Next Issue
Volume 8, December
Previous Issue
Volume 8, June
 
 

J. Funct. Biomater., Volume 8, Issue 3 (September 2017) – 21 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
8148 KiB  
Article
Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration
by Harrison T. Pajovich and Ipsita A. Banerjee
J. Funct. Biomater. 2017, 8(3), 41; https://doi.org/10.3390/jfb8030041 - 20 Sep 2017
Cited by 17 | Viewed by 7702
Abstract
Fucoidan (Fuc), a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel) were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc–Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN) derived [...] Read more.
Fucoidan (Fuc), a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel) were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc–Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN) derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc–Gel–MTN assemblies were incubated in simulated body fluid (SBF) to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp). The formed Fuc–Gel–MTN–beta–TCP/HAP scaffolds were found to display an average Young’s Modulus value of 0.32 GPa (n = 5) with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc–Gel–MTN–beta–TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering. Full article
(This article belongs to the Special Issue Biodegradable Scaffolds)
Show Figures

Graphical abstract

1444 KiB  
Article
Dental Composite Formulation Design with Bioactivity on Protein Adsorption Combined with Crack-Healing Capability
by Chen Chen, Junling Wu, Michael D. Weir, Lin Wang, Xuedong Zhou, Hockin H. K. Xu and Mary Anne S. Melo
J. Funct. Biomater. 2017, 8(3), 40; https://doi.org/10.3390/jfb8030040 - 07 Sep 2017
Cited by 12 | Viewed by 6562
Abstract
Fracture and secondary caries are the primary reasons for the failure of dental restorations. To face this omnipresent problem, we report the formulation design and synthesis of a protein-resistant dental composite composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) that also can self-repair damage and recover [...] Read more.
Fracture and secondary caries are the primary reasons for the failure of dental restorations. To face this omnipresent problem, we report the formulation design and synthesis of a protein-resistant dental composite composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) that also can self-repair damage and recover the load-bearing capability via microencapsulated triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxy ethyl-p-toluidine (DHEPT). The bioactivity of the resulting MPC-microencapsulated TEGDMA-DHEPT was evaluated on protein adsorption through early bacterial attachment. Its mechanical properties were also investigated, including self-healing assessment. Microcapsules of poly (urea-formaldehyde) (PUF) were synthesized by incorporating a TEGDMA-DHEPT healing liquid. A set of composites that contained 7.5% of MPC, 10% of microcapsules, and without MPC/microcapsules were also prepared as controls. The two distinct characteristics of strong protein repellency and load-bearing recovery were achieved by the combined strategies. The novel dual composite with a combination of protein-repellent MPC and PUF microcapsules for restoring microcracks is a promising strategy for dental restorations to address the two main challenges of fracture and secondary caries. The new dual composite formulation design has the potential to improve the longevity of dental restorations significantly. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

3238 KiB  
Article
Evaluation of Polyethylene Glycol Diacrylate-Polycaprolactone Scaffolds for Tissue Engineering Applications
by Hari Kotturi, Alaeddin Abuabed, Haris Zafar, Elaine Sawyer, Bipin Pallipparambil, Harsha Jamadagni and Morshed Khandaker
J. Funct. Biomater. 2017, 8(3), 39; https://doi.org/10.3390/jfb8030039 - 05 Sep 2017
Cited by 19 | Viewed by 7053
Abstract
Polyethylene Glycol Diacrylate (PEGDA) tissue scaffolds having a thickness higher than 1 mm and without the presence of nutrient conduit networks were shown to have limited applications in tissue engineering due to the inability of cells to adhere and migrate within the scaffold. [...] Read more.
Polyethylene Glycol Diacrylate (PEGDA) tissue scaffolds having a thickness higher than 1 mm and without the presence of nutrient conduit networks were shown to have limited applications in tissue engineering due to the inability of cells to adhere and migrate within the scaffold. The PEGDA scaffold has been coated with polycaprolactone (PCL) electrospun nanofiber (ENF) membrane on both sides to overcome these limitations, thereby creating a functional PEGDA-PCL scaffold. This study examined the physical, mechanical, and biological properties of the PEGDA and PEGDA-PCL scaffolds to determine the effect of PCL coating on PEGDA. The physical characterization of PEGDA-PCL samples demonstrated the effectiveness of combining PCL with a PEGDA scaffold to expand its applications in tissue engineering. This study also found a significant improvement of elasticity of PEGDA due to the addition of PCL layers. This study shows that PEGDA-PCL scaffolds absorb nutrients with time and can provide an ideal environment for the survival of cells. Furthermore, cell viability tests indicate that the cell adhered, proliferated, and migrated in the PEGDA-PCL scaffold. Therefore, PCL ENF coating has a positive influence on PEGDA scaffold. Full article
(This article belongs to the Special Issue Biodegradable Scaffolds)
Show Figures

