-individual differences in their
overall levels of drift rates, boundary separations and non-decisions time, but differed little
in their developmental patterns, with the exception of drift rates. It would be interesting to
follow up on these results in a longitudinal study with a stronger focus on training effects,
as these were only of periphery interest here.
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Regarding profile stability, the estimated q correlations were strongly positive across
time in the majority of cases, but not in all. We also found a considerable across-participant
variance in correlations, with some people showing q values close to zero or even negative.
Correlations tended to get lower across larger periods of time. The profiles comprising
the relative strengths of drift rate, boundary separation and non-decision might be seen a
configuration of process components that together lead to certain empirical response time
distributions and accuracy rates. For example, the same accuracy data could be the results
of high drift rates and low boundary separation, and vice-versa. In a similar way, some
people might show low boundary separation in combination with high drift rates, others
in combination with low drift rates. It seems that, for most participants in the study, this
parameter configuration remained very much the same across time.

All in all, we found that the three main diffusion model parameters are broadly con-
sistent across time, thus fulfilling a central prerequisite of being identified as traits. This
is particularly interesting as the diffusion model can be applied to a large range of binary
decision tasks (not just from the cognitive domain). Our results reveal positive change in drift
rates and negative change in boundary separation, but little individual differences in change,
with the exception of drift rates. Profiles of the three parameters were also quite stable.

4.1. Limitations

While our study has a number of unique features, for instance, the distinction between
the four forms of stability and change, the four time points over a period of two years,
and the relatively large sample size, it also has some limitations. First, the variety of tasks
was rather restricted. While we used five different IATs and combined them to obtain
task-general parameter estimates, we did not use any other tasks. It is known that diffusion
model parameters obtained in different tasks sometimes show only weak correlations
among each another (Lerche et al. 2020; Ratcliff et al. 2010; Schubert et al. 2016). Thus, some
of the results presented here might be specific to the tasks studied.

Second, it must be noted that the posterior predictive checks did not perfectly recover
the error response time distributions. Several different factors might contribute to this. First
of all, due to the small number of errors, the empirical quantiles are numerically unstable
and thus may not be a good representation of the actual (latent) distribution. Additionally,
due to the low number of error responses per person, the group-level parameter of error
non-decision times greatly influenced the estimates of individual error non-decision times
(because of hierarchical shrinkage). This means that individual deviations in error non-
decision times might sometimes have been underestimated. In turn, this might have led
to a situation where our approach of modelling error response times with a separate non-
decision time parameter was less successful among the very slow errors. Nevertheless,
as the focus of this paper is on the psychometric properties and developmental patterns
of diffusion model parameters, the relative misfit of this small proportion of trials is of
secondary importance.

Finally, there are alternative plausible ways to analyse the present data within a purely
Bayesian framework. Intuitively, the most straightforward way to approach the question
would have been to formulate and fit a full hierarchical model with time included as an
additional level. However, despite being intuitive from a Bayesian lens, such an approach
involves an enormous computational cost due to the large number of posteriors that need
to be estimated simultaneously. In fact, estimating the full hierarchical model turned out to
be practically infeasible using the available computational software. Thus, our two-step
approach using posterior medians as summary statistics might underestimate the epistemic
uncertainty around parameter estimates. However, we deem our approach a reasonable
trade-off, since it incorporates more information than frequentist approaches used in most
of the diffusion model literature. Further, it also utilizes hierarchical shrinkage within
each time point, thereby rendering point and uncertainty estimates more robust than a
non-hierarchical approach.
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4.2. Conclusions

We examined four different forms of stability and change in the three main diffusion
model parameters: drift rate, boundary separation, and non-decision time. Our main
aim was to study whether and in which way the assumption of temporal stability that is
inherent in the interpretation of model-parameters-as-traits holds. Across a time period of
up to two years, all three diffusion model parameters showed strong rank-order stability.
Group-level drift rates tended to increase, whereas group-level boundary separations
decreased and group-level non-decision times exhibited no clear change. These findings
could be interpreted as practice effects, which is remarkable given the long time intervals
between the sessions (up to one year). People differed from one another in their base
rates of all three main diffusion model parameters (intercepts in the growth curve models),
but only drift rates showed inter-individual differences in change across time (slopes).
Profiles of the three parameters mostly stayed stable across time, but some participants
showed strong deviations from this pattern. We believe our study makes a strong case for
the—with regard to temporal aspects—trait-like qualities of the three core diffusion model
parameters. In the light of our results, the use of diffusion model parameters in individual
differences research seems warranted and promising.
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Appendix A

Table A1. Prior distributions used in all analyses.

