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Abstract: After myocardial infarction, the implantation of stem cell seeded scaffolds on 
the ischemic zone represents a promising strategy for restoration of heart function. 
However, mechanical integrity and functionality of tissue engineered constructs need to be 
determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor 
mimicking the myocardial contraction was developed to analyze the behavior of 
mesenchymal stem cells derived from umbilical cord tissue (UCMSC) colonized on 
titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the 
bioreactor enables a simple handling and defined mechanical forces on three seeded 
scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, 
silicone, and stainless steel allows the comparison of different media, cells and scaffolds. 
The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic 
observations and pressure-measurements showed a uniformly sinusoidal pulsation, 
indicating that the bioreactor performed well. Preliminary experiments to determine the 
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adherence rate and morphology of UCMSC after mechanical loadings showed an almost 
confluent cellular coating without damage on the cell surface. In summary, the bioreactor 
is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli 
for pre-conditioning of cardiac tissue engineered constructs in vitro. 

Keywords: tissue engineering; bioreactor; mechanical stimulation; mesenchymal stem 
cells; cardiac differentiation; umbilical cord 

 

1. Introduction 

For the use of tissue engineered constructs in vivo, it is essential to examine their functionality and 
mechanical integrity prior to implantation [1]. In addition, forces acting directly or indirectly on cells, 
via scaffolds for example, can affect cellular differentiation [2]. In vivo, cells are stimulated 
continuously by mechanical, electrical and chemical signals influencing their phenotype, morphology 
and proliferation. If these signals are inappropriate or absent, cells lose their ability to form organized 
tissue [3]. Thus, bioreactors simulating physiological conditions, such as mechanical shear stress, play 
a crucial role in the development of tissue engineered constructs [1]. The development of an effective 
bioreactor requires the consideration of various parameters. Ideally, bioreactors allow the regulation of 
physical parameters such as temperature, pH, pO2, pCO2, allow nutrient supply and removal of toxic 
metabolites as well as mechanical stimuli. Moreover, the material must be compatible with the 
manufacturing process, sterilization technique and the cultured cell type [4]. Bioreactors can be 
distinguished by their application: bioreactors for cell seeding, cultivation of colonized scaffolds and 
for conditioning of functional tissue engineered prostheses [5-7]. In heart valve fabrication, the 
development of bioreactors for tissue formation under dynamic culture conditions was demonstrated 
several times [1,8,9]. It is also already known, that bioreactors support tissue formation of heart muscle 
in vitro [10,11]. An effective approach to improve the contractile properties of artificial heart muscle 
constructs is electrical field stimulation or mechanical stimulation by unidirectional or auxotonic 
stretching [12]. Accompanied by an improvement of contractile function, some studies demonstrated 
extracellular matrix formation, increased cell proliferation and uniform cell distribution of strained 
constructs [13,14]. In this context, Zimmermann et al. reported from highly differentiated cardiac 
tissue constructs after cyclic mechanostimulation in a stretch device [15]. For the fabrication of an 
autologous patch tissue for cardiovascular surgery, Sodian et al. developed a closed-looped perfused 
bioreactor by combining pulsatile perfusion and periodically stretching of tissue-engineered patch 
constructs [16]. Birla et al. described a bioreactor system that applies electromechanical stretch to 
bioengineered heart muscle constructs with good results and no evidence of physical damage [17]. In 
order to repopulate ischemic myocardium with cells that could restore contractility, we previously 
demonstrated that titanium-coated clinically approved cardiovascular patches enhance retention of 
human umbilical cord tissue derived mesenchymal stem cells (UCMSC) and thus offer a potential cell 
delivery system for the repair of damaged myocardium [18]. In addition to the static seeding procedure 
described in [18], the aim of the present study was to analyze the stability of the cellular coating upon 
mechanical stress in a newly developed bioreactor mimicking myocardial contraction. 
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2. Experimental Section 