Figure 1

2239 KiB  
Article
Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications
by Emily K. Brooks and Mark T. Ehrensberger
J. Funct. Biomater. 2017, 8(3), 38; https://doi.org/10.3390/jfb8030038 - 01 Sep 2017
Cited by 32 | Viewed by 7054
Abstract
Three Mg alloys, Mg–1.34% Ca–3% Zn (MCZ), Mg–1.34% Ca–3% Zn–0.2% Sr (MCZS), and Mg–2% Sr (MS), were examined to understand their bio-corrosion behavior. Electrochemical impedance spectroscopy and polarization scans were performed after 6 days of immersion in cell culture medium, and ion release [...] Read more.
Three Mg alloys, Mg–1.34% Ca–3% Zn (MCZ), Mg–1.34% Ca–3% Zn–0.2% Sr (MCZS), and Mg–2% Sr (MS), were examined to understand their bio-corrosion behavior. Electrochemical impedance spectroscopy and polarization scans were performed after 6 days of immersion in cell culture medium, and ion release and changes in media pH were tracked over a 28 day time period. Scanning electron microscopy (SEM) of alloy microstructure was performed to help interpret the results of the electrochemical testing. Results indicate that corrosion resistance of the alloys is as follows: MCZ > MCZS > MS. Full article
(This article belongs to the Special Issue Metallic Biomaterials)
Show Figures

Figure 1

562 KiB  
Brief Report
Sujiaonori-Derived Algal Biomaterials Inhibit Allergic Reaction in Allergen-Sensitized RBL-2H3 Cell Line and Improve Skin Health in Humans
by Nlandu Roger Ngatu, Mamoru Tanaka, Mitsunori Ikeda, Masataka Inoue, Sakiko Kanbara and Sayumi Nojima
J. Funct. Biomater. 2017, 8(3), 37; https://doi.org/10.3390/jfb8030037 - 29 Aug 2017
Cited by 4 | Viewed by 6093
Abstract
Sujiaonori, a river alga growing in the Kochi prefecture, Japan, contains several bioactive compounds such as sulfated polysaccharides (ulvans), ω-3 fatty acids, and vitamins. Dietary intake of this alga-based supplement has been reported to increase circulatory adiponectin, a salutary hormone that is reported [...] Read more.
Sujiaonori, a river alga growing in the Kochi prefecture, Japan, contains several bioactive compounds such as sulfated polysaccharides (ulvans), ω-3 fatty acids, and vitamins. Dietary intake of this alga-based supplement has been reported to increase circulatory adiponectin, a salutary hormone that is reported to be associated with healthy longevity and prevents a number of cardiovascular and metabolic disorders. This report highlights the anti-allergic and skin health enhancing effects of Sujiaonori-derived ulvan (Tosalvan) and supplement, respectively. RBL-2H3 cell line was used to investigate the anti-allergic effect of algal SP through the evaluation of β-hexosaminidase activity. Algal sulfated polysaccharides or SP (Tosalvan, Yoshino SP) were extracted from powders of dried alga samples provided by local food manufacturers. Report on the effect of daily dietary intake of Sujiaonori-based supplement on skin health is part of a four-week clinical investigation that, in comparison with a supplement made of 70% corn starch powder and 30% spinach powder mixture (twice 3 g daily), explore the beneficial effects of Sujiaonori algal biomaterial (SBM; 3 g taken twice daily) on cardiovascular, gastrointestinal and skin health in a sample of Japanese women. Transepidermal water loss (TEWL) was the skin health marker used in this study and was measured with the use of a corneometer. Significant reduction of β-hexosaminidase activity was observed in Tosalvan and Yoshino SP-treated cells (vs. control; p < 0.05), whereas dietary intake of SBM markedly reduced TEWL level after four weeks of supplementation, as compared to baseline TEWL (p < 0.001). Additionally, SBM improved TEWL better than the control product (p < 0.001). Findings contained in this report suggest that Sujiaonori-derived Tosalvan and Yoshino SP have anti-allergic potential and that the dietary intake of SBM has a beneficial effect on skin health. Full article
(This article belongs to the Special Issue Functional Materials for Healthcare)
Show Figures

