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Abstract: Voclosporin is a highly potent, new cyclosporine-A derivative that is currently 

in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of 

the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult 

to administer. We therefore selected it as a model drug that is dispersed within amphiphilic 

polymer matrices, and investigated the changing morphology of the matrices using neutron 

and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic 

segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine 

ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is 

poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase 

separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms 

apart. These water-driven morphological changes influenced the release profile of 

voclosporin and facilitated a burst-free release from the polymer. No such morphological 

reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an 

extended lag period, followed by a burst-like release of voclosporin when the polymer was 

degraded. An understanding of the effect of polymer composition on the hydration 

behavior is central to understanding and controlling the phase behavior and resorption 

characteristics of the matrix for achieving long-term controlled release of hydrophobic 

drugs such as voclosporin. 
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1. Introduction 

Biodegradable polymers are widely used as matrices for drug delivery with different methods of 

formulation pursued for improving the delivery of a variety of hydrophobic small molecules and 

peptides. The rate of release of these active ingredients is determined by their interactions with the 

matrix and by the degradation and resorption of the matrix, which in turn are influenced by water 

uptake and its distribution [1,2]. Biodegradable, hydrophobic polymers are useful as drug-release 

matrices because they maintain structural integrity while eroding slowly. These polymers can also be 

copolymerized with a hydrophilic polymer, often poly(ethylene glycol) (PEG), to control the hydration 

behavior and thus affect the release of active ingredients. 

Few studies in the literature address the effect of morphology of hydrated drug-loaded polymer 

matrices on degradation, erosion and drug release [3]. Water is known to exist in different states 

(bound and free water) and may form clusters depending on the ratio of hydrophobic and hydrophilic 

domains in polymers [4]. The structure [5,6] and the hydration [7–9] of PEG-containing copolymers, 

and the clustering of water in polymers [4,10–13] are expected to affect both drug release and polymer 

resorption. For example, water is shown to disrupt the crystalline nature of PEG incorporated into 

hydrophobic chains of either poly(tetramethylene oxide) and poly(dimethyl siloxane) [14]. Such 

disruption is due to the interactions between water molecules and polymer chains, which sometimes 

result in phase separation of polymer domains. Our study indicates that the distribution of 

hydrophobic-hydrophilic segments can affect the bulk polymer morphology and that water molecules 

can play an important role in influencing this distribution, and subsequent polymer degradation. 

In the work presented here, we describe how the chemical composition and morphology of our 

polymer matrix modulates the release of a hydrophobic undecapeptide (voclosporin). We selected the 

polymers from a library of biodegradable random copolymers comprised of PEG and derivatives of 

tyrosine dipeptide. These tyrosine-derived polymers have excellent biocompatibility and find utility in 

many biomedical applications [15–17]. Voclosporin is a new drug, similar to cyclosporine-A. It is 

currently in clinical trials for indications in ophthalmic inflammatory diseases such as dry eye 

syndrome, uveitis and blepharitis [18]. Like cyclosporine-A, voclosporin is a hydrophobic peptide that 

can serve as a model for a large number of drug candidates that exhibit low solubility and poor 

bioavailability when administered. 

The significance of this study is to address the inadequate release profile of voclosporin (and other 

hydrophobic drugs) from commonly used poly(lactide-co-glycolide) (PLGA) matrices. These release 

profiles are characterized by long initial lag periods (no drug release) followed by drug burst when the 

polymer matrices begin to resorb. These lag-burst release profiles are not usually clinically relevant.  

In contrast, we observe a sustained release of voclosporin without lag or burst effects from 

hydrophilic-hydrophobic copolymers consisting of desaminotyrosyl-tyrosine ethyl ester (DTE), 

desaminotyrosyl-tyrosine (DT) and small segments of PEG. We therefore investigate the changes in 
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morphology during hydration in these copolymer matrices, and their effect on drug diffusion, using 

wide-angle X-ray scattering (WAXS), small-angle x-ray scattering (SAXS) and small-angle neutron 

scattering (SANS). WAXS provides information at 1–10 Å length scales (molecular structures). SAXS 

provides information about the microphase separation at 100–1000 Å length scales (meso-length scale) by 

making use of the contrast in electron densities between the different phases of the polymer. SANS 

provides information about the distribution of water, at the same length scales as SAXS, when polymers 

hydrated with deuterated water generate contrast [19]. These techniques are ideally suited for 

characterizing the changes in bulk morphology during hydration and aging in polymers containing 

hydrophilic segments such as PEG. The results are useful for developing a structural basis that can explain 

the release characteristics of voclosporin (and other hydrophobic drugs) from amphiphilic copolymers. 