2.1. Bioreactor Construction 

The bioreactor was designed using the CATIA V5R19 software (IndustrieHansa Consulting & 
Engineering GmbH, München, Germany). Bioreactor components were manufactured in-house. The 
core unit of the bioreactor, consisting of media compartments (outer diameter D = 20 mm, inner 
diameter d = 10 mm, outer height H = 115 mm, inner height h = 100 mm), sample compartment  
(D = 135 mm, H = 20 mm), pressure compartment (D = 135 mm, d = 110 mm, H = 40 mm, h = 5 mm) 
and clip-systems (D = 23 mm, H = 6 mm; upper part: D = 23 mm, d = 9 mm, H = 5 mm, lower part:  
D = 20 mm, d = 11 mm, H = 3 mm) were produced from acrylic glass and polyvinylchloride (Sahlberg 
GmbH & Co. KG, München, Germany), respectively. Gaskets and pulse-membranes (D = 20 mm; 
thickness = 0.5 mm) were made of silicone (Sahlberg GmbH & Co. KG, München, Germany). Lining 
disks were produced from Teflon® (Sahlberg GmbH & Co. KG, München, Germany). Actuation parts 
(connection rod (55 × 7 × 5 mm), eccentric wheel (D = 50 mm, H = 5 mm), piston (Dp = 12 mm), 
piston rod (d = 8 mm, h = 50 mm), cylinder (D = 25 mm, d= 13 mm, Hc = 30 mm) were made of 
stainless steel (Inoxium Edelstahlhandel, Rosenheim, Germany); gear motor, speed controller and 
power supply were purchased from Modelcraft Inc. (Blaine, USA), H-Tronic GmbH (Hirschau, 
Germany) and Conrad Electronic SE (Hirschau, Germany), respectively. 

2.2. Bioreactor Sterilization 

The sterilization of the bioreactor was restricted to components in contact with cells and/or cell 
culture medium; in detail, the media compartments, sample compartment, clip-systems,  
pulse-membranes, gaskets and lining disks (see Figure 1). The sterilization was performed by 
formaldehyde deposition at 60–70 °C for 7 h and was evaluated during typical process conditions for 
96 h in a standard incubator at 37 °C/5% CO2. Samples were aseptically taken at 24 h and 96 h  
and were screened for contaminations by conventional microbiological evaluation methods  
(Max-von-Pettenkofer-Institut für Hygiene und medizinische Mikrobiologie, University of  
Munich, Germany). 

2.3. Bioreactor Functionality 

Bioreactor functionality was checked by connecting a pressure transducer (Gould-Statham Inc., 
Oxnard, USA) and a pressure monitoring system (Siemens AG, München, Germany) to the pressure 
compartment of the bioreactor, in order to measure the produced pulsating pressure. A further control 
parameter was the visualization of pulsating menisci in the media compartments.  

2.4. Cell Seeding on Non-Degradable Synthetic Scaffolds 

2.4.1. Cell Type 

Umbilical cord mesenchymal stem cells (UCMSC) derived from human umbilical cord tissue were 
used for scaffold seeding. Isolation, cell culture and phenotypic characterization of UCMSC were 
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performed as previously described. Briefly, UCMSC were isolated according to Seshareddy et al. [19] 
and were cultured in complete xenofree medium. For phenotypic characterization, UCMSC were 
stained for mesenchymal and hematopoetic markers and were analyzed by flow cytometry [20]. As a 
functional control, UCMSC were differentiated into the osteogenic and adipogenic lineage and were 
histochemically analyzed [21,22]. 

2.4.2. Scaffold Type 

As previously described, UCMSC were seeded on clinically approved Cardiovascular Patch (CVP) 
composed of expanded Polytetrafluorethylene (ePTFE) [18]. Briefly, CVP with a thickness of 0.4 mm 
features a homogenous macroporous surface with a pore size of 22 µm and were kindly provided by 
W. L. Gore Associates GmbH (Putzbrunn, Germany). In order to increase surface energy, promoting 
electrostatic interactions with molecules and proteins, the scaffold was coated with titanium (pfm 
medical titanium gmbh, Nürnberg, Germany). For coating, titanium containing molecules are split into 
their atomic elements by plasma-assisted chemical vapor deposition (PACVD). The titanium atoms 
adhere to the entire surface of scaffolds, form a covalent chemical compound and constitute in contact 
with air, a titanium dioxide film resulting in an improved wettability. For fixing in the bioreactor, 
titanium-coated scaffolds were punched in the dimensions of 7.5 mm × 7.5 mm, tagged with a surgical 
suture and sterilized by steam at 121 °C for 20 min. 