Figure 1

1241 KiB  
Article
Mn2+-ZnSe/ZnS@SiO2 Nanoparticles for Turn-on Luminescence Thiol Detection
by Mohammad S. Yazdanparast, William R. Jeffries, Eric R. Gray and Emily J. McLaurin
J. Funct. Biomater. 2017, 8(3), 36; https://doi.org/10.3390/jfb8030036 - 23 Aug 2017
Cited by 4 | Viewed by 6701
Abstract
Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for [...] Read more.
Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for bimodal imaging. We found that these nanocrystals and silica-encapsulated nanoparticle derivatives exhibit enhanced luminescence in the presence of thiols in both organic solvent and aqueous solution. The key to using these nanocrystals as sensors is control over their surfaces. The addition of a ZnS barrier layer or shell produces more stable nanocrystals that are isolated from their surroundings, and luminescence enhancement is only observed with thinner, intermediate shells. Tunability is demonstrated with dodecanethiol and sensitivities decrease with thin, medium, and thick shells. Turn-on nanoprobe luminescence is also generated by several biological thiols, including glutathione, N-acetylcysteine, cysteine, and dithiothreitol. Nanoparticles prepared with different ZnS shell thicknesses demonstrated varying sensitivity to glutathione, which allows for the tuning of particle sensitivity without optimization. The small photoluminescence response to control amino acids and salts indicates selectivity for thiols. Preliminary magnetic measurements highlight the challenge of optimizing sensors for different imaging modalities. In this work, we assess the prospects of using these nanoparticles as luminescent turn-on thiol sensors and for MRI. Full article
(This article belongs to the Special Issue Magnetic Nanoparticle Design for Medical Diagnosis and Therapy)
Show Figures

Figure 1

2101 KiB  
Article
Correlation and Comparison of Cortical and Hippocampal Neural Progenitor Morphology and Differentiation through the Use of Micro- and Nano-Topographies
by Sharvari Sathe, Xiang Quan Chan, Jing Jin, Erik Bernitt, Hans-Günther Döbereiner and Evelyn K.F. Yim
J. Funct. Biomater. 2017, 8(3), 35; https://doi.org/10.3390/jfb8030035 - 12 Aug 2017
Cited by 6 | Viewed by 7075
Abstract
Neuronal morphology and differentiation have been extensively studied on topography. The differentiation potential of neural progenitors has been shown to be influenced by brain region, developmental stage, and time in culture. However, the neurogenecity and morphology of different neural progenitors in response to [...] Read more.
Neuronal morphology and differentiation have been extensively studied on topography. The differentiation potential of neural progenitors has been shown to be influenced by brain region, developmental stage, and time in culture. However, the neurogenecity and morphology of different neural progenitors in response to topography have not been quantitatively compared. In this study, the correlation between the morphology and differentiation of hippocampal and cortical neural progenitor cells was explored. The morphology of differentiated neural progenitors was quantified on an array of topographies. In spite of topographical contact guidance, cell morphology was observed to be under the influence of regional priming, even after differentiation. This influence of regional priming was further reflected in the correlations between the morphological properties and the differentiation efficiency of the cells. For example, neuronal differentiation efficiency of cortical neural progenitors showed a negative correlation with the number of neurites per neuron, but hippocampal neural progenitors showed a positive correlation. Correlations of morphological parameters and differentiation were further enhanced on gratings, which are known to promote neuronal differentiation. Thus, the neurogenecity and morphology of neural progenitors is highly responsive to certain topographies and is committed early on in development. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

1870 KiB  
Article
Collective Migration of Lens Epithelial Cell Induced by Differential Microscale Groove Patterns
by Chunga Kwon, Youngjun Kim and Hojeong Jeon
J. Funct. Biomater. 2017, 8(3), 34; https://doi.org/10.3390/jfb8030034 - 09 Aug 2017
Cited by 7 | Viewed by 6066
Abstract
Herein, a micro-patterned cell adhesive surface is prepared for the future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro patterns were prepared by a photolithography process. We investigated the effect of microscale topographical patterned surfaces on decreasing the collective cell migration rate. PDMS [...] Read more.
Herein, a micro-patterned cell adhesive surface is prepared for the future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro patterns were prepared by a photolithography process. We investigated the effect of microscale topographical patterned surfaces on decreasing the collective cell migration rate. PDMS substrates were prepared through soft lithography using Si molds fabricated by photolithography. Afterwards, we observed the collective cell migration of human lens epithelial cells (B-3) on various groove/ridge patterns and evaluated the migration rate to determine the pattern most effective in slowing down the cell sheet spreading speed. Microgroove patterns were variable, with widths of 3, 5, and 10 µm. After the seeding, time-lapse images were taken under controlled cell culturing conditions. Cell sheet borders were drawn in order to assess collective migration rate. Our experiments revealed that the topographical patterned surfaces could be applied to intraocular lenses to prevent or slow the development of posterior capsular opacification (PCO) by delaying the growth and spread of human lens epithelial cells. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

