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Abstract: Cell therapy is one of the most promising areas within regenerative medicine. 

However, its full potential is limited by the rapid loss of introduced therapeutic cells before 

their full effects can be exploited, due in part to anoikis, and in part to the adverse 

environments often found within the pathologic tissues that the cells have been grafted into. 

Encapsulation of individual cells has been proposed as a means of increasing cell viability. 

In this study, we developed a facile, high throughput method for creating temperature 

responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and 

subsequent controlled release of cells. We verified the hypothesis that composite capsules 
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combining agarose and gelatin, which possess different phase transition temperatures from 

solid to liquid, facilitated the destabilization of the capsules for cell release. Cell 

encapsulation and controlled release was demonstrated using human fibroblasts as model 

cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells 

(HUVECs). While such temperature responsive cell microcapsules promise effective, 

controlled release of potential therapeutic cells at physiological temperatures, further work 

will be needed to augment the composition of the microcapsules and optimize the numbers 

of cells per capsule prior to clinical evaluation. 

Keywords: cell encapsulation; microcapsules; hydrogel; cell delivery; temperature 

responsive; human fibroblast; human umbilical vein endothelial cells 

 

1. Introduction 

Cell-based therapies are now being evaluated for their potential to repair and regenerate damaged or 

otherwise failing organs from almost all parts of the body. However, despite promising initial results, in 

many cases, the outcomes are sub-optimal, due to the massive and rapid loss of grafted cells before they 

can exert their full desired therapeutic effects. One source of cell loss is from anoikis, the massive 

programmed cell death that occurs when adherent cells are removed from their substrates for 

transplantation [1]. It is believed that the lack of extracellular matrix (ECM) cues due to the disruption 

of matrix attachment is the trigger for the apoptosis that occurs. When cells are grafted into pathological 

tissue after damage from disease or injury, they are essentially introduced into a hostile environment. 

The tissue may be inflamed, or the healthy and normally pliable tissue may have been replaced by scar 

tissue that lacks innervation or a vascular supply. This makes it difficult for newly introduced cells to 

remain viable and to stably integrate into the damaged area. Hence, there are numerous examples of  

cell-based therapies that initially perform well but decline as introduced cells are lost, confirming the 

need for a controlled differentiation environment for therapeutic progenitor cells or stem cells [2,3]. 

In an attempt to circumvent anoikis during the delivery of therapeutic mesenchymal stromal (stem) 

cells (MSCs), Courtman et al. transiently encapsulated single cells, each within a “cocoon” of agarose 

that included the ECM components, fibrinogen and fibronectin [4]. The ECM components provided the 

missing cell-substratum cues during the grafting process that were needed to remain viable. The 

encapsulated cells showed a higher expression of survival genes, Akt/P13K and MAPK/ERK, with 

overall higher survival rates when injected into an ischemic muscle model. More recently, this single 

cell encapsulation method was tested with cardiac stem cells with improvement in cell survival after 

injection into mouse myocardial infarction models [5]. 

The high impact of the extracellular environment controlling cellular function is well known [5–9]. 

The biomaterial that is used to encapsulate cells will define the extracellular environment for the cells. 

In most cell encapsulation methods, hydrogels are used to mimic the hydrated native ECM properties to 

allow for diffusion of solutes, as well as to reduce the friction between the cells and their surrounding 

tissue [10–14]. Obtaining capsules of uniform shape and size around single cells is a challenge, making 

reproducibility problematic [15]. The size of the capsules is essential for the function and the  
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micro-sized ones are preferred because they will facilitate a higher diffusion rate and thereby improve 

cell viability [16,17]. 