2. Results and Discussion 

2.1. Nomenclature for Tyrosine-derived Polymer Matrices 

A shorthand notation for tyrosine-derived copolymers, Eyyzz, is used where “E” refers to DTE, 

“yy” is the mole% of DT, and “zz” is the mole% of PEG1K. For example, E1218 refers to a copolymer 

with 12 mole% of DT, 18 mole% of PEG1K and 70 mole% of DTE (implied since the molar fractions 

of all three components must add up to 100%).  

2.2. Voclosporin Release is Dependent on Matrix Composition 

The in vitro cumulative fractional release of voclosporin (initial loading of 30 wt.%) over a  

35-week period was dependent on the relative amounts of DTE, DT and PEG1K present in the polymer 

(Figure 1a). There is a gradual change in the amount of voclosporin released from the various matrix 

compositions. Figure 1b illustrates three trends of how voclosporin release is controlled by the matrix 

composition. In this figure, blue (contour line < 0.05) and red (contour line > 0.21) regions indicate the 

lowest and highest amount of fractional release, respectively. First, there is a reduction in release as the 

DT content increases in Eyy00 (left edge labeled as %DT). Second, there is an increase in release as 

PEG content increases in E00zz (right edge labeled as %PEG1K). Third, there is a synergistic effect of 

DT and PEG components (red region) that further increases voclosporin release in Eyyzz. The synergy 

between DT and PEG is a surprising and so far unprecedented observation for which we have currently 

no obvious explanation. The contour map therefore enables the design of the release matrices: the path 

from contours of low to high cumulative release (0.09 to 0.21 in the figure) leads towards the 

composition with a faster release of voclosporin. 
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Figure 1. The influence of molar fractions of desaminotyrosyl-tyrosine (DT) and 

poly(ethylene glycol) (PEG1K) in Eyyzz matrices on in vitro cumulative fractional release 

of voclosporin: (a) release profiles up to 35 weeks; (b) contour plot of release at 35 weeks; 

and (c) contour plot for 35-week standard error (in box), where red dots indicate polymer 

composition design points and ‘3’ represents the sample size (see text for additional detail). 

(a) (b) (c) 

2.3. PLGA is Unsuitable for Controlled Voclosporin Release  

Considering the frequent use of PLGA as a drug release matrix, we used three different PLGA 

compositions (50:50, 75:25 and 85:15) to compare the voclosporin release profiles obtained from these 

polymers to those obtained from the phase-separated, amphiphilic polymers, exemplified here by 

E1218. In order to obtain higher cumulative fractional voclosporin release from the matrices, we used 

an initial voclosporin loading of 5 wt.%. The data (Figure 2) from the three PLGA compositions 50:50, 

75:25 and 85:15 show that there is a lag period (i.e., no voclosporin release) of approximately 1, 3 and 

5 months, respectively. This lag period is followed by a 6-week burst of approximately 50%–60% of 

the voclosporin, and a subsequent final slow release of the residual voclosporin. Similar sigmoidal 

profiles of drug release from PLGA are commonly reported in the literature [20]. Apparently, 

voclosporin and other highly hydrophobic molecules can remain trapped within the polymer until the 

matrix has significantly degraded. This associated lag period, followed by a strong burst release from 

the degrading matrix is rarely useful in clinical settings. In contrast, the 30-week in vitro release profile 

of voclosporin from E1218 is different. Voclosporin release starts immediately upon immersion in 

PBS and continues without lag or burst throughout the entire 30-week period. During this time,  

48 ± 10% of the voclosporin is released within the first 4 weeks, while 24 ± 2% of the voclosporin is 

eluted from the matrix within the subsequent 26 weeks.  

2.4. Bulk Polymer Resorption is Dependent on Matrix Composition  

The in vitro cumulative fractional resorption of Eyyzz matrices loaded with voclosporin (30 wt.%) 

were characterized over a 32-week period. The amount of resorption is dependent on the molar 

fractions of DTE, DT and PEG1K present in the matrices, and the results are presented in Figure 3a. 

Figure 3b illustrates trends of how the polymer is eroded. In this figure, blue (contour line < 0.07) and 
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red (contour line > 0.46) regions in the contour map indicate the lowest and highest rate of polymer 

resorption, respectively. There is no significant change in resorption as the DT content increases in 

Eyy00 (left edge labeled as %DT). However, resorption did increase as the PEG content increases in 

E00zz (right edge labeled as %PEG1K). We again observe a surprising synergistic effect when both DT 

and PEG are present as evidenced by the further increase in resorption in Eyyzz (the red region, 

contour line > 0.46). As in the previous contour map, the trajectory from contours of low to high 

fractional resorption, 0.07 to 0.46 in the figure, leads towards a composition that attains faster polymer 

resorption during hydration. 

Figure 2. In vitro lag and burst release profiles of voclosporin (5 wt.% loading) is 

observed only in poly(lactide-co-glycolide) (PLGA) compositions (50:50, 75:25 and 

85:15), and not in Eyyzz copolymers (illustrated using E1218 release profile). 

 

Figure 3. The influence of molar fractions of DT and PEG1K in Eyyzz matrices on in vitro 

polymer resorption: (a) release profiles up to 32 weeks; (b) contour plot of release at  

32 weeks, and (c) contour plot for 32-week standard error (in box), where red dots indicate 

polymer composition design points and “3” represents the sample size (see text for 

additional detail). 
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In order to determine the levels of hydrophobic (DTE + DT) and hydrophilic (PEG1K) components 

that were being eroded from the matrix during the study, we calculated their percentages and plotted 

the cumulative amounts of each after 32 weeks of resorption as shown in Figure 4. In general, the 

erosion of PEG segments is 1.4 to 3.4 times faster than the erosion of the DTE + DT segments. This 

preferential loss of PEG was confirmed by measuring the dry Tg of E1218 and E0000, a relatively fast 

and relatively slow eroding matrix, respectively. During a 20-week incubation in PBS at 37 °C, the 

measured dry Tg of E1218 increased from 7 °C to 15, 18, 24 and 29 °C after 1, 4, 10 and 20 weeks, 

respectively. We attributed the observed increase in the dry Tg to the preferential loss of the flexible 

component (PEG) from the polymer composition. In contrast, the dry Tg of E0000 remained constant 

at 95 °C during the same period. Additionally, there was an inverse linear relationship (R2 = −0.975) 

between the dry Tg (in °C) and the % PEG1K content of the Eyyzz copolymers. The empirical equation 

for calculating the remaining PEG in a resorbed polymer is given below: 

 
(1) 

Using Equation 1, the amount of PEG in the 20-week hydrated E1218 is estimated at 14 mole%, based 

on the dry Tg measurement stated above. Thus, although PEG is preferentially eroded from this matrix, 

there appears to be adequate amounts of PEG (and water) available.  

It should be noted that the weak correlation between PEG resorption and voclosporin release does 

not necessarily imply that there is a causal relationship between the two.  

Figure 4. Cumulative fractional erosion of desaminotyrosyl-tyrosine ethyl ester (DTE) + DT 

and PEG1K components of polymer matrices loaded with voclosporin (30 wt.%) demonstrate 

that PEG1K segments are preferentially lost from the matrix relative to the hydrophobic 

segments, resulting in matrices that change in composition over time. 
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q ~ 1.9 and ~ 2.9 Å−1 due to short-range ordering of the PEG-water complex. Two new peaks at  

q ~ 0.6 and 1.2 Å−1 appeared in drug-loaded polymers at greater than 10 wt.% loading. The intensities 

of these peaks increased with drug loading, and were approximately at the same position as the most 

intense peaks of the drug crystals. This shows that the drug is amorphous within the polymer matrix, 

and remains in this state as the polymer erodes. In contrast, crystalline peaks of the drug began to 

appear in the PLGA matrices, and were fully developed after seven weeks of hydration. Drug burst 

began as the drug started to recrystallize from the matrix. 

2.6. Water Domains are Formed in Eyyzz Copolymers 

Small-angle neutron scattering scans from all dry polymers were featureless, whereas the hydrated 

polymers with > 6 mole% PEG1K show an interference peak (Figure 5). This interference peak at qmax 

of 0.052–0.029 Å−1, which is illustrated using E1218, signifies the formation of structured domains of 

water within these matrices. The distances between the domains in E1218 were estimated at 110–190 Å 

from curve fitting the data with the extended Zernike-Prins model, and water domain diameters were 

estimated in the range of 80–140 Å. Domain spacings and diameters were larger in polymers with 

larger PEG content (or large water uptake). In each hydrated polymer, the presence of voclosporin 

gave rise to intense central diffuse scattering (CDS, see next paragraph), but there was no substantial 

difference in either the measured water domain size or the domain spacing. 

A second feature in the SANS data, seen only in E00zz copolymers with voclosporin, is the intense 

scattering at low q in the range of 0.008–0.018 Å−1. This was observed in SAXS data as well. We 

attribute this additional intensity (i.e., CDS) to inhomogeneous distribution of the hydrated domains, 

most likely to the clustering of hydrated domains in the presence of the hydrophobic drug. CDS has been 

observed in triblock polymers containing PEG [21]. The diameters of the CDS domains in these matrices 

are 2–7 times larger than the diameters of water domains associated with the interference peak. 

Figure 5. Typical small-angle neutron scattering (SANS) scans are illustrated using E1218 

with voclosporin (filled square) and without voclosporin (open square) after incubation in 

deuterated phosphate buffered saline (PBS) for 60 hours. Central diffuse scattering (CDS) 

occurs only in the voclosporin-loaded polymer for q < 0.015 Å, and the interference peak 

is shifted to the left (lower q value means larger water domain spacing). 
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The evolution of water domains in these matrices from the beginning of water exposure was 

followed in one of the polymer formulations—the voclosporin-loaded E1218 (Figure 6). E1218 was 

chosen since it had relatively high amounts of both polymer erosion and voclosporin release. The 

interference peak and CDS are detectable within 120 seconds after contact with water, and both 

features continued to increase in intensity for up to 2 hours (as shown here), and beyond. The data 

show that there is rapid formation of structured domains of water due to the ingress and redistribution 

of water molecules.  

Figure 6. Water domain evolution in E1218 loaded with voclosporin. Each SANS scan 

(depicted as separate curves) was taken sequentially at time intervals of 30–120 seconds. 
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observations, we report on the formation of hydrated ordered domains exclusively due to absorption of 

water in our PEG-containing random segmented amphiphilic copolymers. Enthalpic contribution from 
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hydrogen bonding with water molecules could enable the mobile hydrated PEG segments to overcome 

the entropic free energy associated with the random distribution of PEG resulting in phase separation 

from the hydrophobic regions. This phase separation upon hydration is important in understanding the 

steady state drug release from Eyyzz polymers. 

Table 1. Domain spacing (dPEG) and diameter (DPEG) determined from small-angle X-ray 

scattering (SAXS) data of dry and hydrated polymer matrices loaded with voclosporin. 

Polymer composition 
dPEG (Å), for polymer + VCS DPEG (Å), for polymer + VCS 

dry 1 wk 4 wk 7 wk Dry 1 wk 4 wk 7 wk 
E0000 - - - - - - - - 
E0400 247 283 425 291 204 183 234 229 
E0800 291 440 - 331 234 224  229 
E1200 274 446 464 414 234 302 276 280 

E0304.5 - - 323(b) - - - 159(b) - 
E0904.5 - - 321(b) - - - 220(b) - 
E0006 - 212 213 264 - 132 172 234 
E1206 - 137(a) 244  - 132(a) 203 - 
E0609 - 166 214 304 - 125 166 264 
E0012 - 194 246 333 - 137 159 222 
E1212 - 133 157 297 - 124 183 305 

E0313.5 - 149(a) 180 266 - 156(a) 178 253 
E0913.5 - 138 148 256 - 118 159 258 
E0018 - 133 154 228 - 163 176 225 
E0418 - 137 143 210 - 128 156 213 
E0818 - 121 135 201 - 124 145 209 
E1218 - 101 132 204 - 121 159 213 
E1818 - (c) (c) 192 - (c) (c) 197 
E1420 - 99 (c) 179 - 93 (c) 178 
E1224 - 93 (c) 175 - 105 (c) 179 
E1230 - 81 (c) 133 - 80 (c) 134 

DT homopolymer - - - - - - - - 
PEG homopolymer 126 (c) (c) (c) 146 (c) (c) (c)

The absence of values indicates that no interference peak was detected: (a) Not used for PEG trend analysis 

due to appearance of split peaks; (b) Not used for PEG trend analysis since PEG content < 6 mole%; (c) Not 

able to test since sample was fragmented. 

Table 1 shows, in general, that for each hydration time, the PEG domain spacing decreases as the 

PEG content increases (valid for compositions with PEG1K ≥ 6 mole%), along with a concomitant 

small increase in domain size. In addition, across the hydration times ranging from 1 to 7 weeks, we 

observe that both the PEG domain size and spacing increases. Similar trends were obtained for  

PEG-containing matrices that did not contain voclosporin. 

Additional examination of the data reveals that dry polymers are featureless, with the exception of 

Eyy00 copolymers loaded with voclosporin that manifested an interference peak. These copolymers 

did not show an interference peak in the absence of voclosporin. The presence of the peak indicates a 

potential structured complex between the voclosporin and the DTE-co-DT segments of the polymer. 
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This peak persisted during hydration, shifting to lower qmax during the 7-week period. It is important to 

notice that voclosporin loaded in either E0000 or DT homopolymer did not give rise to any measurable 

SAXS signal. In addition, there was no measurable diffraction pattern in any hydrated PLGA samples 

as these matrices were homogeneous and did not form phase separated domains as found in the Eyyzz. 

Finally, the interference peak in the dry homopolymer of PEG, present in samples with and without 

voclosporin, is due to the well-known folded-chain lamellar structure of this polymer [25]. 

These morphological changes in Eyyzz, which are driven by water and are dependent on the 

polymer composition, account for the controlled release of hydrophobic drugs such as voclosporin. 

This behavior is not observed in PLGA. 

3. Experimental Section  

3.1. Active Pharmaceutical Ingredient 

Voclosporin was a gift from Lux Biosciences Inc. (Jersey City, NJ, USA). 

3.2. Synthesis of Tyrosine-Derived Polymer Matrices 

The monomers, DTE and desaminotyrosyl-tyrosine tert-butyl ester (DTtBu), were synthesized as 

described in previous publications [17]. Tyrosine-derived polycarbonates were synthesized at room 

temperature via a condensation reaction of pyridine, triphosgene and up to three monomers—DTE, 

DTtBu and PEG—depending on the desired composition [17]. Polymers containing DTtBu were 

deprotected using trifluoroacetic acid (TFA) forming DT units. All polymers were washed with a  

1:1 (vol./vol.) mixture of isopropyl alcohol and methanol, and filtered after dissolving  

in dichloromethane. 

3.3. Poly(DL-Lactide-co-Glycolide), PLGA 

PLGA 50:50 (molecular weight 40–75 kDa), PLGA 75:25 (molecular weight 66–107 kDa) and 

PLGA 85:15 (molecular weight 50–75 kDa), purchased from Sigma-Aldrich Chemicals Inc. (St. Louis, 

MO, USA), were used as received. 

3.4. Sample Preparation 

Preforms of drug-loaded matrices were prepared by solvent casting from dichloromethane, followed 

by drying under nitrogen at room temperature. Thin films with uniform thicknesses were made from 

the preformed material by 5 minutes of hot compression molding at temperatures of 30–50 °C above 

the glass transition temperature (Tg) of the matrix [26,27]. Control film samples were prepared in a 

similar manner without voclosporin. 

3.5. In Vitro Kinetic Drug Release (KDR) Study 

Voclosporin-loaded polymers were immersed in phosphate buffered saline (PBS) at pH 7.4 and  

37 °C. At each time point, the buffer was removed for quantitative analysis and replaced with a fresh 
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solution for subsequent time points, where the volume was adjusted as necessary to maintain sink 

conditions throughout the study. 

Quantitative analysis was performed by high performance liquid chromatography (HPLC) with a 

linear gradient of mobile phase A comprised of water with 0.1% TFA and mobile phase B comprised 

of acetonitrile with 0.1% TFA (0 min: 30% A and 70% B; 7.5 min: 25% A and 75% B). A C18 column 

(33 × 4.6 mm; 3 μm particle size) was run at 60 °C at a flow rate of 0.8 mL/min. Voclosporin was 

detected at 210 nm. The limits of quantification and detection for the HPLC setup were 25 and  

6.3 ng/ml, respectively. The sample size for each formulation was 3. 

3.6. In Vitro Polymer Erosion Study 

Voclosporin-loaded polymers were incubated in buffer as described above. Samples were prepared 

for quantitative analysis by degrading the dissolved polymer with sodium hydroxide. The base 

treatment converted all DTE into DT, and cleaved the solubilized polymer backbone into DT 

monomers and PEG1K fragments. The destruction of voclosporin using this method was not relevant 

for the analysis. 

Quantitative analysis was performed by HPLC with an in-line evaporative light scattering detector 

(ELSD). A linear gradient of A and B was used (0 min: 95% A and 5% B; 15 min: 60% A and 40% B; 

16 min: 50% A and 50% B; 17 min: 5% A and 95% B; 20 min: 5% A and 95% B; 21 min: 95% A and 

5% B). A C18 column (33 × 4.6 mm; 3 μm particle size) was run at 25 °C at a flow rate of  

0.8 mL/min. The DT monomer was detected at 220 nm and the PEG1K was detected with the ELSD. 

The sample size for each formulation was 3. 

3.7. In Vitro Experimental Mixture Design for KDR and Polymer Erosion Studies 

Response surface methodology was used to select Eyyzz compositions in a d-optimal design space 

using Design Expert® software version 7.1.6 (Stat-Ease Inc., Minneapolis, MN). The compositional 

limits of “yy” = 12 mole% and “zz” = 18 mole% were selected after preliminary studies showed that 

sample fragmentation occurred at higher compositional limits with samples containing 30% (wt./wt.) 

of voclosporin. The general form of the reduced-cubic polynomial used to fit the data was [28]: 

 
(2) 

where η is the response variable (i.e., voclosporin release or polymer resorption); xi, xj and xk are the 

mixture component terms with i, j and k representing the three monomers DTE, DT and PEG1K; and 

βi*, βij* and δij are the partial regression coefficients of the polynomial model. Estimation of the 

regression coefficients was via the method of least squares, and analysis of variance was used to select 

statistically significant terms in the model. Contour plots describe the empirical relationship between 

the response variable and the polymer composition. 

3.8. Measurement of Changes in Tg During Polymer Erosion 

Two polymers, E0000 and E1218, were tested without voclosporin. These samples were immersed 

in PBS at pH 7.4 and 37 °C with weekly changes of the buffer. At each time point, the hydrated 
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polymer was dried by lyophilization and the dry Tg was measured by differential scanning calorimetry. 

The sample was heated from –50 to 200 °C at a rate of 10 °C per minute, kept at 200 °C for 5 minutes 

to erase the thermal history of the polymer (first heat cycle), cooled, and then reheated from –50 °C to 

200 °C at a rate of 10 °C per minute (second heat cycle). The sample size for each polymer was 3. 

3.9. SANS Measurements 

Test samples (~ 0.2 mm thick) of polymer-only or voclosporin-loaded polymers were incubated in 

deuterated PBS at pH 7.4 and 37 °C. SANS data were collected at the CG-2 beam line (Oak Ridge 

National Laboratories, Oak Ridge, TN) at a wavelength of 4.766 Å and a sample-to-detector distance of 

8.65 meters over a q range of 0.007–0.154 Å−1. Data collection time varied from 20 to 1200 seconds. 

3.10. SAXS and WAXS Measurements 

Test samples (~ 1 mm thick) of polymer-only or voclosporin-loaded polymers were incubated in 

PBS at pH 7.4 and 37 °C for 1, 4 and 7 weeks. X-ray scattering data were collected on the 5ID-D beam 

line at the Advanced Photon Source (APS, Argonne National Laboratory, Argonne, IL, USA) using 

1.0332 Å radiation and a beam size of 0.2 × 0.2 mm in transmission mode at room temperature. 

WAXS data were collected on a 100 × 200 mm CCD camera (NTE/CCD-1340/1300E CCD module, 

Princeton Instruments, Inc., Trenton, NJ) with a sample-to-detector distance of 0.23 m over a q range 

of 0.43–3.21 Å−1. SAXS data were collected on a 100 × 100 mm CCD camera (NTE/CCD-1340/1300E 

CCD module, Princeton Instruments, Inc., Trenton, NJ, USA) with a sample-to-detector distance of 

2.897 m and q range of 0.006–0.160 Å−1. Dark frame, distortion and flat-field corrections were 

performed using FIT2D software [29]. Exposure time per sample for data collection ranged from  

0.1–12 seconds. Scattering from an empty cell was collected for background subtraction. 

3.11. Analysis of Small Angle Scattering Data 

The SANS and SAXS data were fitted with an extended Zernike–Prins model. This model is based 

on a one-dimensional arrangement of spherical scatterers [30]. This simple model was adequate for 

determining the size and spacing of water or PEG domains in hydrated polymers. The extension of the 

Zernike–Prins model was the addition of a Guinier approximation term of the form [I0
’ exp(-q2Rg

2/3)] 

to take into account a decaying exponential signal at very low q values (< 0.015 Å−1). This term 

described the CDS from a monodisperse system of spherical particles [31]. The extended ZP model is 

given by: 

 

(3) 

where, q is scattering vector; I(q) is the measured scattering intensity; I0
’ and I0 are the intensities at  

q = 0 for CDS and the interference peaks, respectively; Rg is the radius of gyration of the CDS 

domains; R and d are the radius and interdomain spacing of hydrated PEG domains, respectively;  

A = exp(−q2σ2/2), where σ is the distribution of the interdomain spacing of water or PEG domains. 
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Scattering curves were simulated by coding Equation 3 in Microsoft Excel® Solver with I0
’, I0, Rg, 

R, d and σ as the variable parameters. Observed curves were profile fitted by minimizing the root mean 

square difference between the computed and the experimental intensities. The fit was performed in the q 

range of the peak of interest. Initial values for these parameters were iterated until a best fit was obtained. 

4. Conclusions  

The amphiphilic Eyyzz copolymers exhibit a unique advantage as a release matrix over the 

commonly useful hydrophobic biomaterial PLGA. PLGA is unsuitable due to its voclosporin retention 

and ensuing burst release. In contrast, a long-term controlled release of voclosporin was evident in 

Eyyzz having PEG1K content > 6 mole%. The benefit of these Eyyzz compositions originates from 

their dynamic nature: water uptake creates phase separation of its hydrophobic and hydrophilic 

segments, and resorption slowly changes the composition of the polymer. We propose that phase 

separation might sequester voclosporin within the hydrophobic polymer domains and prevent its burst 

release. Phase separation was demonstrated by SANS and SAXS measurements of the hydrated 

polymer. SANS measurements showed rapid uptake of water that forms clusters of water-rich 

domains. SAXS measurements showed the formation of ordered PEG domains, whose size and 

separation are comparable to those of the water clusters. The similarities in structure development and 

dimensions imply that the water-rich domains and PEG domains are the same. 
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