250 KiB  
Review
Immunological Responses to Total Hip Arthroplasty
by Kenny Man, Lin-Hua Jiang, Richard Foster and Xuebin B Yang
J. Funct. Biomater. 2017, 8(3), 33; https://doi.org/10.3390/jfb8030033 - 01 Aug 2017
Cited by 35 | Viewed by 7599
Abstract
The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their [...] Read more.
The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15–25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on. Full article
(This article belongs to the Special Issue Orthopaedic Biomaterials, Implants and Devices)
Show Figures

Graphical abstract

1347 KiB  
Review
Potential New Non-Invasive Therapy Using Artificial Oxygen Carriers for Pre-Eclampsia
by Hidenobu Ohta, Maiko Kaga, Heng Li, Hiromi Sakai, Kunihiro Okamura and Nobuo Yaegashi
J. Funct. Biomater. 2017, 8(3), 32; https://doi.org/10.3390/jfb8030032 - 30 Jul 2017
Cited by 10 | Viewed by 6490
Abstract
The molecular mechanisms of pre-eclampsia are being increasingly clarified in animals and humans. With the uncovering of these mechanisms, preventive therapy strategies using chronic infusion of adrenomedullin, vascular endothelial growth factor-121 (VEGF-121), losartan, and sildenafil have been proposed to block narrow spiral artery [...] Read more.
The molecular mechanisms of pre-eclampsia are being increasingly clarified in animals and humans. With the uncovering of these mechanisms, preventive therapy strategies using chronic infusion of adrenomedullin, vascular endothelial growth factor-121 (VEGF-121), losartan, and sildenafil have been proposed to block narrow spiral artery formation in the placenta by suppressing related possible factors for pre-eclampsia. However, although such preventive treatments have been partly successful, they have failed in ameliorating fetal growth restriction and carry the risk of possible side-effects of drugs on pregnant mothers. In this study, we attempted to develop a new symptomatic treatment for pre-eclampsia by directly rescuing placental ischemia with artificial oxygen carriers (hemoglobin vesicles: HbV) since previous data indicate that placental ischemia/hypoxia may alone be sufficient to lead to pre-eclampsia through up-regulation of sFlt-1, one of the main candidate molecules for the cause of pre-eclampsia. Using a rat model, the present study demonstrated that a simple treatment using hemoglobin vesicles for placental ischemia rescues placental and fetal hypoxia, leading to appropriate fetal growth. The present study is the first to demonstrate hemoglobin vesicles successfully decreasing maternal plasma levels of sFlt-1 and ameliorating fetal growth restriction in the pre-eclampsia rat model (p < 0.05, one-way ANOVA). In future, chronic infusion of hemoglobin vesicles could be a potential effective and noninvasive therapy for delaying or even alleviating the need for Caesarean sections in pre-eclampsia. Full article
(This article belongs to the Special Issue Blood Substitutes: Evolution and Future Applications)
Show Figures

Figure 1

12584 KiB  
Article
Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans
by Christine Knabe, Doaa Adel Khattab, Esther Kluk, Rainer Struck and Michael Stiller
J. Funct. Biomater. 2017, 8(3), 31; https://doi.org/10.3390/jfb8030031 - 29 Jul 2017
Cited by 8 | Viewed by 7516
Abstract
This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor [...] Read more.
This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA) in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1) for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I), alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP). Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc. Full article
(This article belongs to the Special Issue Biodegradable Scaffolds)
Show Figures