Parameter Prior

Diffusion model parameters
µa Gamma(1.5, 0.75)
σa Hal f − normal(0.1)
aj Gamma(µa, σ2

a )
µν Normal(2, 3)
σν Hal f − normal(2)
vj Normal(µν, σ2

ν )
µτ Gamma(0.4, 0.2)
στ Hal f − normal(1)
τj Normal(µτ , σ2

τ)

Growth curve model
Factor loading Normal(0, 10)
Latent variable covariance LKJcorrelation(1)
Latent Intercept Normal(0, 10)
Latent SD Gamma(1, 0.5)

All correlations Beta(1, 1)
Note: The diffusion model parameters are HDDM standards based on the suggestions by Matzke and Wagen-
makers (2009). The index j refers to individual participants (at a certain time point).

https://osf.io/cnr2a


J. Intell. 2021, 9, 26 19 of 25

Table A2. Summary statistics of the individual diffusion model parameter estimates for each time
point for Group 1.

Parameter Symbol (Time Point) n M SD Minimum Maximum

Drift Rate ν (T1) 112 2.12 0.45 1.14 3.28
ν (T2) 102 2.21 0.46 1.24 3.38
ν (T3) 93 2.16 0.49 1.31 3.63
ν (T4) 89 2.16 0.47 1.05 3.46

Boundary Separation a (T1) 112 1.76 0.32 1.23 2.91
a (T2) 102 1.64 0.28 1.03 2.48
a (T3) 93 1.58 0.26 0.99 2.22
a (T4) 89 1.54 0.26 0.97 2.26

Non-Decision Time τ (T1) 112 0.39 0.04 0.29 0.48
τ (T2) 102 0.38 0.03 0.30 0.46
τ (T3) 93 0.39 0.04 0.29 0.49
τ (T4) 89 0.38 0.04 0.28 0.49

Note: M = mean. SD = standard deviation. Individual posterior medians used.

Table A3. Summary statistics of the individual diffusion model parameter estimates for each time
point for Group 2.

Parameter Symbol (Time Point) n M SD Minimum Maximum

Drift Rate ν (T1) 103 2.01 0.39 1.08 2.88
ν (T2) 104 2.15 0.45 1.24 3.29
ν (T3) 85 2.08 0.42 1.12 3.14
ν (T4) 82 2.11 0.46 1.20 3.36

Boundary Separation a (T1) 103 1.78 0.34 1.21 3.60
a (T2) 104 1.65 0.35 1.08 3.40
a (T3) 85 1.60 0.27 1.15 2.20
a (T4) 82 1.58 0.29 1.03 2.24

Non-Decision Time τ (T1) 103 0.40 0.05 0.30 0.51
τ (T2) 104 0.39 0.05 0.28 0.52
τ (T3) 85 0.39 0.05 0.25 0.51
τ (T4) 82 0.38 0.04 0.27 0.55

Note: M = mean. SD = standard deviation. Individual posterior medians used.

Table A4. Summary statistics of the individual diffusion model parameter estimates for each time
point for Group 3.

Parameter Symbol (Time Point) n M SD Minimum Maximum

Drift Rate ν (T1) 26 1.93 0.43 1.28 3.15
ν (T2) 23 2.02 0.49 1.30 3.13
ν (T3) 18 1.93 0.58 0.99 3.50
ν (T4) 20 1.87 0.44 1.08 2.68

Boundary Separation a (T1) 26 1.88 0.36 1.38 2.98
a (T2) 23 1.72 0.27 1.23 2.24
a (T3) 18 1.74 0.27 1.22 2.14
a (T4) 20 1.72 0.36 1.27 2.62

Non-Decision Time τ (T1) 26 0.40 0.06 0.30 0.52
τ (T2) 23 0.39 0.05 0.30 0.48
τ (T3) 18 0.38 0.05 0.31 0.47
τ (T4) 20 0.40 0.06 0.30 0.53

Note: M = mean. SD = standard deviation. Individual posterior medians used.
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Table A5. Summary statistics of the individual diffusion model parameter estimates for each time
point for Group 4.

Parameter Symbol (Time Point) n M SD Minimum Maximum

Drift Rate ν (T1) 58 2.23 0.45 0.82 3.24
ν (T2) 55 2.30 0.47 0.94 4.07
ν (T3) 44 2.45 0.57 0.94 3.82
ν (T4) 44 2.39 0.52 0.98 3.65

Boundary Separation a (T1) 58 2.59 0.64 1.79 4.79
a (T2) 55 2.44 0.51 1.61 3.88
a (T3) 44 2.42 0.54 1.56 4.04
a (T4) 44 2.44 0.57 1.69 4.39

Non-Decision Time τ (T1) 58 0.52 0.07 0.36 0.72
τ (T2) 55 0.52 0.08 0.33 0.78
τ (T3) 44 0.55 0.08 0.36 0.72
τ (T4) 44 0.53 0.07 0.37 0.71

Note: M = mean. SD = standard deviation. Individual posterior medians used.

Table A6. Summary statistics of the individual diffusion model parameter estimates for each time
point for Group 5.

Parameter Symbol (Time Point) n M SD Minimum Maximum

Drift Rate ν (T1) 53 2.12 0.38 1.25 2.90
ν (T2) 48 2.36 0.41 1.73 3.65
ν (T3) 51 2.42 0.39 1.77 3.27
ν (T4) 44 2.45 0.47 1.12 3.36

Boundary Separation a (T1) 53 2.56 0.44 1.75 3.56
a (T2) 48 2.40 0.41 1.74 3.98
a (T3) 51 2.44 0.52 1.66 3.93
a (T4) 44 2.46 0.50 1.71 4.07

Non-Decision Time τ (T1) 53 0.51 0.07 0.38 0.66
τ (T2) 48 0.50 0.07 0.36 0.62
τ (T3) 51 0.52 0.07 0.37 0.64
τ (T4) 44 0.52 0.09 0.28 0.75

Note: M = mean. SD = standard deviation. Individual posterior medians used.

Table A7. Correlation matrix of drift rates across four time points split by groups.

Time Point Group Time 1 Time 2 Time 3

ν Time 2 Group 1 0.77 [0.70–0.83]
ν Time 3 0.70 [0.61–0.78] 0.71 [0.63–0.79]
ν Time 4 0.63 [0.53–0.73] 0.66 [0.57–0.76] 0.62 [0.51–0.73]
ν Time 2 Group 2 0.80 [0.74–0.85]
ν Time 3 0.69 [0.60–0.79] 0.79 [0.72–0.85]
ν Time 4 0.66 [0.57–0.77] 0.76 [0.68–0.83] 0.66 [0.55–0.76]
ν Time 2 Group 3 0.72 [0.55–0.87]
ν Time 3 0.76 [0.59–0.91] 0.86 [0.76–0.95]
ν Time 4 0.47 [0.20–0.74] 0.46 [0.17–0.72] 0.82 [0.68–0.95]
ν Time 2 Group 4 0.80 [0.72–0.88]
ν Time 3 0.77 [0.68–0.87] 0.86 [0.79–0.92]
ν Time 4 0.70 [0.57–0.81] 0.85 [0.76–0.91] 0.76 [0.64–0.87]
ν Time 2 Group 5 0.80 [0.70–0.88]
ν Time 3 0.77 [0.67–0.86] 0.80 [0.70–0.87]
ν Time 4 0.55 [0.38–0.73] 0.55 [0.37–0.73] 0.57 [0.40–0.74]

Note: Means of Bayesian correlation estimates and 95% credible interval are reported.
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Table A8. Correlation matrix of boundary separation across four time points split by groups.

Time Point Group Time 1 Time 2 Time 3

a Time 2 Group 1 0.69 [0.60–0.77]
a Time 3 0.72 [0.64–0.80] 0.81 [0.75–0.86]
a Time 4 0.65 [0.55–0.75] 0.71 [0.63–0.80] 0.77 [0.69–0.83]
a Time 2 Group 2 0.85 [0.80–0.89]
a Time 3 0.67 [0.58–0.77] 0.84 [0.79–0.89]
a Time 4 0.69 [0.59–0.78] 0.77 [0.70–0.84] 0.83 [0.77–0.89]
a Time 2 Group 3 0.70 [0.51–0.86]
a Time 3 0.69 [0.46–0.87] 0.87 [0.77–0.96]
a Time 4 0.79 [0.63–0.91] 0.90 [0.81–0.96] 0.79 [0.59–0.92]
a Time 2 Group 4 0.69 [0.57–0.81]
a Time 3 0.61 [0.44–0.76] 0.76 [0.66–0.87]
a Time 4 0.73 [0.61–0.84] 0.81 [0.71–0.88] 0.60 [0.43–0.78]
a Time 2 Group 5 0.60 [0.44–0.74]
a Time 3 0.63 [0.49–0.77] 0.72 [0.60–0.84]
a Time 4 0.58 [0.40–0.74] 0.62 [0.45–0.77] 0.58 [0.39–0.72]

Note: Means of Bayesian correlation estimates and 95% credible interval are reported.

Table A9. Correlation matrix of non-decision times across four time points split by groups.

Time Point Group Time 1 Time 2 Time 3

τ Time 2 Group 1 0.68 [0.60–0.76]
τ Time 3 0.63 [0.53–0.73] 0.61 [0.50–0.71]
τ Time 4 0.55 [0.43–0.66] 0.57 [0.45–0.68] 0.62 [0.50–0.72]
τ Time 2 Group 2 0.72 [0.64–0.80]
τ Time 3 0.59 [0.47–0.70] 0.77 [0.70–0.84]
τ Time 4 0.49 [0.35–0.62] 0.65 [0.54–0.74] 0.66 [0.56–0.76]
τ Time 2 Group 3 0.78 [0.65–0.91]
τ Time 3 0.73 [0.53–0.89] 0.64 [0.41–0.84]
τ Time 4 0.68 [0.47–0.86] 0.73 [0.54–0.88] 0.60 [0.31–0.82]
τ Time 2 Group 4 0.71 [0.60–0.82]
τ Time 3 0.68 [0.54–0.81] 0.75 [0.62–0.84]
τ Time 4 0.50 [0.33–0.69] 0.70 [0.56–0.82] 0.51 [0.31–0.71]
τ Time 2 Group 5 0.71 [0.58–0.82]
τ Time 3 0.73 [0.62–0.84] 0.83 [0.75–0.90]
τ Time 4 0.58 [0.43–0.75] 0.70 [0.56–0.83] 0.67 [0.51–0.79]

Note: Means of Bayesian correlation estimates and 95% credible interval are reported.

Table A10. Correlation matrix of raw data across four time points across all groups.

Time Point Time 1 Time 2 Time3

Accuracy Time 2 0.85 [0.82–0.87]
Accuracy Time 3 0.82 [0.79–0.85] 0.88 [0.86–0.90]
Accuracy Time 4 0.77 [0.73–0.80] 0.84 [0.82–0.87] 0.87 [0.85–0.89]
Median correct RT Time 2 0.95 [0.94–0.96]
Median correct RT Time 3 0.92 [0.91–0.94] 0.96 [0.95–0.97]
Median correct RT Time 4 0.89 [0.87–0.91] 0.91 [0.89–0.92] 0.92 [0.90–0.93]
Median error RT Time 2 0.85 [0.83–0.87]
Median error RT Time 3 0.82 [0.79–0.85] 0.87 [0.85–0.89]
Median error RT Time 4 0.83 [0.80–0.85] 0.85 [0.82–0.87] 0.84 [0.81–0.86]

Note: Means of Bayesian correlation estimates and 95% credible interval are reported.
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Figure A1. Posterior predictive check of RTs for T2. Participants with 10 or less errors are omitted
from the error response time plots.

Figure A2. Posterior predictive check of RTs for T3. Participants with 10 or less errors are omitted from the error response
time plots.
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Figure A3. Posterior predictive check of RTs for T4. Participants with 10 or less errors are omitted from the error response
time plots.

Figure A4. Posterior predictive checks of accuracy rates for all time points.
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