A wide range of biomaterials that include synthetic polymers, polysaccharides (such as agarose, 

alginate and chitin) and naturally-derived ECM proteins (such as collagen, fibrinogen and gelatin) have 

been investigated for cell encapsulation [18]. The seaweed-derived polysaccharides, alginate and 

agarose are in particular very suitable for producing compact coatings. Neither has been known to cause 

any significant immunoreaction when introduced into the human body, showing that they are at 

minimum, immunologically equivalent to naturally derived ECM proteins [19]. In fact, a three-year 

study of agarose as a filler material for lips has shown that it was less immunoreactive than hyaluronic 

acid or collagen [20]. Agarose has thermo-gelling properties that can provide structural integrity when 

making micro-sized capsules or beads. The thermo-gelling properties facilitate the process of making 

beads and harvesting them without the use of chemicals, compared to alginate where chemical  

cross-linking is needed [21]. Alginate cross-linked with calcium and coated with poly(L-lysine) (PLL) 

has been tested for use in immunoisolation for xenogeneic transplantation, e.g. of islets of Langerhans 

containing beta-cells for insulin production in diabetes treatment [22]. Beads of agarose, however, have 

failed to work as immunoisolation barriers, mainly because they are generally more porous. However, 

the higher porosity lends itself to use for temporary encapsulation situations where it is desirable for the 

cells to be more easily released into the environment. 

Agarose has been found to be very useful in methods like electrophoresis because of the low amount 

of charges in the gel, which gives accurate results without internal interruption. Pure agarose hydrogels 

have therefore successfully been used as a non-adhesive model for studying anoikis [23]. As a cell 

encapsulation agent, agarose will therefore not be able to allow for attachment and up-regulation of the 

transmembrane receptors that are needed for cell–cell and cell–substratum interactions once the cells are 

released into their target sites. To improve cell viability and circumvent anoikis, the microcapsules 

therefore also need to contain either ionic charges or fine fibrillary structures within the matrix that can 

be used for cell attachment. As attachment points are not provided by agarose, these can be provided by 

naturally derived ECM proteins [24].  

Collagen is the major component of the mammalian ECM and is an exceptionally suitable biomaterial 

for cell attachment [25]. However, collagen is a large macromolecule that is difficult to manipulate. 

Collagen is also temperature sensitive and cannot be autoclaved, in contrast to agarose, alginate and 

gelatin. Gelatin is denatured collagen, comprising smaller fragments of the same material. Gelatin has 

many “cell-friendly” properties and like collagen, can be used to improve cell adhesion. However, it is 

only possible to encapsulate cells using gelatin and/or collagen alone, if the proteins are chemically 

cross-linked. Unfortunately most cross-linkers for these proteins are cytotoxic. Only a few possible methods 

exist where the cells survive the cross-linking but none of them are completely cell friendly [26]. 

Fibrinogen is a large glycoprotein (Mw 340,000) and a dimer comprising three pairs of non-identical 

chains, Aα, Bβ and γ.  

In this study, our goal was to build upon and refine the agarose-fibrinogen microcapsules with 

temperature responsive hydrogel to allow delivery, as well as release of encapsulated cells for future 

therapeutic application. We tested the hypothesis that the combination of two biomaterials such as  

low-gelling temperature agarose (gels at <30 °C and melts at >60 °C) and gelatin (melts at >35 °C), 

which possess different phase transition temperatures from gel to sol, will result in a temperature 
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responsive composite microcapsule that can be used to temporarily encase cells for controlled delivery. 

For example, at the physiological temperature of 37 C, low-gelling temperature agarose exists as a solid 

gel, while gelatin melts, entering the liquid phase and thereby destabilizing the resulting capsule and 

allowing the encased cells to escape (Figure 1). We verified the hypothesis by fabricating microcapsules 

of agarose and gelatin, with and without added fibrinogen, and testing these as cell delivery systems  

that allowed for controlled cell release, using human fibroblast as model cells. We then confirmed the 

utility of this tool with human umbilical vein endothelial cells (HUVECs) as a model of therapeutic  

angiogenic cells. 

 

Figure 1. Schematic diagram illustrating (A) the concept of cell delivery and release with 

temperature responsive microcapsules and (B) the hypothesized mechanism of cell release 

from a composite temperature responsive hydrogel comprising two materials with different 

phase transition temperatures. 

2. Results and Discussion 

2.1. Microencapsulation of Cells 

In general, the gelatin incorporated within the agarose capsules served as a temperature switch that 

controlled the rate of decomposition of the hydrogel capsules. Increasing amounts of gelatin within the 

agarose–gelatin capsules facilitates capsule decomposition. However, a high concentration of gelatin 

within the agarose mixture will disrupt the gelation process. The maximum amount of gelatin that could 

be incorporated into agarose to still form an intact hydrogel capsule was a 1:2 ratio (w/w) of 

gelatin:agarose. However, for optimal release of cells, a formulation comprising 1% low-gelling 

temperature agarose, 0.5% gelatin, and 10 mg·mL−1 fibrinogen was used for fabrication of cell capsules. 

Using fibroblasts as model cells, the number of cells per capsules was optimized by varying the cell 

number against a fixed volume of hydrogel matrix. Three different cell concentrations (2,000,000; 

4,000,000; and 8,000,000 cells·mL−1) were used for encapsulation within agarose-gelatin-fibrinogen 
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matrices (Figure 2A–C). The encapsulated cells, also referred to as “cell capsules” were collected and 

subsequently filtered twice with cell sieves having diameter of 40 µm and 100 µm. With this technique, 

we are able to prepare cell capsules with a relatively narrow size distribution with ~80% of the cell 

capsules ranging from 20 to 70 µm in diameter (Figure 2D). It is noticed that cell capsules prepared by 

more complex hydrogel mixture (i.e., the agarose, agarose-gelatin and agarose-gelatin-fibrinogen 

mixture) will result in broaden of the capsule size distribution curve. The broadening of the capsule size 

distribution could be explained by the increase of the viscosity of the hydrogel mixture, which leads to 

the formation of less homogenous droplet during the fabrication process. The cell number(s) per single 

capsule as a function of various initial cell concentrations were calculated based on cell counting of individual 

capsules (n = 220). Figure 2E shows that the cell density per capsule increased as the initial cell 

concentration increased. Cell capsules prepared with an initial cell concentration of 2,000,000 cells mL−1 

had highest population of singly encapsulated cells, while increasing the initial cell concentration to 

4,000,000 cells·mL−1 and 8,000,000 cells mL−1 resulted in a higher proportion of capsules containing 

multiple cells. Hence, in order to achieve single cell encapsulation, an initial cell concentration of 

2,000,000 cells·mL−1 was selected for preparation of the cell capsules. However, it is important to note 

that the proportion of empty capsules increased with a lower initial cell density, due to the Poisson 

distribution of cells. 

 

Figure 2. Light micrographs showing cell capsules prepared with various initial cell 

concentrations (A) 2,000,000, (B) 4,000,000 and (C) 8,000,000 cells·mL−1, respectively.  

(D) Size distribution of capsules prepared with various hydrogel formulation. (E) Cell 

number(s) per single capsule (as a function of various initial cell concentrations).  

2.2. Characterization of Cell Capsules 

The zeta potential of the hydrogel capsules provides an indicator of the overall surface charge of 

capsules related to its composition and is a measure of their stability behavior. Hydrogel microcapsules 

composed of agarose, agarose–gelatin and agarose–gelatin–fibrinogen were therefore characterized by 
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measuring the zeta potential at the different isoelectric points of each of the components. Agarose is a 

neutral carbohydrate that does not contain ionically charged functional groups. Fibrinogen and type-A 

gelatin, however, are charged peptides with isoelectric pH values of 4.8 and 8.0, respectively. 