Figure 1

676 KiB  
Article
A Cell-Adhesive Plasma Polymerized Allylamine Coating Reduces the In Vivo Inflammatory Response Induced by Ti6Al4V Modified with Plasma Immersion Ion Implantation of Copper
by Uwe Walschus, Andreas Hoene, Maciej Patrzyk, Silke Lucke, Birgit Finke, Martin Polak, Gerold Lukowski, Rainer Bader, Carmen Zietz, Andreas Podbielski, J. Barbara Nebe and Michael Schlosser
J. Funct. Biomater. 2017, 8(3), 30; https://doi.org/10.3390/jfb8030030 - 20 Jul 2017
Cited by 14 | Viewed by 6453
Abstract
Copper (Cu) could be suitable to create anti-infective implants based on Titanium (Ti), for example by incorporating Cu into the implant surface using plasma immersion ion implantation (Cu-PIII). The cytotoxicity of Cu might be circumvented by an additional cell-adhesive plasma polymerized allylamine film [...] Read more.
Copper (Cu) could be suitable to create anti-infective implants based on Titanium (Ti), for example by incorporating Cu into the implant surface using plasma immersion ion implantation (Cu-PIII). The cytotoxicity of Cu might be circumvented by an additional cell-adhesive plasma polymerized allylamine film (PPAAm). Thus, this study aimed to examine in vivo local inflammatory reactions for Ti6Al4V implants treated with Cu-PIII (Ti-Cu), alone or with an additional PPAAm film (Ti-Cu-PPAAm), compared to untreated implants (Ti). Successful Cu-PIII and PPAAm treatment was confirmed with X-ray Photoelectron Spectroscopy. Storage of Ti-Cu and Ti-Cu-PPAAm samples in double-distilled water for five days revealed a reduction of Cu release by PPAAm. Subsequently, Ti, Ti-Cu and Ti-Cu-PPAAm samples were simultaneously implanted into the neck musculature of 24 rats. After 7, 14 and 56 days, peri-implant tissue was retrieved from 8 rats/day for morphometric immunohistochemistry of different inflammatory cells. On day 56, Ti-Cu induced significantly stronger reactions compared to Ti (tissue macrophages, antigen-presenting cells, T lymphocytes) and to Ti-Cu-PPAAm (tissue macrophages, T lymphocytes, mast cells). The response for Ti-Cu-PPAAm was comparable with Ti. In conclusion, PPAAm reduced the inflammatory reactions caused by Cu-PIII. Combining both plasma processes could be useful to create antibacterial and tissue compatible Ti-based implants. Full article
(This article belongs to the Special Issue Metallic Biomaterials)
Show Figures

Figure 1

2181 KiB  
Article
Pilot Study Using a Chitosan-Hydroxyapatite Implant for Guided Alveolar Bone Growth in Patients with Chronic Periodontitis
by Fabiola Vaca-Cornejo, Héctor Macías Reyes, Sergio H. Dueñas Jiménez, Ricardo A. Llamas Velázquez and Judith M. Dueñas Jiménez
J. Funct. Biomater. 2017, 8(3), 29; https://doi.org/10.3390/jfb8030029 - 19 Jul 2017
Cited by 9 | Viewed by 6299
Abstract
Periodontitis is an infectious and inflammatory disease associated with significant loss of alveolar crest and soft tissue attached to the teeth. Chitosan and hydroxyapatite are biomaterials used for bone tissue repair because of their biodegradability and biocompatibility in nature. The present study evaluated [...] Read more.
Periodontitis is an infectious and inflammatory disease associated with significant loss of alveolar crest and soft tissue attached to the teeth. Chitosan and hydroxyapatite are biomaterials used for bone tissue repair because of their biodegradability and biocompatibility in nature. The present study evaluated the effects of chitosan (CH) in combination with hydroxyapatite (HAP) to promote alveolar bone growth. A chitosan implant mixed with hydroxyapatite was implanted into the affected area of 9 patients suffering chronic periodontitis. Patients were evaluated through X-ray images and a millimetric slide over a one year period. The application of CH/HAP produced an average alveolar bone growth of 5.77 mm (±1.87 mm). At the onset of the study, the dental pocket exhibited a depth level (DPDL) of 8.66 mm and decreased to 3.55 mm one year after the implant. Tooth mobility grade was 2.44 mm at the onset and 0.8 mm at the end of the study with a significant difference of p < 0.001. Moreover, the bone density in the affected areas was similar to the density of the bone adjacent to it. This result was confirmed with the software implant viewer from Anne Solutions Company. In conclusion, the CH/HAP implant promoted alveolar bone growth in periodontitis patients. Full article
(This article belongs to the Special Issue Biodegradable Scaffolds)
Show Figures

Figure 1

3004 KiB  
Article
The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium
by Kathleen MacDonald, Richard B. Price and Daniel Boyd
J. Funct. Biomater. 2017, 8(3), 28; https://doi.org/10.3390/jfb8030028 - 14 Jul 2017
Cited by 3 | Viewed by 5951
Abstract
We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen [...] Read more.
We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days. Full article
(This article belongs to the Special Issue Recent Advances in Bioactive Glasses)
Show Figures