2.4.3. Seeding Procedure 

For reproducible seeding, commercial available inserts made of stainless steel and silicone (Aix 
scientifics® CRO, Aachen, Germany) were placed on the scaffold in 24-well-plates. These cylindric, 
so-called “Fences” were used to pre-define the dimension of the seeding area. For seeding,  
3 × 102 UCMSC/mm2 were introduced into the Fences according to the manufacturer’s protocol and 
were incubated at 37 °C/5% CO2 for 72 h.  

2.5. Adherence Rate of UCMSC 

Adherence rates of UCMSC seeded on titanium-coated CVP were determined with or without 
mechanical stress. Mechanical stress tests were performed at 65 bpm for 24 h in a standard incubator at 
37 °C/5% CO2. Control scaffolds without exposure to mechanical stress were incubated under static 
conditions in 24-well-plates for 24 h at 37 °C/5% CO2. Seeded scaffolds were fixed in  
methanol-acetone (1:2) for 2 minutes at RT and rinsed with PBS (PAA Laboratories GmbH, Pasching, 
Austria). Cell nuclei were stained with 1 μg/mL diamidinophenylindole (DAPI; Roche Diagnostics 
GmbH, Mannheim, Germany) for 20 minutes at RT in the dark. Samples were analyzed at 358 nm by 
fluorescence microscopy (Zeiss MicroImaging GmbH, Jena, Germany). The number of attached 
UCMSC was quantified by DAPI-stained cell nuclei, related to their initial seeding density and 
standardized to UCMSC without mechanical stress. Normalization was performed to exclude  
cord-donor specific deviations in cell adherence on scaffolds. 
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2.6. Scanning Electron Microscopy (SEM) 

In order to assess the morphology of UCMSC under statical or mechanical conditions in the newly 
developed bioreactor at 65 bpm for 24 h, seeded scaffolds were fixed in 3% glutardialdehyde (Merck 
KGaA, Darmstadt, Germany) over night at 4 °C. Subsequently, scaffolds were washed with PBS and 
dehydrated by incubation in an afferent ethanol series (30%, 50%, 70%, and 90%) and subsequently in 
3 × 100% acetone (Merck KGaA, Darmstadt, Germany). After sample drying at the critical point, 
scaffolds were sputtered with gold film for 180 s at 10−5 mbar and finally, analyzed microscopically by 
using a scanning electron microscope (EVO® LS10, Zeiss MikroImaging GmbH, Jena, Germany) and 
a SE-detector at 15 kV. 

3. Results and Discussion 

3.1. Bioreactor Design 

As shown in Figure 1, the novel pulsatile bioreactor consists of a core unit with three media 
compartments (3), three clip-systems each with a pulse-membrane (5), a sample compartment (6), a 
pressure compartment (7) and an actuation unit (9). 

Figure 1. Schematic illustration of the novel pulsatile bioreactor. (1) Luer-lock-connector for 
CO2-gassing, (2) luer-lock-connectors for nutrient supply and removal, (3) media 
compartment, (4) gasket, (5) clip-system, (6) sample compartment, (7) pressure compartment, 
(8) base plate, (9) actuation unit. By generating a pulsatile pressure in the pressure 
compartment, pulse membranes in the clip-systems bend and seeded scaffolds, also fixed in 
the clip-system, are subjected to friction stress. Nutrient supply of seeded scaffolds was 
provided by medium in the media compartment. Physiological conditions are provided by 
integrating the whole bioreactor in a standard incubator. Sterile filters on the top of the three 
media compartments secure CO2-exchange. Scale bar = 20 mm. 
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a) Core Unit 

The sterile, cylindric media compartments are separated from the unsterile sample compartment by 
pulse-membranes). Media compartments can be filled with media (maximal volume = 7.85 mL) via 
luer-lock-connectors (2). Pulse-membranes and seeded scaffolds are fixed in clip-systems. The  
clip-systems are fixed between the sample compartment and the media compartments. The sample 
compartment is screwed onto the cylindric pressure compartment, which is connected to the  
actuation unit.  

b) Actuation Unit 

The actuation (see Figure 2) consists of an electric gear motor with adjustable speed, which moves a 
connection rod (3) by an eccentric wheel (2). The connection rod is bonded to a piston by a piston rod, 
resulting in a horizontal movement of the piston in a cylinder (4) and a displaced volume  
(Vp = (Dp

2 π/4) Hc) of 3.4 cm3. The cylinder is connected to the pressure compartment to generate a 
variable pulsatile pressure at frequencies of 1–65 bpm. 

Figure 2. Actuation unit of the bioreactor. (1) Gear motor; (2) eccentric wheel;  
(3) connection rod; (4) cylinder with piston. The adjustable actuation unit generates a 
variable pulsatile pressure at frequencies of 1–65 bpm. Scale bar = 20 mm. 

 
 

3.2. Bioreactor Function 

By moving the piston, air is alternately compressed and relaxed in the pressure compartment. At 
piston end position, the pressure in the pressure compartment is maximal and the pulse-membranes in 
the clip-systems are bending to balance the pressure gradient. At piston start position, a pressure 
gradient does not exist and the pulse-membranes relax. As shown in Figure 3, pulse-membrane and 
seeded scaffold (3) are fixed in the sample compartment by a clip-system. Alternately bending and 
relaxing membranes simulate myocardial contraction, resulting in friction stress of seeded scaffolds. 
The clip-system consists of an upper part (1), a pulse-membrane (2) and a lower part (4). The 
populated side of the scaffold is centered to the pulse-membrane (a). The pulse-membrane is inserted 
to the upper part, arranging the scaffold between upper part and pulse membrane (b). The system is 
locked by the lower part (c) and transferred backwards (d) to the core unit of the bioreactor.  



J. Funct. Biomater. 2011, 2                   
 

 

113

Figure 3. Clip-system for fixation of pulse-membrane and scaffold. (1) Upper part,  
(2) pulse-membrane, (3) seeded scaffold, (4) lower part. (a) The populated side of the 
scaffold is centered to the pulse-membrane. (b) The pulse-membrane is inserted into the 
upper part, arranging the scaffold between upper part and pulse membrane. (c) The system is 
locked by the lower part and (d) transferred backwards to the sample compartment of the 
bioreactor. Pulsating membranes result in friction stress of seeded scaffold. Scale bar = 0.4 cm.  

 
 

Fixing of seeded scaffolds by clip-systems allows easy assembling, reliable fixing and facilitates 
sterile operations. Culture medium in the media compartments supplies colonized scaffolds with 
nutrients. Removal of spent media and filling with fresh media is allowed by luer-lock-connectors at 
three media compartments. Three media compartments enable the comparison of different media, cells 
and scaffolds at defined mechanical loadings. The speed controlled gear motor provides frequencies at 
1–65 bpm, offering gradually increasing mechanical loadings of the tissue-engineered scaffolds. 
Manufacturing of the core unit from acrylic glass provides optical transparency for macroscopical 
observation of processes within the unit. Elements of acrylic glass, stainless steel, Teflon® and 
silicone are robust and can be gas sterilized. In addition, the bioreactor was designed in a dimension 
that allows operations in a standard incubator (see Figure 4).  



J. Funct. Biomater. 2011, 2                   
 

 

114

Figure 4. Pulsatile bioreactor operating in a conventional incubator. Comparison of 
different media, cells and scaffolds are enabled by three media compartments at defined 
mechanical loadings. Core unit manufacturing from acrylic glass provides optical 
transparency for macroscopical observation of processes within the unit. Scale bar = 2 cm. 

 
 

3.3. Bioreactor Sterility 

Culture medium was checked during the bioreactor run at 24 h and 96 h for signs of contamination 
by conventional microbiological evaluation methods (streak sample), performed by professionals from 
the Max-von-Pettenkofer-Institute for Hygiene and Medical Microbiology (University of Munich, 
Munich, Germany). The results of these examinations showed no microbiological contamination in a 
period of 96 h, indicating the possibility of dynamic studies under sterile conditions. 

3.4. Bioreactor Functionality 

Bioreactor functionality was macroscopically and sensorically checked. The bioreactor 
demonstrated a uniformly sinusoidal-like pulsation curve with an overall amplitude of 35 mmHg 
(positive values represent the applied pressure on seeded scaffolds; negative pressure values represent 
the relaxation phase) after a frequency of 65 bpm, indicating that the bioreactor performed well  
(see Figure 5). 
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Figure 5. Pressure measurements using a medical pressure sensor in the pressure compartment 
of the bioreactor. Pressure measurements at 65 bpm showed a uniformly sinusoidal-like 
pulsation with an overall amplitude of 35 mmHg (positive values represent the applied 
pressure on seeded scaffolds; negative pressure values represent the relaxation phase).  

 
 

3.5. Adherence of UCMSC after Mechanical Stress 

UCMSC were seeded on titanium-coated CVP to compare the adherence rate without mechanical 
stress and after mechanical stress for 24 h. The resulting adherence rates are shown in Figure 6. The 
adherence rate of UCMSC with mechanical stress is similar to the adherence rate of UCMSC without 
mechanical stress. Lack of mechanical stress can be excluded by pulsating menisci in the media 
compartments after macroscopic observation. 

Figure 6. Adherence rate of mesenchymal stem cells derived from umbilical cord tissue 
(UCMSC) after mechanical stress. The adherence rate of UCMSC after mechanical stress 
does not differ from the adherence rate of UCMSC without mechanical stress. Results are 
given as mean values of duplicates. 
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3.6. Morphology of UCMSC after Mechanical Stress 

The morphology of UCMSC on titanium-coated CVP after mechanical stress for 24 h and in the 
absence of mechanical stress was analyzed by SEM. As demonstrated in Figure 7, UCMSC confluency 
after mechanical stress (a) is similar to UCMSC confluency without mechanical stress (b), even at a 
higher magnification (c) and (d), respectively. The lack of differences in the appearance of 
mechanically stressed UCMSC and unstressed UCMSC indicates the mechanical integrity of the 
cellular coating to friction stress. However, the effect of mechanical stress on UCMSC viability, 
proliferation and differentiation capacity remains to be analyzed in further studies.  

Figure 7. SEM images of UCMSC on titanium coated Cardiovascular Patch (CVP)  in the 
presence or absence of mechanical stress. (a) Confluency of UCMSC after mechanical stress 
is similar to (b) confluency of UCMSC without mechanical stress. (c) The cell surface of 
UCMSC after mechanical stress does not differ from (d) the surface of UCMSC in the 
absence of mechanical stress. These are representatives of an experiment in duplicate. Scale 
bars: A, B = 100 µm (magnification 500×), C, D = 5 µm (magnification 2000×). 

 
 

In contrast to previously described bioreactors aiming to stimulate contraction of engineered  
tissue [13-15] or a bioreactor for conditioning of cardiovascular patches [16], we focused on the 
development of a bioreactor to analyze the integrity of cell seeded scaffolds used as a delivery system, 
to ensure maintenance of stem cells in the infarcted area. Studies of Birla et al. using a bioreactor 
system to deliver stretch forces to bioengineered heart muscle, demonstrate construct stability in 
response to stretch protocols. However, we solely investigated the effect of friction stress to cellular 
coatings and are thus, to best of our knowledge, the first to develop a bioreactor for this application. 

4. Conclusions 

We demonstrated the successful development of a novel pulsatile bioreactor for the exposure of cell 
seeded scaffolds to mechanical stress. Functionality and sterility studies show that the bioreactor 
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performed as expected. Furthermore, preliminary experiments on UCMSC-seeded scaffolds after 
friction stress reveal the mechanical integrity of the cellular coating. After the in vitro evaluation of a 
stable cellular coating, the next step will be the analysis of functional reconstruction of heart muscle by 
tissue-engineered constructs in a pre-clinical model. 
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