We therefore performed zeta potential measurements at pH 4.8, maintaining fibrinogen at a 

functionally neutral change, and then at pH 8.0 where gelatin had a neutral charge. By holding each 

component at neutrality, the total surface charge of the hydrogel microcapsules would therefore reflect 

those of the other components. Results indicates the surface zeta potential of agarose, agarose-gelatin 

and agarose-gelatin-fibrinogen microcapsules measured at pH 4.8 were 1.89 ± 0.28 mV, 22.9 ± 0.36 mV 

and 24.6 ± 0.95 mV, respectively; while zeta potential measured at pH 8.0 were 2.42 ± 0.13 mV,  

−3.01 ± 0.26 mV and −14.73 ± 1.41 mV, respectively (Table 1). The zeta potential studies showed that 

the addition of gelatin and fibrinogen increased the zeta potential of the microcapsules from 0 mV 

towards ±30 mV. This shows that addition of peptide components increased the capacity of the 

microcapsules to exist as stable individual units and not coagulate. The three materials all displayed 

significantly differing zeta potentials (GLM p ≤ 0.01). The only material that did not have a significantly 

different zeta potential at pH 8 compared to pH 4.2 was agarose (GLM p ≤ 0.01, Tukey p ≤ 0.05).  

Table 1. Summary of zeta potential of different hydrogel microcapsules. 

Capsule Component(s) pH 4.8 pH 8.0 

Agarose 
Agarose (neutral) Agarose (neutral) 

Zeta potential 1.89 ± 0.28 mV Zeta potential 2.42 ± 0.13 mV 

Agarose–gelatin 

Agarose (neutral) Agarose (neutral) 

Gelatin (+ve) Gelatin (neutral) 

Zeta potential 22.9 ± 0.36 mV Zeta potential −3.01 ± 0.26 mV 

Agarose–gelatin–fibrinogen 

Agarose (neutral) Agarose (neutral) 

Gelatin (+ve) Gelatin (neutral) 

Fibrinogen (neutral) Fibrinogen (−ve) 

Zeta potential 24.6 ± 0.95 mV Zeta potential −14.73 ± 1.41 mV 

FTIR spectroscopy was used to analyze the composition of the hydrogel microcapsules. The structural 

spectral features of gelatin such as α-helix and β-sheet can be inferred from amide I and amide II bands 

in the region of 1700–1600 and 1600–1500 cm−1, while the structural features of agarose, such as 

pyranose, can be inferred from absorption bands at 1200–970 cm−1 due to C–C and C–O stretching 

within the pyranoid ring and to C–O–C stretching of glycosidic bonds. The FTIR spectra of agarose 

microcapsules and agarose–gelatin microcapsules demonstrated the successful doping of agarose with 

gelatin, forming agarose–gelatin hybrid microcapsules (Figure S1). The presence of α-helix and β-sheet 

structures in the FTIR spectra suggested that the secondary structure of the gelatin within the microcapsules 

remained similar to that of the native macromolecules. However, FTIR results can only demonstrate 

gelatin structural integrity at the level of secondary conformation, while the structural integrity of the 

tertiary and quaternary structure of the gelatin within the agarose–gelatin microcapsules remained unclear. 

2.3. Viability of the Encapsulated Cells 

The viability of the encapsulated human fibroblast cells and HUVECs was assessed with a 

LIVE/DEAD® staining kit composed of calcein AM and ethidium homodimer (EthD-1) dyes. Calcein 
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AM measures the intracellular activities of viable cells producing a green fluorescence signal  

(ex/em ~495 nm/~515 nm), while EthD-1 passively penetrates into dead cells with disrupted plasma 

membrane and binds to nucleic acids, producing a red fluorescent signal (ex/em ~495 nm/~635 nm). 

With human fibroblasts, the encapsulation process resulted in 19.9% dead cells (at Day 0). With 

HUVECs, which are more sensitive cells, the encapsulation resulted in 30.1% dead cells. Between Days 

0 and 1, the ratio of dead fibroblasts had increased by 4.9% and from Day 1 to Day 2, the ratio of dead 

cells increased a further 7.8%. For the HUVEC cells, the ratio of dead cells increased by 26.6% between 

Day 0 and Day 1, and there was a further 2.2% increase in the ratio of dead HUVEC cells between  

Day 1 and 2 (Figure 3). There was a significant difference between cell viability of the two different cell 

types (General linear model/GLM, p ≤ 0.01). Both cell types had significant differences between time 

points (GLM, p ≤ 0.01), the dynamics of the overtime change differed between cell types. Fibroblast 

survival did not show a significant difference between Day 0 and Day 1; at Day 2 there was, however, a 

significantly smaller ratio of live cells. The HUVEC cells on the other hand, showed a significant loss 

of live cells between Day 0 and Day 1. However, between Day 1 and 2 there was no significant further loss. 

 

Figure 3. The relatively cell viability of (A) encapsulated human fibroblast cells and  

(B) encapsulated HUVECs over time, within the agarose–gelatin–fibrinogen microcapsules. 

Time points with a connecting line over their bars were not found to be significantly 

different. Bars not connected by lines were found to be significantly different (GLM using 

Tukey post hoc, p ≤ 0.05). 

The results show that our developed method can reliably encapsulate viable fibroblast and HUVECs. 

The absolute cell viability, however, is dependent upon the cell type. The encapsulation process itself 

consistently killed an initial proportion of cells. This is most likely due to the shear forces generated 

during the encapsulation. Cell death amongst the fibroblasts took 48 hours as would be expected by a 

more resilient cell type. The more delicate, damaged HUVEC cells continued to die during Day 1. By 

Day 2, the HUVECs numbers stabilized.  

2.4. Temperature Regulated Decomposition of Cell Capsules 

As previously mentioned, the temperature responsive microcapsules were designed based on our 

hypothesis that doping of agarose hydrogels that are solid from 30 to 60 °C with gelatin that melts <35 °C) 

can facilitate the decomposition of the microcapsules at a physiological temperature of 37 °C, due to the 
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gelatin melting and diffusing out of the microcapsules. A decomposition study of agarose only, agarose–gelatin 

and agarose–gelatin–fibrinogen microcapsules was performed to verify the hypothesis by quantifying 

the release of gelatin over time, for a total of 72 h when the microcapsules in PBS were incubated at  

37 °C. The released gelatin was quantified by performing a total protein assay. The decomposition 

kinetics as a function of gelatin release is shown in Figure 4A,B. Agarose only microcapsules were used 

as controls. The results obtained showed that at 37 °C, the decomposition and release of melted gelatin 

from the microcapsules was completed within the first 8 h, followed by a constant steady state observed 

from 8 to 72 h where no further release of gelatin occurred. In contrast, microcapsules incubated at 4 °C 

showed insignificant release of gelatin over the entire 72 h, confirming that the decomposition 

mechanism was triggered by the elevated, physiological temperature. Both the agarose–gelatin and 

agarose–gelatin–fibrinogen microcapsules showed a similar release profile, although the  

agarose–gelatin–fibrinogen microcapsules had a larger signal amplitude. This can be explained by the 

relatively stable encapsulation of fibrinogen within hydrogel microcapsules similar to previously 

reported [4], whereby the releasing only small amount of fibrinogen contributed to the total protein 

content. The decomposition of agarose–gelatin–fibrinogen microcapsules was further confirmed  

by observation of fluorescent-labeled gelatin released when incubated at 37 °C, while release of 

fluorescent-labeled gelatin was not observed when incubated at 4 °C. The released fluorescent-labeled 

gelatin into the buffer resulted in an overall increase of background fluorescence intensity of the PBS 

solution (Figure 4C,D). 
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Figure 4. Decomposition kinetics of hydrogel microcapsules measured by release of gelatin 

(A) at 37 °C and (B) control at 4 °C as a function of time. (C,D) Optical images showing the 

decomposition and release of fluorescent-labeled gelatin into the suspended PBS solution, 

causing an increase of background fluorescence intensity at 37 °C, but not at 4 °C. 

2.5. Delivery of Encapsulated Human Fibroblasts  

Temperature regulated cell release was detected as a decrease in the number of cells (with rounded 

morphology) found within microcapsules that corresponded to an increase in the number of released 

cells, visualized as cells that had attached and spread on the collagen substratum (Figure 5A). Control 

capsules comprising agarose alone did not result in cell release (Figure 5B) and non-encapsulated 

fibroblasts control (Figure 5C). This confirmed our hypothesis that the gelatin was needed as a 

temperature responsive agent by facilitating decomposition of the capsule at physiological temperatures. 

The captured images of the cell release process further revealed that in conjunction with the capsule 

decomposition, cell release was initiated by an increase in cell mobility as the hydrogel capsules become 

partially decomposed due to the melting and dissipation of the gelatin triggered by temperature  

(Figure 5Di). Next, the cells emerged from weakened spots within the hydrogel capsule (Figure 5Dii), 

followed by attachment and spreading on the culture substratum (Figure 5Diii–v). 

The kinetics of cell delivery defined by the percentage of encapsulated cell delivered/released from 

hydrogel capsules was measured by counting the initial number of encapsulated cells (inside hydrogel 

capsule with rounded morphology) and released cells as a function of time. For microcapsules 

comprising 1% low melting agarose, 0.5% gelatin, and 10 mg mL−1 fibrinogen, 28% of the cells were 

released within 24 h of incubation at 37 °C. By 48 h, 70% of cells were released (Figure 6). 
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Figure 5. Optical micrographs showing the release of human fibroblast cells onto collagen 

coated tissue culture dishes from microcapsules composed of (A) agarose–gelatin–fibrinogen, 

(B) agarose only negative controls and (C) non-encapsulated fibroblast controls. (D) Sequence 

of images (i) to (v) with duration of ~1.5 h showing the release of a human fibroblast cell 

from an agarose–gelatin–fibrinogen capsule onto the culture substratum. 

 

Figure 6. Kinetics of cell release from temperature responsive microcapsules comprising 

1% low melting agarose, 0.1% to 0.5% gelatin, and 10 mg·mL−1 fibrinogen, showing that 

28% of cells were released within 24 h, and 70% cells were released by 48 h. 

2.6. Delivery of HUVECs  

We have shown using human fibroblasts as a model cell line that cells can be very simply and 

effectively encapsulated within hydrogel microcapsules and subsequently released onto gelatin coated 

tissue culture plates. With a view to potential clinical application, we also showed that the methodologies 

developed were also applicable for endothelial cells, e.g., for revascularization of ischemic tissues such 

as heart muscle after a myocardial infraction, while HUVECs were more delicate and had a higher rate 

of cell death due to the encapsulation process (as shown in Figure 4). We observed that the released 

HUVECs retained their ability to migrate on the gelatin substratum to form cord-like structures that are 

precursors to the in vitro tubulogenesis (Figure 7), a behavior typical of HUVEC on gelatin [27]. This 

showed that the encapsulation did not adversely alter the behavior of the encapsulated cells, an important 

criterion for potential clinical application. 
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Figure 7. (A) Micrographs of HUVECs within agarose–gelatin–fibrinogen microcapsules at 

Day 0 and after their release. On Day 1, released HUVECs are seen attached and spread after 

their release onto gelatin-coated tissue culture plastic. By Day 2, several cells have migrated 

and have aligned themselves into a cord-like structure that is typical of HUVEC in vitro 

tubulogenesis behavior [27]. (B) Non-encapsulated HUVEVs control. 

3. Experimental Section  

3.1. Materials 

Low-gelling temperature agarose (A9045), gelatin (300 bloom from porcine skin; G2500), fibrinogen 

(F8630), mineral oil (M8410), Endothelial Cell Growth Supplement (ECGS; E2759), heparin (H3149), 

Span-80 non-ionic surfactant (S6760) and fluorescein isothiocyanate (F3651) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). DEAD/LIVE® staining kit was purchased from Molecular  

Probes-Life Technology (Stockholm, Sweden). Dulbecco’s Modified Eagle Medium (DMEM),  

M199-medium and GlutaMAX™ were purchased from Gibco®-Life Technology (Stockholm, Sweden). 

3.2. Cells  

Human fibroblasts (CRL-2522; ATCC, Germany) were cultured in DMEM containing 10% fetal 

bovine serum, 100 U·mL−1 penicillin and 100 µg·mL−1 streptomycin. Human umbilical vein endothelial 

cells (HUVECs) were cultured on gelatin-coated cell culture flask in M199-medium supplemented with 

50 µg·mL−1 ECGS, GlutaMAX™ 1X, heparin 50 µg·mL−1, 5% fetal bovine serum, 100 U mL−1 

penicillin and 100 µg·mL−1 streptomycin. HUVECs were immortalized using the human papilloma virus 

E6E7 proteins, which are believed to restore telomere length to primary human cells as previously 

published [28,29]. For this study, they were transfected with lentiviral vectors containing eGFP (LV/eGFP) 

to produce cells that fluoresced green for easy tracking after encapsulation. VSV-G-pseudotyped LVs were 

generated by transient transfection of 293T cells with three plasmids (LV plasmid construct, packaging 

plasmid pCMVΔ8.91 and the VSV-G envelope-coding plasmid pMD.G) using the TransIT-LT1 

transfection reagent (Mirus Nio LLC, Madison, WI, USA). The concentrated virus was suspended in 

serum-free DMEM medium and stored at −80 °C until use. The viral titers were then determined by flow 

cytometric analysis using a FACS Calibur (BD Biosciences). HUVECs were grown in DMEM 

supplemented with 10% FCS. They were then transduced with LV/eGFP (M.O.I. = 5) and then enriched 

by 0.5 μg·mL−1 of puromycin selection. 

3.3. Cell Encapsulation 

For encapsulation, 2.0 × 106 to 8.0 × 106 cells were re-suspended in approximately 500 μL of medium, 

DMEM for fibroblast or M199 for HUVECs, then mixed with 500 μL of the encapsulation hydrogel, 

which comprised a mixture of 2% low-gelling temperature agarose, 1% gelatin and 10 mg·mL−1 

fibrinogen in medium at 40 C. Control experiments included encapsulation of cells in agarose only, and 

empty agarose–gelatin capsules. A diagram showing our cell encapsulation system is given in Figure 8. 

In brief, cell-hydrogel mixtures were loaded into a syringe and extruded through a regulated nozzle of 

25 μm in diameter, warmed at constant temperature of 40 C. The flow rate was controlled by use of a 

syringe pump that was set at a flow rate of 0.3 mL min−1 that created a spray of microdroplets. The air 
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pressure was set at 350 mBar. The microdroplets were collected in an ice-cooled mineral oil bath 

containing 0.5% Span-80. The bath was stirred for 5 min allowing the solidification of the hydrogel 

droplets. The solution mixture containing encapsulated cells was then transferred to a 50 mL centrifugation 

tube. They were then washed by addition of 15 mL of medium followed by centrifugation at 350 r.c.f. 

at 4° for 10 min. The bottom, aqueous fraction containing the cell capsules was collected and transferred 

to a 15 mL centrifuge tube. The cell capsules were then washed another two times with medium followed 

by centrifugation (350 r.c.f., 10 min) at room temperature. Finally, the cell capsules were re-suspended 

in medium and filtered through a 100 μm cell strainer followed by a 40 μm cell strainer where the 

captured cells where used for further experiments. 

 

Figure 8. Schematic diagram illustrating the high throughput preparation of cell microcapsules 

using the Nisco VAR J30 System. 

3.4. Decomposition Study of the Temperature Responsive Hydrogel Microcapsules 

Thermal destabilization or decomposition of the temperature responsive hydrogel microcapsules was 

achieved by incubation of 5 mL of the hydrogel microcapsule suspension at 37 °C in 10 mM phosphate 

buffer (pH 7.4) over a period of 72 h. The thermal decomposition was measured as a function of melted 

gelatin released from hydrogel microcapsules at 37 °C. Control experiments were performed by 

incubating the hydrogel microcapsules at 4 °C under the same conditions. Supernatants were collected 

at various time intervals and the amounts of gelatin released into the supernatants were quantified by 

using a BCA total protein assay kit. The presence of gelatin resulted in the formation of a water-soluble 

complex with an optical density at 562 nm that was recorded with a UV-Vis spectrophotometer 

(Shimadzu UV-2450, Kyoto, Japan). 

3.5. Cell Delivery and Release from Capsules 

Optical and fluorescence microscopy images were recorded on a light microscope (Zeiss Axio 

Vert.A1, Oberkochen, Germany) connected to a CCD color digital camera (AxioCam Cm, Zeiss, 

Germany). Images of cells within their capsules were captured and analyzed using the accompanying 

imaging software (Zen2012 blue edition, Zeiss, Germany). 

Temperature regulated cell delivery and cell release was performed by placing cell capsules 

composed of microencapsulated human fibroblasts onto surface of type I collagen coated tissue culture 
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plates incubated at 37 °C. To follow the cell delivery and release behavior, the cell capsules were 

monitored by a live image capturing system with pictures taken every 15 min. Live video capture of the 

differential rates of cell escape from their microcapsules was performed using a live image capturing 

system, the JULI-Smart fluorescent cell imager (Ruskinn, ME, USA) with images taken every 15 min. 

The viability of the encapsulated cells was visualized with a LIVE/DEAD® staining kit composed of 

probing dyes of calcein AM for viable cells and ethidium homodimer (EthD-1) for dead cells. For 

statistical analysis of survival rates the general linear model (GLM) with Tukey post hoc tests were used. 

3.6. Zeta Potentials Analysis 

The zeta potential (surface charge) of the hydrogel microcapsules was measured using a Zetasizer Nano 

ZS90 (Malvern Instruments Ltd., Worcestershire, UK), based on the laser doppler micro-electrophoresis 

principle. The electrophoretic mobility (μ) was converted to the zeta-potential (ζ) by using the 

Smoluchowski relation ζ = μη/ε, where η and ε are the viscosity and permittivity of the solution, 

respectively. One milliliter of suspended hydrogel microcapsules in 10 mM phosphate buffer with 

various pH values were loaded into a zeta potential measuring cell. The measurements were performed 

at 25 °C and the mean zeta potential values were calculated by taking an average of 3 repeated measurements. 

3.7. Fourier Transform Infrared Study 

Fourier Transform Infrared (FTIR) characterization of microcapsules was performed using a 

VERTEX 70 instrument (Bruker, WA, USA) equipped with a germanium attenuated total reflectance 

(ATR) sample cell. Hydrogel microcapsule suspensions were dropped onto the surface of the ATR cell 

and FTIR spectra were recorded in the frequency region of 600–4000 cm−1 with a resolution of 4 cm−1 

and run for 100 cycles. 

4. Conclusions  

We have shown that the phase transition properties of two biomaterials—agarose and gelatin—can 

be exploited for fabrication of temperature responsive hydrogel microcapsules for the encapsulation, 

delivery and release of human fibroblasts and HUVECs. Cell release was facilitated by the dissolution 

of the thermally-sensitive biopolymer, in this case, gelatin, that was incorporated into the agarose 

capsules as a cell-release agent. At physiological temperature, its melting weakened the capsules 

allowing escape of the cells into the target environment. The cell capsules were fabricated using a robust, 

high throughput microencapsulator. The use of a microencapsulator over the conventional reverse 

emulsion system allowed for control over cell number and capsule size, which are necessary for protocol 

standardization for future clinical application. We will, however, need to augment the composition of 

the microcapsules and optimize the numbers of cells per capsule prior to in vivo animal studies, as we 

explore the potential of these cell capsules for future clinical application.  
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