Figure 1

567 KiB  
Article
Orthodontic Metallic Lingual Brackets: The Dark Side of the Moon of Bond Failures?
by Maria Francesca Sfondrini, Paola Gandini, Andrea Gioiella, Feng Xiao Zhou and Andrea Scribante
J. Funct. Biomater. 2017, 8(3), 27; https://doi.org/10.3390/jfb8030027 - 07 Jul 2017
Cited by 7 | Viewed by 6011
Abstract
Lingual orthodontics, among both young and adult patients, increased in popularity during last years. The purposes of the present investigation were to evaluate the shear bond strength (SBS) values and Adhesive Remnant Index (ARI) scores of different lingual brackets compared with a vestibular [...] Read more.
Lingual orthodontics, among both young and adult patients, increased in popularity during last years. The purposes of the present investigation were to evaluate the shear bond strength (SBS) values and Adhesive Remnant Index (ARI) scores of different lingual brackets compared with a vestibular control bracket. One hundred bovine teeth were extracted and embedded in resin blocks. Four different lingual brackets (Idea, Leone; STB, Ormco; TTR, RMO; 2D, Forestadent) and a vestibular control bracket (Victory, 3M) were bonded to the bovine enamel surfaces and subsequently shear tested to failure utilizing a Universal Testing Machine. SBS values were measured. A microscopic evaluation was performed to obtain ARI scores. Statistical analysis was performed at a statistically significant level of p < 0.05 to determine significant differences in SBS values and ARI Scores. No statistically significant variations in SBS were reported among the different groups. Conversely, significant differences were shown in ARI scores among the various groups. Clinical relevance of the present study is that orthodontists can expect similar resistance to debonding forces from lingual appliances as with vestibular brackets. Full article
(This article belongs to the Special Issue Metallic Biomaterials)
Show Figures

Figure 1

1279 KiB  
Article
Color Stability of New Esthetic Restorative Materials: A Spectrophotometric Analysis
by Claudio Poggio, Lodovico Vialba, Anna Berardengo, Ricaldone Federico, Marco Colombo, Riccardo Beltrami and Andrea Scribante
J. Funct. Biomater. 2017, 8(3), 26; https://doi.org/10.3390/jfb8030026 - 06 Jul 2017
Cited by 21 | Viewed by 7164
Abstract
The aim of this in vitro study was to evaluate and compare the color stability of different esthetic restorative materials (one microfilled composite, one nanofilled composite, one nanoceramic composite, one microfilled hybrid composite, one microfilled hybrid composite, one nanohybrid Ormocer based composite and [...] Read more.
The aim of this in vitro study was to evaluate and compare the color stability of different esthetic restorative materials (one microfilled composite, one nanofilled composite, one nanoceramic composite, one microfilled hybrid composite, one microfilled hybrid composite, one nanohybrid Ormocer based composite and one supra-nano spherical hybrid composite) after exposure to different staining solutions (physiological saline, red wine, coffee). All materials were prepared and polymerized into silicon rings (2 mm × 6 mm × 8 mm) to obtain specimens identical in size. Thirty cylindrical specimens of each material were prepared. Specimens were immersed in staining solutions (physiological saline, coffee and red wine) over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. The Shapiro–Wilk test and ANOVA were applied to assess significant differences among restorative materials. A paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. All restorative materials showed significant color differences after immersion in coffee. Coffee caused a significant color change in all types of tested composite resins. Only Filtek Supreme XTE demonstrated a staining susceptibility to red wine; no other significant differences among the materials were demonstrated. Long-term exposure to some food dyes (coffee in particular) can significantly affect the color stability of modern esthetic restorative materials regardless of materials’ different compositions. Full article
Show Figures

Figure 1

5138 KiB  
Article
An Injectable Glass Polyalkenoate Cement Engineered for Fracture Fixation and Stabilization
by Basel A. Khader, Sean A. F. Peel and Mark R. Towler
J. Funct. Biomater. 2017, 8(3), 25; https://doi.org/10.3390/jfb8030025 - 05 Jul 2017
Cited by 12 | Viewed by 5972
Abstract
Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For [...] Read more.
Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 MPa, but set in under 2 min. Here, the authors design injectable GPCs (IGPCs) based on zinc-containing, Al-free silicate compositions containing GeO2, substituted for ZnO at 3% increments through the series. The setting reactions, injectability and mechanical properties of these GPCs were evaluated using both a hand-mix (h) technique, using a spatula for sample preparation and application and an injection (i) technique, using a 16-gauge needle, post mixing, for application. GPCs ability to act as a carrier for bovine serum albumin (BSA) was also evaluated. Germanium (Ge) and BSA containing IGPCs were produced and reported to have working times between 26 and 44 min and setting times between 37 and 55 min; the extended handling properties being as a result of less Ge. The incorporation of BSA into the cement had no effect on the handling and mechanical properties, but the latter were found to have increased compression strength with the addition of Ge from between 27 and 37 MPa after 30 days maturation. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Graphical abstract

1349 KiB  
Review
Biocompatibility of HbV: Liposome-Encapsulated Hemoglobin Molecules-Liposome Effects on Immune Function
by Hiroshi Azuma, Mitsuhiro Fujihara and Hiromi Sakai
J. Funct. Biomater. 2017, 8(3), 24; https://doi.org/10.3390/jfb8030024 - 28 Jun 2017
Cited by 12 | Viewed by 6166
Abstract
Hemoglobin vesicles (HbVs) are oxygen carriers consisting of Hb molecules and liposome in which human hemoglobin (Hb) molecules are encapsulated. Investigations of HbV biocompatibility have shown that HbVs have no significant effect on either the quality or quantity of blood components such as [...] Read more.
Hemoglobin vesicles (HbVs) are oxygen carriers consisting of Hb molecules and liposome in which human hemoglobin (Hb) molecules are encapsulated. Investigations of HbV biocompatibility have shown that HbVs have no significant effect on either the quality or quantity of blood components such as RBC, WBC, platelets, complements, or coagulation factors, reflecting its excellent biocompatibility. However, their effects on the immune system remain to be evaluated. HbVs might affect the function of macrophages because they accumulate in the reticuloendothelial system. Results show that splenic T cell proliferation is suppressed after injection of not only HbV but also empty liposome into rat, and show that macrophages that internalized liposomal particles are responsible for the suppression. However, the effect is transient. Antibody production is entirely unaffected. Further investigation revealed that those macrophages were similar to myeloid-derived suppressor cells (MDSCs) in terms of morphology, cell surface markers, and the immune-suppression mechanism. Considering that MDSCs appear in various pathological conditions, the appearance of MDSC-like cells might reflect the physiological immune system response against the substantial burden of liposomal microparticles. Therefore, despite the possible induction of immunosuppressive cells, HbVs are an acceptable and promising candidate for use as a blood substitute in a clinical setting. Full article
(This article belongs to the Special Issue Blood Substitutes: Evolution and Future Applications)
Show Figures

Figure 1

3344 KiB  
Article
Synergy of Iron Chelators and Therapeutic Peptide Sequences Delivered via a Magnetic Nanocarrier
by Gayani S. Abayaweera, Hongwang Wang, Tej B. Shrestha, Jing Yu, Kyle Angle, Prem Thapa, Aruni P. Malalasekera, Leila Maurmann, Deryl L. Troyer and Stefan H. Bossmann
J. Funct. Biomater. 2017, 8(3), 23; https://doi.org/10.3390/jfb8030023 - 26 Jun 2017
Cited by 5 | Viewed by 6041
Abstract
Here, we report the synthesis, characterization, and efficacy study of Fe/Fe3O4-nanoparticles that were co-labeled with a tumor-homing and membrane-disrupting oligopeptide and the iron-chelator Dp44mT, which belongs to the group of the thiosemicarbazones. Dp44mT and the peptide sequence PLFAERL(D [...] Read more.
Here, we report the synthesis, characterization, and efficacy study of Fe/Fe3O4-nanoparticles that were co-labeled with a tumor-homing and membrane-disrupting oligopeptide and the iron-chelator Dp44mT, which belongs to the group of the thiosemicarbazones. Dp44mT and the peptide sequence PLFAERL(D[KLAKLAKKLAKLAK])CGKRK were tethered to the surface of Fe/Fe3O4 core/shell nanoparticles by utilizing dopamine-anchors. The 26-mer contains two important sequences, which are the tumor targeting peptide CGKRK, and D[KLAKLAK]2, known to disrupt the mitochondrial cell walls and to initiate programmed cell death (apoptosis). It is noteworthy that Fe/Fe3O4 nanoparticles can also be used for MRI imaging purposes in live mammals. In a first step of this endeavor, the efficacy of this nanoplatform has been tested on the highly metastatic 4T1 breast cancer cell line. At the optimal ratio of PLFAERD[KLAKLAK]2CGKRK to Dp44mT of 1 to 3.2 at the surface of the dopamine-coated Fe/Fe3O4-nanocarrier, the IC50 value after 24 h of incubation was found to be 2.2 times lower for murine breast cancer cells (4T1) than for a murine fibroblast cell line used as control. Based on these encouraging results, the reported approach has the potential of leading to a new generation of nanoplatforms for cancer treatment with considerably enhanced selectivity towards tumor cells. Full article
(This article belongs to the Special Issue Magnetic Nanoparticle Design for Medical Diagnosis and Therapy)
Show Figures

Graphical abstract

3888 KiB  
Article
Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants
by Charanpreet Singh and Xungai Wang
J. Funct. Biomater. 2017, 8(3), 22; https://doi.org/10.3390/jfb8030022 - 23 Jun 2017
Cited by 4 | Viewed by 6846
Abstract
Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s [...] Read more.
Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s for inhibiting pathological calcification in polyurethane (PU) implants. The hypothesis of using MIs as anti-calcification agents was based on the natural calcium-antagonist role of Mg2+ ions in human body, and the anti-calcification effect of Fe3+ ions in bio-prosthetic heart valves has previously been confirmed. In vitro calcification results indicated that a protective covering mesh of MI-doped PU can prevent calcification by preventing hydroxyapatite crystal growth. However, microstructure and mechanical characterisation revealed oxidative degradation effects from Fe3+ ions on the mechanical properties of the PU matrix. Therefore, from both a mechanical and anti-calcification effects point of view, Mg2+ ions are more promising candidates than Fe3+ ions. The in vitro MI release experiments demonstrated that PU microphase separation and the structural design of PU-MI matrices were important determinants of release kinetics. Increased phase separation in doped PU assisted in consistent long-term release of dissolved MIs from both hard and soft segments of the PU. The use of a composite-sandwich mesh design prevented an initial burst release which improved the late (>20 days) release rate of MIs from the matrix. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

2169 KiB  
Article
Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia
by Brogan T. McWilliams, Hongwang Wang, Valerie J. Binns, Sergio Curto, Stefan H. Bossmann and Punit Prakash
J. Funct. Biomater. 2017, 8(3), 21; https://doi.org/10.3390/jfb8030021 - 22 Jun 2017
Cited by 16 | Viewed by 7000
Abstract
The objective of this study was to evaluate microwave heating enhancements offered by iron/iron oxide nanoparticles dispersed within tissue-mimicking media for improving efficacy of microwave thermal therapy. The following dopamine-coated magnetic nanoparticles (MNPs) were considered: 10 and 20 nm diameter spherical core/shell Fe/Fe [...] Read more.
The objective of this study was to evaluate microwave heating enhancements offered by iron/iron oxide nanoparticles dispersed within tissue-mimicking media for improving efficacy of microwave thermal therapy. The following dopamine-coated magnetic nanoparticles (MNPs) were considered: 10 and 20 nm diameter spherical core/shell Fe/Fe3O4, 20 nm edge-length cubic Fe3O4, and 45 nm edge-length/10 nm height hexagonal Fe3O4. Microwave heating enhancements were experimentally measured with MNPs dissolved in an agar phantom, placed within a rectangular waveguide. Effects of MNP concentration (2.5–20 mg/mL) and microwave frequency (2.0, 2.45 and 2.6 GHz) were evaluated. Further tests with 10 and 20 nm diameter spherical MNPs dispersed within a two-compartment tissue-mimicking phantom were performed with an interstitial dipole antenna radiating 15 W power at 2.45 GHz. Microwave heating of 5 mg/mL MNP-agar phantom mixtures with 10 and 20 nm spherical, and hexagonal MNPs in a waveguide yielded heating rates of 0.78 ± 0.02 °C/s, 0.72 ± 0.01 °C/s and 0.51 ± 0.03 °C/s, respectively, compared to 0.5 ± 0.1 °C/s for control. Greater heating enhancements were observed at 2.0 GHz compared to 2.45 and 2.6 GHz. Heating experiments in two-compartment phantoms with an interstitial dipole antenna demonstrated potential for extending the radial extent of therapeutic heating with 10 and 20 nm diameter spherical MNPs, compared to homogeneous phantoms (i.e., without MNPs). Of the MNPs considered in this study, spherical Fe/Fe3O4 nanoparticles offer the greatest heating enhancement when exposed to microwave radiation. These nanoparticles show strong potential for enhancing the rate of heating and radial extent of heating during microwave hyperthermia and ablation procedures. Full article
(This article belongs to the Special Issue Magnetic Nanoparticle Design for Medical Diagnosis and Therapy)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop