

Article

Microwave-Assisted Synthesis of Chalcopyrite/Silver Phosphate Composites with Enhanced Degradation of Rhodamine B under Photo-Fenton Process

Shun-An Chang¹, Po-Yu Wen¹, Tsunghsueh Wu^{2,*} and Yang-Wei Lin^{1,*}

- ¹ Department of Chemistry, National Changhua University of Education, 1 Jin-De road, Changhua City 50007, Taiwan; jack5566yes@gmail.com (S.-A.C.); bba02123@gmail.com (P.-Y.W.)
- ² Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099, USA
- * Correspondence: wut@uwplatt.edu (T.W.); linywjerry@cc.ncue.edu.tw (Y.-W.L.); Tel.: +1-608-342-6018 (T.W.); +886-4-7232105-3553 (Y.-W.L.)

Received: 23 October 2020; Accepted: 18 November 2020; Published: 20 November 2020

Abstract: A new composite by coupling chalcopyrite (CuFeS₂) with silver phosphate (Ag₃PO₄) (CuFeS₂/Ag₃PO₄) was proposed by using a cyclic microwave heating method. The prepared composites were characterized by scanning and transmission electron microscopy and X-ray diffraction, Fourier-transform infrared, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Under optimum conditions and 2.5 W irradiation (wavelength length > 420 nm, power density = 0.38 W cm^{-2}), 96% of rhodamine B (RhB) was degraded by CuFeS₂/Ag₃PO₄ within a 1 min photo-Fenton reaction, better than the performance of Ag_3PO_4 (25% degradation within 10 min), CuFeS₂ (87.7% degradation within 1 min), and mechanically mixed CuFeS₂/Ag₃PO₄ catalyst. RhB degradation mainly depended on the amount of hydroxyl radicals generated from the Fenton reaction. The degradation mechanism of CuFeS₂/Ag₃PO₄ from the photo-Fenton reaction was deduced using a free radical trapping experiment, the chemical reaction of coumarin, and photocurrent and luminescence response. The incorporation of $CuFeS_2$ in Ag_3PO_4 enhanced the charge separation of Ag₃PO₄ and reduced Ag₃PO₄ photocorrosion as the photogenerated electrons on Ag₃PO₄ were transferred to regenerate Cu²⁺/Fe³⁺ ions produced from the Fenton reaction to Cu⁺/Fe²⁺ ions, thus simultaneously maintaining the CuFeS₂ intact. This demonstrates the synergistic effect on material stability. However, hydroxyl radicals were produced by both the photogenerated holes of Ag₃PO₄ and the Fenton reaction of CuFeS₂ as another synergistic effect in catalysis. Notably, the degradation performance and the reusability of CuFeS₂/Ag₃PO₄ were promoted. The practical applications of this new material were demonstrated from the effective performance of CuFeS₂/Ag₃PO₄ composites in degrading various dyestuffs (90-98.9% degradation within 10 min) and dyes in environmental water samples (tap water, river water, pond water, seawater, treated wastewater) through enhanced the Fenton reaction under sunlight irradiation.

Keywords: CuFeS₂/Ag₃PO₄; Fenton process; degradation; sunlight; environmental water samples

1. Introduction

Recently, concerns have been raised worldwide toward the harm caused by residual organic pollutants in surface water and groundwater, threatening ecosystems and aquatic species [1–3]. Among the many sources of water pollution, wastewater from the printing and dyeing industry is a major concern. The decolorization and degradation of most chromophores in dyes are difficult because of their stable aromatic structures, leading to prolonged toxic effects and environmental hazards [4–6]. Furthermore, dyes can absorb sunlight and reduce water clarity, preventing photosynthesis in

aquatic plants, decreasing dissolved oxygen in water, affecting microbial diversity, and disrupting the self-purification capacity of water [7]. The removal of these deleterious and hazardous pollutants from industrial wastewater has become an urgent environmental need in the world [8].

Many studies have evaluated the removal of organic dyes by using photocatalytic degradation, ideally using sunlight, with the vision of sustainable water treatment. TiO₂ is the most widely used photocatalytic semiconductor because of its nontoxic and stable nature, with a relatively low cost and abundant production resulting from a mature manufacturing process [9,10]. However, its absorption and photocatalytic activity depends entirely on ultraviolet light, which restricts its application in large-scale wastewater treatment [11–13]. Studies have been attempting to identify efficient sunlight-responsive photocatalysts, and Ag_3PO_4 , with a quantum efficiency of >90%, is considered an excellent candidate that is sunlight responsive [14–16]. However, it experiences considerable photocorrosion during photolysis. In addition to the photocatalytic method, Cu/Fe-bearing solids such as chalcopyrite (CuFeS₂) have been widely used as catalysts in advanced oxidation processes (AOPs) for wastewater treatment [17–21]. In general, AOPs are based on Fenton's chemistry, which utilizes hydroxyl radicals produced from the Fenton reaction between H₂O₂ and Cu⁺/Fe²⁺ ions to degrade organic dyes (Equations (1)–(6)) [22,23]. However, the reusability of CuFeS₂ is a challenge due to its dissolution during water treatment and the slow kinetics of Fe²⁺ regeneration:

$$CuFeS_{2}(s) + 8H_{2}O_{2} \rightarrow Fe^{3+} + Cu^{2+} + 2SO_{4}^{2-} + 8H_{2}O + 2H^{+}$$
(1)

$$CuFeS_{2}(s) + 16Fe^{3+} + 8H_{2}O \rightarrow 17Fe^{2+} + Cu^{2+} + 2SO_{4}^{2-} + 16H^{+}$$
(2)

 $CuFeS_2(s) + 4O_2 \rightarrow Fe^{2+} + Cu^{2+} + 2SO_4^{2-}$ (3)

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$
(4)

$$Cu^{2+} + H_2O_2 \rightarrow Cu^+ + O_2^{-} + 2H^+$$
 (5)

$$Cu^{+} + H_2O_2 \rightarrow Cu^{2+} + OH^{-} + OH^{-}$$
(6)

$$Fe^{3+} + H_2O \rightarrow Fe(OH)^{2+} + H^+$$
 (7)

$$Fe(OH)^{2+} + h\nu \to Fe^{2+} + OH$$
 (8)

To address CuFeS₂ reusability, attempts have been made to regenerate the Fenton catalysts with UV and/or visible-light irradiation, known as the photo-Fenton process [19,24,25]. Under UV and/or visible-light irradiation, Fe³⁺ complexes are formed from the Fenton reaction (Equation (7)) to produce both Fe²⁺ and hydroxyl radicals (Equation (8)). The photogenerated Fe²⁺ ions can catalyze the Fenton reaction to form Fe³⁺, thus demonstrating the recyclability of Fenton catalysts (Equation (4)). For instance, Dotto et al. demonstrated that the prepared citrate–CuFeS₂ materials possessed 90% catalytic efficiency for bisphenol A (BPA) degradation with a 15 min photo-Fenton process for its rapid generation of hydroxyl radicals and efficient H_2O_2 consumption [24]. Dotto et al. also reported that the catalytic efficiency and stability was sustained after four consecutive photoregeneration cycles. However, the preparation of the novel CuFeS₂ samples requires a high power and expensive microwave reactor (1400 W, 200 °C, 7 min). In another simpler attempt in material preparation, Pastrana-Martinez et al. used the mineral of CuFeS₂ mined from Jendouba, Tunisia, to catalyze tyrosol (TY) degradation by using a UV light-emitting diode (LED)-assisted photo-Fenton reaction [19]. Higher total organic carbon (TOC) conversions (85.0%) and lower iron leaching (0.89 mg·L⁻¹) were attained when the purified CuFeS₂ samples were used in the photo-Fenton-like process within 60 min (0.50 mM TY at stoichiometric H₂O₂ concentrations). However, UV light irradiation is not considered sustainable because it requires a high energy input. The limitations of the methods used in all these studies underline the need to improve the visible-light absorption ability and efficiently boost the degradation performance and stability of CuFeS₂. To our knowledge, CuFeS₂ coupled with other semiconductors has not been examined in the Fenton process under visible-light irradiation.

Here, we synthesized CuFeS₂ coupled with Ag_3PO_4 (CuFeS₂/Ag₃PO₄) through cyclic microwave heating to address the challenges in material preparation, the stability of materials, and degradation performance. The breakthrough in our synthesis is that CuFeS₂/Ag₃PO₄ could be prepared using a domestic 336 W microwave oven within 12 min. Our previous report indicated that Ag₃PO₄ is an efficient photocatalyst responsive to visible light and sunlight, so incorporating Ag₃PO₄ into the CuFeS₂ Fenton reaction system might greatly increase the visible-light absorption while improving the regeneration of Fe²⁺/Cu⁺ ions. Here, we used CuFeS₂/Ag₃PO₄ composites for the degradation of organic dyes (rhodamine B (RhB), methyl red (MR), rhodamine 6G (R6G), fluorescein, and propidium iodide (PI)). We also proposed that the degradation mechanism of CuFeS₂/Ag₃PO₄ and the reactive species and successfully demonstrated the regeneration of the CuFeS₂ catalyst and the application of CuFeS₂/Ag₃PO₄ in the treatment of environmental samples.

2. Materials and Methods

2.1. Preparation of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) and were of analytical grade and thus used without further purification. First, 0.212 g of AgNO₃ was added to 20 mL of deionized water (18.2 M Ω ·cm) with stirring. Then, a colorless Ag(NH₃)₂⁺ ion solution was produced by adding 6.2 mL of 14 M NH₃ solution dropwise into the AgNO₃ solution. After 30 min stirring, 3.5 mL of H₃PO₄ (14.6 M) was used to neutralize the mixed solution to pH 7.0, and the solution was stirred again for 30 min in the dark. The yellow precipitate was filtered and subsequently rinsed with copies of deionized water and anhydrous ethanol. Finally, the as-synthesized Ag₃PO₄ was dried at 55 °C for 12 h [26].

CuFeS₂ was prepared using the cyclic microwave heating method [27]. First, 19.7 mg of CuCl, 25.35 mg of FeCl₃ and 48.46 mg of L-cysteine were added to 20 mL of deionized water with stirring for 15 min. Then, the mixed solution underwent 10 cycles of 36 s heating and a 36 s pause in a domestic microwave oven (power: 336 W). After the black precipitate was cooled to room temperature, it was rinsed with deionized water and anhydrous ethanol. Finally, the as-synthesized CuFeS₂ was dried at 55 °C for 12 h. Cu₂S and Fe₂S₃ were prepared following similar method without adding FeCl₃ and CuCl precursor, respectively. The CuFeS₂/Ag₃PO₄ with a molar ratio of 2.5:1 was prepared as followed: 20 mg of Ag₃PO₄, 19.7 mg of CuCl, 25.35 mg of FeCl₃, and 48.46 mg of L-cysteine were added to 20 mL of deionized water with stirring for 15 min. Then, the mixed solution underwent 10 cycles of 36 s heating and a 36 s pause in a domestic microwave oven (power: 336 W). After the black precipitate was cooled to room temperature, it was rinsed with deionized water and anhydrous ethanol. Finally, the prepared CuFeS₂/Ag₃PO₄ was dried at 55 °C for 12 h and the weight of CuFeS₂/Ag₃PO₄ was 41.7 mg. Thus, the weight percentage of CuFeS₂ in CuFeS₂/Ag₃PO₄ was 52%. In this condition, we estimated the weight of CuFeS₂ and Ag₃PO₄ in the CuFeS₂/Ag₃PO₄ was 21.7 mg and 20 mg, respectively. Therefore, the molar ratio of CuFeS₂/Ag₃PO₄ was calculated to be 2.5:1 [27]. In addition, the preparation of CuFeS₂/Ag₃PO₄ with different molar ratios (0.4:1 and 1:1) followed the same method and was prepared by decreasing the adding amounts of CuCl and FeCl₃ precursors at 20 mg Ag₃PO₄.

2.2. Characterization of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

The morphological and compositional characteristics of all as-prepared samples were observed with scanning electron microscopy (SEM) on a HITACHI S-4300 (Hitachi, Tokyo, Japan) and transmission electron microscopy (TEM) on a 1200EX II (JEOL, Tokyo, Japan) equipped with a QUANTAX Annular XFlash QUAD FQ5060 (Bruker Nano, Berlin, Germany). The crystallographic texture of the samples was measured through powder X-ray diffraction (XRD) on SMART APEX II (Bruker AXS, Billerica, MA, USA) using Cu K α radiation (λ = 1.5406 Å). Fourier-transform infrared (FT-IR) spectra were obtained using an Agilent Cary 600 FT-IR spectrometer (Agilent Technologies, Santa Clara, CA, USA). An Evolution 2000UV–Vis spectrophotometer (Thermo Fisher Scientific Inc., Madison, WI, USA) with integrating spheres and reflectance standard material BaSO₄ was applied to obtain the UV–Vis diffuse reflectance spectroscopy (DRS). The binding energy of elements was determined through X-ray photoelectron spectroscopy (XPS) on a VG ESCA210 (VG Scientific, West Sussex, UK).

2.3. Degradation Procedure by Using Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

RhB degradation was used to assess the degradation activity of the prepared samples. The photoreactor PCX-50C (Beijing Perfectlight Technology Co. Ltd., Beijing, China) was equipped with a low-power white LED irradiation (2.5 W, power density = $0.38 \text{ W} \cdot \text{cm}^{-2}$, wavelength > 420 nm). For the photo-Fenton reaction, 20 mg of the prepared catalyst samples was added into the RhB solution (20 ppm, 50 mL), and the solution was stirred in the dark for 30 min. Before 10 min, to turn the light on and add H_2O_2 , we measured the absorbance to check the adsorption ability of the prepared samples. Subsequently, the LED lamp was turned on and 200 μ L of H₂O₂ (35%) was added. After given time intervals, 1 mL of suspension was taken, quenched immediately by adding 0.1 mM NaN₃ and filtered by a 0.22 µm syringe filter organic membrane to remove the catalyst sample. The concentration of RhB was measured using a Synergy H1 hybrid multimode microplate reader (BioTek Instruments, Winooski, VT, USA) at its characteristic absorption peak of 550 nm. Similar processes were performed for other dyestuffs (MR, R6G, fluorescein, and PI). The RhB degradation (20 ppm, 50 mL) for the photocatalytic and Fenton reactions was performed using the same protocols (20 mg catalysts) as mentioned above, but without the addition of H₂O₂ and LED light irradiation, respectively. After the experiment, TOC concentration was determined on an Elementar Acquray TOC analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany) to evaluate the extent of mineralization.

2.4. Evaluation of Charge Separation and Recombination Rate of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

The charge separation efficiency and recombination rate of electron–hole pairs for the prepared composites were evaluated according to our earlier reports [28–30]. Photocurrent was measured to evaluate the charge separation efficiency of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites under constant white LED irradiation at 60 s intervals. To determine the recombination rate of electron–hole pairs, the photoluminescence (PL) spectra of samples were obtained using $\lambda_{ex} = 250$ nm with a Varian Cary Eclipse fluorescence spectrophotometer (Agilent Technologies, Santa Clara, CA, USA).

2.5. Free Radical Trapping Experiment of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

To investigate the active species generated during RhB degradation over Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄, the trapping experiment was conducted using ethylenediaminetetraacetate (EDTA), tert-butanol (t-BuOH), and p-benzoquinone (BQ) (each 1 mM) as the capturing agent for holes, hydroxyl radicals, and oxygen radicals, respectively. The implemented trapping experimental procedure was identical to the steps mentioned in the degradation section except for the capturing agent being added at each run.

3. Results and Discussion

3.1. Morphology and Crystal Phase of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

The morphology of the prepared Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites was analyzed through SEM and TEM (Figure 1). As shown in Figure 1, Ag₃PO₄ appears as tetrapod-like structures, with its four cylindrical arms being approximately 7–10 μ m in length and with its average diameter being 2–3 μ m. The CuFeS₂ crystals appear irregular and sheet-like with sizes of 0.2–2 μ m. As for the prepared Ag₃PO₄/CuFeS₂ composites, CuFeS₂ sheets were randomly deposited on the Ag₃PO₄ surface, and this deposition has no effect on the morphology and chemical composition of the Ag₃PO₄ particles. The corresponding magnified TEM image revealed clear lattice fringes with a d spacing of 0.249 and 0.312 nm, which are in good agreement with the (210) and (112) lattice planes of Ag₃PO₄ and CuFeS₂, respectively. The energy dispersive spectrometer (EDS) spectra of the prepared Ag₃PO₄,

 $CuFeS_{2,}$ and $CuFeS_2/Ag_3PO_4$ composites (Figure 2) confirm the presence of Ag, P, O, Cu, Fe, and S elements in their crystals accordingly. In addition, we also found C element in the presence of $CuFeS_2$ and $CuFeS_2/Ag_3PO_4$ composites. This is because we used L-cysteine precursor in the preparation of $CuFeS_2$ and $CuFeS_2/Ag_3PO_4$ composites.

Figure 1. SEM and TEM images of (A) Ag₃PO₄; (B) CuFeS₂; and (C) CuFeS₂/Ag₃PO₄ composites.

The XRD spectra of the prepared Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites are displayed in Figure 3. From the black curve of Ag₃PO₄, the diffraction peaks at 21.5°, 30.1°, 33.4°, 36.7°, 42.5°, 48.7°, 53.6°, 55.3°, 57.5°, 62.4°, 65.1°, 70.7°, 72.2°, 74.6°, and 78.2° were identified and assigned to the (110), (200), (210), (211), (220), (310), (222), (320), (321), (400), (330), (420), (421), (332), and (442) faces of the cubic Ag₃PO₄, respectively (JCPDS No. 06-0505) [26]. The XRD pattern of CuFeS₂ is presented in the red curve of Figure 3, and the diffraction peaks at 28.9°, 46.4°, and 56.2° corresponded well to the (112), (220), and (312) faces of the tetragonal chalcopyrite CuFeS₂, respectively (JCPDS No. 01-0842) [27]. As a confirmation of good composite quality, the diffraction patterns of the prepared CuFeS₂/Ag₃PO₄ composites match with the patterns of Ag₃PO₄ and CuFeS₂. According to Scherer's equation, the average crystallite size of Ag₃PO₄ and CuFeS₂ was 55.8 and 43.5 nm, respectively. In addition, they did not change in the CuFeS₂/Ag₃PO₄ composites (Ag₃PO₄: 57.0 nm, CuFeS₂: 46.5 nm).

Figure 2. EDS spectra of (A) Ag₃PO₄; (B) CuFeS₂; and (C) CuFeS₂/Ag₃PO₄ composites.

Figure 3. XRD patterns of different samples: Ag₃PO₄ (black); CuFeS₂ (red); and CuFeS₂/Ag₃PO₄ composites (blue).

3.2. Optical Property of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

The FT-IR spectra of the prepared Ag_3PO_4 , $CuFeS_2$, and $CuFeS_2/Ag_3PO_4$ composites are shown in Figure 4. The IR spectrum for Ag_3PO_4 shows four major peaks located at 560, 1012, 1670, and 3200 cm⁻¹, which corresponded to the PO_4^{3-} stretching and O–H bending vibration, respectively.

The O–H bending in the prepared Ag_3PO_4 may be attributed from Ag_3PO_4 adsorbed water from the air. For CuFeS₂, it shows three peaks located at 1045, 1640, and 3400 cm⁻¹, which corresponded to the C=S stretching and O–H bending vibration, respectively. The O–H bending in the prepared CuFeS₂ may be attributed from CuFeS₂ adsorbed water from the air. The C=S stretching in the prepared CuFeS₂ may be attributed from the L-cysteine precursor. In addition, the EDS spectra for CuFeS₂ and CuFeS₂/Ag₃PO₄ composites also confirmed the presence of C element. For CuFeS₂/Ag₃PO₄ composites, the spectrum exhibited PO₄^{3–}, C=S, and O–H vibration peaks in the present on their crystals.

Figure 4. FT-IR spectra of different samples: Ag₃PO₄ (black); CuFeS₂ (red); and CuFeS₂/Ag₃PO₄ composites (blue).

To study the optical absorption characteristics of the prepared Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites, UV–Vis DRS was performed, as shown in Figure 5. The absorption band-edge for Ag₃PO₄, CuFeS₂ and CuFeS₂/Ag₃PO₄ is at approximately 525, 427, and 487 nm, respectively. The bandgap energy (Eg) of Ag₃PO₄ is theoretically estimated to be 2.38 eV using the equation $\alpha h\nu = A(h\nu - Eg)^{n/2}$ (n = 1 for Ag₃PO₄). Furthermore, the band-edge potentials for the conduction band (CB) and valence band (VB) can be calculated as $E_{VB} = \chi - E_H + 0.5$ Eg and $E_{CB} = E_{VB} - Eg$, respectively; here, χ is the electronegativity of the constituent atom (5.96 eV for Ag₃PO₄) and E_H is the energy of the free electrons relative to the standard hydrogen reduction potential (approximately 4.5 eV). Thus, E_{VB} and E_{CB} of Ag₃PO₄ can be estimated to be 2.65 and 0.27 eV, respectively.

As another quality assurance method, the XPS analysis of the prepared Ag₃PO₄, CuFeS₂, CuFeS₂/Ag₃PO₄ composites (Figures 6–8, full scan) revealed that the prepared composites contained their own elements: Ag, P, O, Cu, Fe, and S. High-resolution XPS revealed Ag_{3d}, P_{2p}, O_{1s}, Cu_{2p}, Fe_{2p}, and S_{2p} in CuFeS₂/Ag₃PO₄ composites (Figure 8B–G, respectively). In Figure 8B, the binding energies are located at 367.8 and 373.3 eV, corresponding to Ag⁺ 3d_{5/2} and Ag⁺ 3d_{3/2}, respectively. Furthermore, the peak at 132.9 eV correspond to P⁵⁺ 2p (Figure 8C). O 1s spectra can be deconvoluted into two component peaks of 531.8 and 530.7 eV (Figure 8D). The peak centered at 530.7 eV associated with the O₂ in Ag₃PO₄. The other peak centered at 531.8 eV the presence of –OH group or a water molecule absorbed on the surface of the prepared composites. In Figure 8E, the peaks at 932.3, 934.2, 952.2, and 953.8 eV corresponded to Cu⁺ 2p_{3/2}, Cu²⁺ 2p_{3/2}, Cu⁺ 2p_{1/2}, and Cu²⁺ 2p_{1/2}, respectively. The peaks at 712.5, 718.2, 722.5, and 731.8 eV corresponded to Fe²⁺ 2p_{3/2}, Fe³⁺ 2p_{3/2}, Fe²⁺ 2p_{1/2} and

Figure 5. (**A**) UV–Vis diffuse reflectance spectroscopy (DRS) spectra and (**B**) Tauc's plots of different samples: Ag₃PO₄ (black), CuFeS₂ (red), and CuFeS₂/Ag₃PO₄ composites (blue).

Figure 6. XPS spectra of Ag_3PO_4 : (**A**) full scan; (**B**) Ag_{3d} ; (**C**) P_{2p} ; and (**D**) O_{1s} . Deconvolution of XPS peak for O_{1s} element represented in different color line.

Figure 7. XPS spectra of CuFeS₂: (**A**) full scan; (**B**) Cu_{2p}; (**C**) Fe_{2p}; and (**D**) S_{2p}. Deconvolution of XPS peaks for Cu_{2p}, Fe_{2p} and S_{2p} elements represented in different color line.

Figure 8. XPS spectra of CuFeS₂/Ag₃PO₄: (**A**) full scan; (**B**) Ag_{3d}; (**C**) P_{2p}; (**D**) O_{1s}; (**E**) Cu_{2p}; (**F**) Fe_{2p}; and (**G**) S_{2p}. Deconvolution of XPS peaks for O_{1s}, Cu_{2p}, Fe_{2p} and S_{2p} elements represented in different color line.

3.3. Degradation Performance of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

To evaluate the degradation activity of the prepared Ag_3PO_4 , $CuFeS_2$, and $CuFeS_2/Ag_3PO_4$ composites, RhB was selected as the target pollutant. Figure 9 shows the concentration ratio (C/C_0 , where C_0 and C represented the RhB concentration at the initial condition and at time t, respectively) of RhB by using Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites under three different degradation conditions: photocatalytic, Fenton, and photo-Fenton. First, under 30 min LED light irradiation (Figure 9A), the degradation efficiencies of RhB in CuFeS₂ and CuFeS₂/Ag₃PO₄ are only 8.9% and 16.9%, respectively, whereas the efficiency reaches 39.5% in the presence of Ag₃PO₄. This suggests that the photocatalytic performance of Ag_3PO_4 is better than that of $CuFeS_2$ and $CuFeS_2/Ag_3PO_4$, attributable to the reactive radical formation from the effective photoinduced charge separation for RhB degradation. Nevertheless, these reactive radicals must be determined in a later experiment. CuFeS₂/Ag₃PO₄ is responsive to visible light caused by its diluted amount of Ag₃PO₄, resulting in a weaker degradation performance than that of pure Ag_3PO_4 . Second, the degradation efficiency of the prepared Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites through the Fenton reaction in the dark was studied (Figure 9B). The RhB concentration barely changes in the presence of Ag₃PO₄, but the RhB degradation efficiency reaches 76.1% and 93.7% within 1 min in the presence of CuFeS₂ and CuFeS₂/Ag₃PO₄, respectively. This is due to the production of hydroxyl radicals that degrade RhB from the oxidation of the Cu^+/Fe^{2+} ions on the CuFeS₂ to the formation of Cu^{2+}/Fe^{3+} ions in the presence of H₂O₂. Finally, the degradation performance of the prepared Ag₃PO₄, CuFeS₂, and $CuFeS_2/Ag_3PO_4$ composites was evaluated with the photo-Fenton reaction in the presence of H_2O_2 , and the results are shown in Figure 9C. The degradation efficiency of Ag_3PO_4 reaches 25% with a 10 min photo-Fenton reaction, whereas that of CuFeS₂ reaches 87.7% within 1 min. Notably, the degradation efficiency of CuFeS₂/Ag₃PO₄ reaches 96% within 1 min. Moreover, the relative standard deviation of the degradation performance for three different batches of the prepared composites was less than 9%, indicating the high reproducibility of the preparation methods for the proposed composites. In addition, we also analyzed the degradation performances of Cu₂S, Fe₂S₃, Cu₂S/Ag₃PO₄ and Fe₂S₃/Ag₃PO₄ composites. As shown in Figure 10, the RhB degradation efficiency reaches 75.2%, 86.5%, 81.4% and 90.4% within 1 min in the presence of Cu₂S, Fe₂S₃, Cu₂S/Ag₃PO₄ and Fe₂S₃/Ag₃PO₄ respectively. These results suggested that the addition of CuFeS₂/Ag₃PO₄ promotes the production of hydroxyl radicals through the photo-Fenton reaction to degrade RhB at a higher efficiency than CuFeS₂, Cu₂S, Fe₂S₃ alone, indicating a synergistic effect between CuFeS₂ and Ag₃PO₄. Figure 9D–F showed the corresponded pseudo-first order linear transform of RhB degradation under photocatalytic reaction, Fenton reaction and photo-Fenton reaction by Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites. The apparent rate constants for RhB degradation by Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites are listed in Table 1.

Series	Degradation Mode	Pseudo-First-Order Kinetic Equation	k(min ⁻¹)	R ²
Ag ₃ PO ₄	Photocatalytic reaction	y = 0.016x + 0.048	0.016	0.96
	Fenton reaction	y = 0.0026x + 0.0088	0.0026	0.92
	Photo-Fenton reaction	y = 0.0047x + 0.055	0.0047	0.80
CuFeS ₂	Photocatalytic reaction	y = 0.0007x - 0.039	0.0007	0.72
	Fenton reaction	y = 1.5x - 0.16	1.5	0.93
	Photo-Fenton reaction	y = 2.8x - 0.29	2.8	0.94
CuFeS ₂ /Ag ₃ PO ₄	Photocatalytic reaction	y = 0.018x - 0.0015	0.018	0.94
	Fenton reaction	y = 2.2x - 0.156	2.2	0.99
	Photo-Fenton reaction	y = 3.3x - 0.0322	3.3	0.97

Table 1. Pseudo-first-order rate constants for rhodamine B (RhB) degradation by Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites at different conditions.

Figure 9. (**A**) Photocatalytic reaction; (**B**) fenton reaction; and (**C**) photo-Fenton reaction for RhB degradation by different samples: Ag₃PO₄ (black), CuFeS₂ (red), and CuFeS₂/Ag₃PO₄ composites (blue). The pseudo-first order linear transform of RhB degradation under (**D**) photocatalytic reaction, (**E**), Fenton reaction and (**F**) photo-Fenton reaction by different samples: Ag₃PO₄ (black), CuFeS₂ (red), and CuFeS₂/Ag₃PO₄ (black), CuFeS₂ (red), and CuFeS₂/Ag₃PO₄ composites (blue).

To maximize the degradation performance of $CuFeS_2/Ag_3PO_4$, the following factors were systematically studied: the molar ratio of $CuFeS_2$ to Ag_3PO_4 , the mechanical mixing of $CuFeS_2$ and Ag_3PO_4 particles, and the added amounts of H_2O_2 and $CuFeS_2/Ag_3PO_4$. Figure 11A presents the plots of the RhB concentration ratio (C/C₀) against the reaction time for $CuFeS_2/Ag_3PO_4$ prepared at different precursor molar ratios from $CuFeS_2$ to Ag_3PO_4 . The degradation efficiency can be visually related to the highest drop in the RhB concentration ratio in the plots during the reaction. The higher molar ratio of the precursors used to make $CuFeS_2/Ag_3PO_4$ resulted in higher degradation efficiency as the hydroxyl radicals generated from the photo-Fenton reaction dominated the RhB degradation. Above the 2.5:1 ratio, the suspension of excessive black CuFeS₂ particles in the CuFeS₂/Ag₃PO₄ solution was observed. This raised a concern as the excessive $CuFeS_2$ particles were not coupled with Ag_3PO_4 during the synthesis, and they cannot be regenerated during the photolysis. CuFeS₂/Ag₃PO₄ with the molar ratio of 2.5:1 was therefore selected as the optimal condition for this study. The second experiment was performed by mechanically mixing both CuFeS₂ and Ag₃PO₄ particles with the molar ratio of 2.5:1 to prove the synergistic effect within $CuFeS_2/Ag_3PO_4$ in the enhanced degradation activity (Figure 11B). The degradation efficiency for the mechanically mixed sample with 10 min photocatalytic, Fenton, and photo-Fenton reactions is 4.2%, 83.5%, and 87.7%, respectively—all evidently lower than that for composites formed with cyclic microwave heating (Figure 9). These results strongly suggest that the coupling interaction between CuFeS₂ and Ag₃PO₄ is critical for the significantly enhanced degradation activity of $CuFeS_2/Ag_3PO_4$ composites. Then, because the amount of H_2O_2 is key for the photo-Fenton reaction, its content in the degradation process may influence the performance of CuFeS₂/Ag₃PO₄ composites. As shown in Figure 11C, the degradation efficiency increased with an increase in the H_2O_2 amount up to 200 μ L, above which the degradation efficiency decreased, probably because excess reactive radicals react with one another. Thus, we selected 200 μ L of H₂O₂ as the optimum required amount of H₂O₂. Then, the degradation efficiency at different amounts of CuFeS₂/Ag₃PO₄ composites was evaluated. As shown in Figure 11D, the degradation efficiency increased with an increase in the CuFeS₂/Ag₃PO₄ amount of up to 20 mg, above which the degradation efficiency plateaued. On the basis of this result, 20 mg of CuFeS₂/Ag₃PO₄ was used for further investigations. Finally, the degradation efficiency for a higher RhB concentration at 20 mg CuFeS₂/Ag₃PO₄ was evaluated. As shown in Figure 11E, the degradation efficiency at a higher RhB concentration decreased within 10 min of photo-Fenton reaction. However, the degraded RhB amount was higher at a higher RhB concentration. The results also indicated that the maximum degraded amount of RhB at 20 mg CuFeS₂/Ag₃PO₄ was 54.9 ppm.

Figure 10. Photo-Fenton reaction for RhB degradation by different samples: (**A**) Cu_2S (black) and Fe_2S_3 (red); and (**B**) Cu_2S/Ag_3PO_4 (black) and Fe_2S_3/Ag_3PO_4 (red) composites.

According to the literature, deethylation and chromophore cleavage are analogous competitive photodegradation reactions during the photocatalytic decomposition of organic pollutants. Based on the literature, the hypsochromic shifts (blue shift of the maximum absorption band) are attributed to the formation of a series of N-deethylated intermediates of RhB [31,32]. In this study, the absorption at 550 nm for RhB decreased with the increase in the reaction time and exhibited a slight hypochromic shift (dash line in Figure 12A). Therefore, a possible method to degrade RhB is through chromophore cleavage, which can be observed with an insignificant hypochromic shift in the UV–Vis spectra. Another approach to study organic compound degradation is to measure the TOC of the solution before and after the reaction. Figure 12B plots the temporal evolution of TOC content with RhB degradation by CuFeS₂/Ag₃PO₄. Initially, the color vanished in the RhB solution with the photo-Fenton reaction for

1 min; the TOC content decreased to 13.5 ppm (decomposing only 2.17% of the original concentration (13.8 ppm)). The decomposition of RhB with CuFeS₂/Ag₃PO₄ increased to as high as 78.3%, but only 3.0 ppm TOC remained in the solution with a 30 min photo-Fenton reaction. Evidence from both experimental approaches strongly supports RhB chromophore cleavage and CO₂ production as the predominant pathways of degradation by CuFeS₂/Ag₃PO₄.

3.4. Degradation Mechanism of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄

In photodegradation, the rate and the stability of electron-hole pairs generated from the excitation source are critical factors to be considered in the development of ideal photocatalysts. In this study, the separation efficiency and recombination rate of the electron-hole pairs for the prepared Ag_3PO_4 , CuFeS₂, and CuFeS₂/Ag₃PO₄ composites were investigated through photocatalytic degradation without any H₂O₂. Figure 13A shows the photocurrent density of Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ under LED light irradiation; all samples produced a sharp photocurrent peak on turning the light on and no peak as the light turned off, with photocurrent response during the on/off cycles. Under LED light irradiation, the current density decreased in the following order: $Ag_3PO_4 > CuFeS_2/Ag_3PO_4$ > CuFeS₂. This result is consistent with the photocatalytic degradation results shown in Figure 9A, indicating that the differences in the photodegradation activity was due to the differences in the optoelectrical properties of selected materials. In addition, the different noise levels and shape forms of the photocurrent density for different composites may be attributed to the different size and morphology of the composites deposited on the fluorine-doped tin oxide (FTO) substrates. As a further experiment, the intensity of PL emission for three materials was measured to quantify the recombination rate of the electron–hole pairs; a lower rate implies a lower luminescence emission intensity and higher photocatalytic activity. Figure 13B presents the PL emission spectra of the prepared Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites at λ_{ex} = 250 nm. The emission intensity of CuFeS₂ was the weakest due to the lowest yield of electron-hole pairs but not due to a low recombination rate. The difference in the emission intensity between Ag_3PO_4 and $CuFeS_2/Ag_3PO_4$ is nonsignificant, indicating comparable electron-hole pair recombination rates. This demonstrates the ability of CuFeS₂/Ag₃PO₄ to generate electron-hole pairs with a low recombination rate, providing critical information to understand the mechanism discussed later.

Figure 11. Degradation of RhB under different conditions: (**A**) different molar ratios of CuFeS₂ to Ag₃PO₄; (**B**) different degradation procedures using the mechanical mixing of Ag₃PO₄ and CuFeS₂ particles; (**C**) different amounts of H₂O₂ by CuFeS₂/Ag₃PO₄ composites; (**D**) different amounts of CuFeS₂/Ag₃PO₄ composites; and (**E**) different amounts of RhB.

Figure 12. (A) Temporal evolution of UV–Vis spectra of RhB and (B) the corresponding total organic carbon (TOC) content of RhB degradation by the prepared $CuFeS_2/Ag_3PO_4$ composites through the photo-Fenton reaction. Top image: photographs of the RhB solution under the photo-Fenton reaction at different irradiation time.

Figure 13. (**A**) Photocurrent density and (**B**) the photoluminescence (PL) spectra of different samples: Ag₃PO₄ (black), CuFeS₂ (red), and CuFeS₂/Ag₃PO₄ composites (blue).

As a key mechanistic study, the active species involved in the degradation reaction were identified systematically using the free radical trapping experiments (Figure 14). EDTA, BQ, and t-BuOH were used as holes, oxygen radicals, and hydroxyl radical scavengers, respectively. After adding EDTA to the reaction mixture, RhB degradation in Ag₃PO₄ samples was inhibited, indicating that holes are the major species involved in the photo-Fenton degradation (Figure 14A). In contrast to the Ag₃PO₄ sample, RhB degradation in CuFeS₂/Ag₃PO₄ composites with the photo-Fenton reaction was inhibited by adding t-BuOH, indicating that hydroxyl radicals are the major active species (Figure 14B,C).

Figure 14. Free radical trapping experiment of (**A**) Ag₃PO₄, (**B**) CuFeS₂, and (**C**) CuFeS₂/Ag₃PO₄ composites. Ethylenediaminetetraacetate (EDTA), tert-butanol (t-BuOH), and p-benzoquinone (BQ) (each 1 mM) were scavengers for holes, oxygen radicals, and hydroxyl radicals, respectively.

Hydroxyl radical production was further detected using the fluorescent luminescence (FL) technique to study the photo-Fenton reaction. The FL emission spectra, excited at 370 nm in the coumarin solution in the absence and presence of the prepared samples, were evaluated for 10 min of irradiation. Figure 15 shows that an FL signal was observed at 460 nm for each sample and that the maximum FL intensity was observed in CuFeS₂/Ag₃PO₄. This suggests that CuFeS₂/Ag₃PO₄ produced the highest amount of hydroxyl radicals among these three materials, thereby leading to more chemical reactions with coumarin to generate fluorescence [33]. Hence, the hydroxyl radical was considered the direct reactive oxidation species in the CuFeS₂/Ag₃PO₄ composites for RhB degradation. Moreover, CuFeS₂/Ag₃PO₄ composites with maximal degradation activity produced excess reactive hydroxyl radicals than CuFeS₂, which is consistent with the previously discussed results.

Figure 15. FL spectra of the different samples in the coumarin solution measured at $\lambda_{ex} = 370$ nm (each sample was illuminated for 10 min under visible light). Ag₃PO₄ (red), CuFeS₂ (blue), and CuFeS₂/Ag₃PO₄ composites (olive).

On the basis of the results described above, the degradation mechanisms of the Ag_3PO_4 , CuFeS₂, and CuFeS₂/Ag₃PO₄ in the photo-Fenton reaction were proposed (Scheme 1). For Ag₃PO₄, the electron-hole pairs are generated under LED irradiation (Scheme 1A). The electrons could not form the oxygen radicals because of their higher position in the standard redox potential of oxygen/oxygen radical (0.13 V) than the CB potential (0.27 V). The photogenerated hole can produce the hydroxyl radical because the oxidation potential of the hydroxyl radical (1.99 V) is lower than the VB potential of Ag_3PO_4 (2.65 V). However, the recombination rate in Ag_3PO_4 is too fast to produce sufficient hydroxyl radicals by the holes. Thus, the holes are responsible for RhB degradation. The poor charge separation of CuFeS₂ limits its ability to generate electron–hole pairs, but it is effective in generating hydroxyl radicals through the Fenton reaction (Scheme 1B). However, the Fenton reaction causes an increase in the oxidation state of Cu and Fe within the CuFeS₂ solids, alters the crystal structure, and notably, weakens the integrity of the CuFeS₂ solids. This is the main reason CuFeS₂ is hardly reused in water treatment. When Ag₃PO₄ couples with CuFeS₂ to form the CuFeS₂/Ag₃PO₄ composites, the photogenerated electrons can be easily captured by the oxidized Fe^{3+}/Cu^{2+} on the surface of CuFeS₂, leading to the regeneration of Fe^{2+}/Cu^+ at the CuFeS₂/Ag₃PO₄ interface (Scheme 1C). As a strong synergistic effect, the formation of hydroxyl radicals through the Fenton reaction on CuFeS₂ and photogenerated hole on Ag₃PO₄ is favored to enhance the degradation activity and stability of CuFeS₂/Ag₃PO₄ composites. In addition, we considered that the degradation mechanism for the prepared Fe_2S_3/Ag_3PO_4 and Cu₂S/Ag₃PO₄ composites was similar to that of CuFeS₂/Ag₃PO₄ composites. However, the degree

of the charge separation efficiency, recombination rate of electron–hole pairs and the amount of the major reactive species were slight different, resulting in different degradation performance as shown in Figure 10.

Scheme 1. Transition of electrons and holes in the different degradation system of (**A**) Ag₃PO₄, (**B**) CuFeS₂, and (**C**) CuFeS₂/Ag₃PO₄.

3.5. Stability and Practical Applications of CuFeS₂/Ag₃PO₄

The stability of the catalyst is an essential parameter for the development of practical water treatment applications. To investigate the stability of the prepared Ag₃PO₄, CuFeS₂, and CuFeS₂/Ag₃PO₄ composites, the results of cyclic RhB degradation tests were evaluated (shown in Figure 16A); in each cycle, RhB and H₂O₂ were reintroduced into the catalyst. In this study, RhB degradation by Ag₃PO₄ and CuFeS₂/Ag₃PO₄ after ten cycles maintained a similar degradation efficiency (15.3% to 14% after ten cycles for Ag₃PO₄; 99.6% to 91.3% after ten cycles for CuFeS₂/Ag₃PO₄), whereas that by CuFeS₂ resulted in a considerable loss of efficiency (from 97.5% to 15.0% after ten cycles). Furthermore, the corresponding XRD results (Figure 16B) suggest a negligible change in the phase structure of Ag₃PO₄ and CuFeS₂/Ag₃PO₄ samples after the repeated reactions, indicating the good stability of the samples. However, the initial phase structure of CuFeS₂ disappeared after three reaction cycles. The SEM image shown in Figure 16D displays that the morphology of the CuFeS₂ sample change for CuFeS₂ when it is used alone. Unlike CuFeS₂, the comparison of SEM images for Ag₃PO₄ and CuFeS₂/Ag₃PO₄ composites before and after reaction cycles only showed a slight change of morphology (Figure 16C,E). Evidently, the stability of CuFeS₂ in the

Figure 16. (A) Degradation efficiency under a 10 min reaction time for the recycle used test, (B) XRD patterns, and (C–E) the corresponding SEM images of the third used samples: Ag_3PO_4 (black), CuFeS₂ (red), and CuFeS₂/Ag₃PO₄ composites (blue).

To assess the practical applications of CuFeS₂/Ag₃PO₄, various organic dyes (MR, M6G, fluorescein, and PI) were degraded (Figure 17A). Compared with TiO₂ (P25), CuFeS₂/Ag₃PO₄ exhibited excellent degradation efficiency toward all selected dyestuffs, with nearly 95% degradation achieved within 10 min (except PI with only 78.5% degradation efficiency). In addition, the degradation performance of CuFeS₂/Ag₃PO₄ under sunlight irradiation was evaluated from November to December 2019 from 11:00 a.m. to 2:00 p.m. daily at the National Changhua University of Education, Changhua, Taiwan. As shown in Figure 17B, sunlight-induced RhB degradation in the absence and presence of $CuFeS_2/Ag_3PO_4$ was very poor without H_2O_2 . However, using the sunlight-assisted Fenton reaction for RhB degradation achieved nearly 98.9% degradation efficiency within 1 min. This is because the combined UV and visible light in sunlight hastened the production of hydroxyl radicals in the presence of H_2O_2 and $CuFeS_2/Ag_3PO_4$. With the promise of the sunlight-assisted Fenton reaction, the pH effect in the water samples on the degradation performance of CuFeS₂/Ag₃PO₄ was also investigated. As shown in Figure 17C, the degradation efficiency decreased at pH 12.0 because the Fenton reaction was considerably hindered at a high pH as Fe^{2+} cations form inactive porphyrin ferryl complexes (FeO²⁺) in the alkaline solution [24]. Finally, the prepared CuFeS₂/Ag₃PO₄ composites were used to degrade RhB in the environmental water samples (Figure 17D). CuFeS₂/Ag₃PO₄ exhibited excellent degradation efficiency through the photo-Fenton reaction for RhB degradation, with nearly 90% degradation within 1 min. A notable difference in the degradation time for RhB was observed for the seawater and treated wastewater samples (90% and 80% degradation within 10 min, respectively) compared with the other environmental water samples (100% degradation within 10 min) probably because of the presence of anions or radical scavengers in the seawater and treated wastewater samples that reduced the degradation activity of CuFeS₂/Ag₃PO₄. Nevertheless, the studies on the environmental water samples

strongly support the benefits of this newly developed $CuFeS_2/Ag_3PO_4$ -based photo-Fenton water treatment option.

Figure 17. Photo-Fenton reaction of (**A**) different dyestuff by CuFeS₂/Ag₃PO₄ composites and P25; (**B**) different degradation procedures in the absence and presence of CuFeS₂/Ag₃PO₄ under sunlight irradiation; (**C**) different pH; and (**D**) different environmental water samples for RhB degradation by CuFeS₂/Ag₃PO₄.

4. Conclusions

The currently prepared CuFeS₂/Ag₃PO₄ composites exhibited higher RhB degradation efficiency through the photo-Fenton reaction than did Ag₃PO₄ and CuFeS₂ alone. This high enhancement in the degradation efficiency was attributed to the synergistic effect in material stability and the hydroxyl radical production. The constituent Ag_3PO_4 in the newly developed composite not only provides the visible-light absorption ability in degrading organic compounds but also acts as a rich electron source to stabilize the crystal structure of CuFeS₂ under light irradiation. Consequently, Cu^{2+}/Fe^{3+} ions produced by the Fenton reaction can be reduced and regenerated into Cu^+/Fe^{2+} ions, and the reactive hydroxyl radicals partially from the photogenerated holes of Ag₃PO₄ and predominantly from the Fenton reaction of CuFeS₂ can be continuously produced to degrade organic compounds. The CuFeS₂/Ag₃PO₄ composite has several attractive features not realized in the other reported photo-Fenton reactions (Table 2). First, the prepared CuFeS₂/Ag₃PO₄ composite had 96% RhB degradation performance under low-power white LED illumination within 1 min. In addition, various dyestuffs (MR, R6G, fluorescein, and PI) with 95% degradation efficiency could be achieved. Through sunlight-assisted Fenton reaction, the RhB degradation efficiency was further improved to 98.9%. For the recycling used ability, the CuFeS₂/Ag₂PO₄ composite is stable enough to be reused through the input of sustainable energy source. Hence, this study discovered the synergistic catalysis CuFeS₂/Ag₃PO₄ and successfully demonstrates the application of the sunlight-assisted Fenton reaction on environmental water samples. The current findings can be used for the applications of advanced oxidation technology in wastewater treatment in the future.

Samples	Preparation	Degradation Performance	Sunlight Irradiation	Target	Ref.
Citrate–CuFeS ₂	Microwave heating	90% degradation (0.2 g catalyst/50 ppm BPA) within 15 min (4 W fluorescent lamp)	-	BPA	[24]
FS-TiO ₂ disk	Dip-coating method	95% degradation (50 ppm phenazone (PNZ)) within 180 min (36 W UV light) 85% TOC conversion (1.0 c catalyst 0.5	95% degradation of 50 ppm PNZ within 90 min	PNZ	[34]
Mined CuFeS ₂	Milling process	mM tyrosol (TY)) within 60 min (10 W UV LED light)	-	TY	[19]
Fe–N–Ag–TiO ₂ clay bead	Surface impregnation method	-	77% degradation of 50 ppm cephalexin (CEX) within 60 min	CEX	[35]
FS/FA/TiO ₂ clay bead	Dip-coating method	89% degradation (50 ppm CEX) within 4 h (36 W UV light) 80% degradation (10 ppm	94% degradation (50 ppm CEX) within 3.5 h	CEX	[36]
Fe ₂ O ₃ -TiO ₂ film	Sol–gel method	ciprofloxacin (CIPRO), sulfamethoxazole (SMX), and trimethoprim (TMP) mixture) within 240 min by a solar simulator (Solarbox Model 1500e)	-	CIPRO, SMX, TMP	[37]
CuFeS ₂ /Ag ₃ PO ₄	Cyclic microwave heating	96% degradation (20 mg catalyst/20 ppm RhB) within 1 min (2.5 W white-light LED)	99.8% degradation (0.15 g catalyst/15 ppm MB) within 6 min	RhB, MR, R6G, Fluorescein, PI, phenol	This study

Table 2. Comparison of the degradation performance and practical applications using the photo-Fenton reaction.

Author Contributions: Conceptualization, S.-A.C. and Y.-W.L.; methodology, Y.-W.L.; software, Y.-W.L.; validation, S.-A.C., and T.W.; formal analysis, S.-A.C. and Y.-W.L.; investigation, S.-A.C.; resources, Y.-W.L.; data curation, S.-A.C. and P.-Y.W.; writing—original draft preparation, Y.-W.L.; writing—review and editing, T.W. and Y.-W.L.; visualization, Y.-W.L.; supervision, Y.-W.L.; project administration, Y.-W.L.; funding acquisition, Y.-W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Ministry of Science and Technology of Taiwan under contract (MOST 109-2113-M-018-002).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Fernandez-Llamazares, A.; Garteizgogeascoa, M.; Basu, N.; Brondizio, E.S.; Cabeza, M.; Martinez-Alier, J.; McElwee, P.; Reyes-Garcia, V. A state-of-the-art review of indigenous peoples and environmental pollution. *Integr. Environ. Assess. Manag.* 2020, *16*, 324–341. [CrossRef] [PubMed]
- 2. Kurwadkar, S. Occurrence and distribution of organic and inorganic pollutants in groundwater. *Water Environ. Res.* **2019**, *91*, 1001–1008. [CrossRef] [PubMed]
- 3. Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. *Environ. Int.* **2019**, *122*, 52–66. [CrossRef] [PubMed]
- 4. Muszynski, P.; Brodowska, M.S.; Paszko, T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: A review. *Environ. Sci. Pollut. Res.* 2020, 27, 1276–1293. [CrossRef] [PubMed]
- Taghipour, S.; Hosseini, S.M.; Ataie-Ashtiani, B. Engineering nanomaterials for water and wastewater treatment: Review of classifications, properties and applications. *New J. Chem.* 2019, 43, 7902–7927. [CrossRef]
- 6. Javaid, R.; Qazi, U.Y. Catalytic oxidation process for the degradation of synthetic dyes: An overview. *Int. J. Environ. Res. Public Health* **2019**, *16*, 2066. [CrossRef]
- 7. Singh, P.; Borthakur, A. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. *J. Clean Prod.* **2018**, *196*, 1669–1680. [CrossRef]
- 8. Wang, J.M.; Shih, Y.E.; Wang, P.Y.; Yu, Y.H.; Su, J.F.; Huang, C.P. Hazardous waste treatment technologies. *Water Environ. Res.* **2019**, *91*, 1177–1198. [CrossRef]
- 9. Riaz, S.; Park, S.J. An overview of TiO₂-based photocatalytic membrane reactors for water and wastewater treatments. *J. Ind. Eng. Chem.* **2020**, *84*, 23–41. [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO₂ photocatalysis in textile wastewater treatment: A review. *J. Environ. Chem. Eng.* 2019, 7, 103248. [CrossRef]
- Kanan, S.; Moyet, M.A.; Arthur, R.B.; Patterson, H.H. Recent advances on TiO₂-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. *Catal. Rev. Sci. Eng.* 2020, 62, 1–65. [CrossRef]
- 12. Tsang, C.H.A.; Li, K.; Zeng, Y.X.; Zhao, W.; Zhang, T.; Zhan, Y.J.; Xie, R.J.; Leung, D.Y.C.; Huang, H.B. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. *Environ. Int.* **2019**, *125*, 200–228. [CrossRef] [PubMed]
- Wetchakun, K.; Wetchakun, N.; Sakulsermsuk, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO₂- and ZnO-based photocatalysts used in suspension photoreactors. *J. Ind. Eng. Chem.* 2019, 71, 19–49. [CrossRef]
- Morales, M.A.; Fernandez-Cervantes, I.; Agustin-Serrano, R.; Ruiz-Salgado, S.; Sampedro, M.P.; Varela-Caselis, J.L.; Portillo, R.; Rubio, E. Ag₃PO₄ microcrystals with complex polyhedral morphologies diversity obtained by microwave-hydrothermal synthesis for MB degradation under sunlight. *Results Phys.* 2019, 12, 1344–1356. [CrossRef]
- 15. Zhang, J.; Liu, X.; Liu, Q.W.; Licao, Y.Q.; Liu, G.D.; Shi, X.H. Z-scheme AgSCN/Ag₃PO₄/C₃N₄ heterojunction with excellent photocatalytic degradation of ibuprofen. *Ceram. Int.* **2020**, *46*, 106–113. [CrossRef]
- 16. Ge, M.; Li, Z.L. Recent progress in Ag₃PO₄-based all-solid-state Z-scheme photocatalytic systems. *Chin. J. Catal.* **2017**, *38*, 1794–1803. [CrossRef]

- 17. Bi, Z.H.; Li, Z.H.; Yan, L.F. Catalytic oxidation of lignin to dicarboxylic acid over the CuFeS₂ nanoparticle catalyst. *Green Process. Synth.* **2018**, *7*, 306–315. [CrossRef]
- 18. Labiadh, L.; Ammar, S.; Karnali, A.R. Oxidation/mineralization of AO7 by electro-Fenton process using chalcopyrite as the heterogeneous source of iron and copper catalysts with enhanced degradation activity and reusability. *J. Electroanal. Chem.* **2019**, *853*, 113532. [CrossRef]
- Ltaief, A.H.; Pastrana-Martinez, L.M.; Ammar, S.; Gadri, A.; Faria, J.L.; Silva, A.M.T. Mined pyrite and chalcopyrite as catalysts for spontaneous acidic pH adjustment in Fenton and LED photo-Fenton-like processes. *J. Chem. Technol. Biotechnol.* 2018, 93, 1137–1146. [CrossRef]
- Nie, W.S.; Mao, Q.H.; Ding, Y.B.; Hu, Y.; Tang, H.Q. Highly efficient catalysis of chalcopyrite with surface bonded ferrous species for activation of peroxymonosulfate toward degradation of bisphenol A: A mechanism study. J. Hazard. Mater. 2019, 364, 59–68. [CrossRef]
- 21. Xu, X.J.; Tang, D.D.; Cai, J.H.; Xi, B.D.; Zhang, Y.; Pi, L.; Mao, X.H. Heterogeneous activation of peroxymonocarbonate by chalcopyrite (CuFeS₂) for efficient degradation of 2,4-dichlorophenol in simulated groundwater. *Appl. Catal. B Environ.* **2019**, *251*, 273–282. [CrossRef]
- 22. Zhu, Y.P.; Zhu, R.L.; Xi, Y.F.; Zhu, J.X.; Zhu, G.Q.; He, H.P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. *Appl. Catal. B Environ.* **2019**, *255*, 117739. [CrossRef]
- 23. Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. *Sci. Total Environ.* **2019**, *670*, 110–121. [CrossRef] [PubMed]
- 24. Salla, J.D.; Martinello, K.D.; Dotto, G.L.; Garcia-Diaz, E.; Javed, H.; Alvarez, P.J.J.; Foletto, E.L. Synthesis of citrate-modified CuFeS₂ catalyst with significant effect on the photo-Fenton degradation efficiency of bisphenol a under visible light and near-neutral pH. *Colloid Surf. A Physicochem. Eng. Asp.* **2020**, 595, 124679. [CrossRef]
- Zhang, J.B.; Sun, X.H.; Gao, Q.J.; Wang, H.X.; Liang, D.X.; Liu, Z.M.; Han, G.T.; Jiang, W. Degradation of organic dyes over regenerative Fe₃O₄/CuFeS₂/biomass composite column. *Chem. J. Chin. Univ. Chin.* 2019, 40, 425–430.
- Wei, T.T.; Wu, T.; Lin, Y.W. Controlled synthesis of Ag₃PO₄ microparticles with different morphologies and their photocatalytic degradation of rhodamine B under white light-emitting diode irradiation. *Micro Nano Lett.* 2019, 14, 363–366. [CrossRef]
- Rajaji, U.; Murugan, K.; Chen, S.M.; Govindasamy, M.; Chen, T.W.; Lin, P.H.; Prabha, P.L. Graphene oxide encapsulated 3D porous chalcopyrite (CuFeS₂) nanocomposite as an emerging electrocatalyst for agro-hazardous (methyl paraoxon) detection in vegetables. *Compos. Part B Eng.* 2019, 160, 268–276. [CrossRef]
- 28. Wang, C.Y.; Wu, T.H.; Lin, Y.W. Preparation and characterization of bismuth oxychloride/reduced graphene oxide for photocatalytic degradation of rhodamine B under white-light light-emitting-diode and sunlight irradiation. *J. Photochem. Photobiol. A Chem.* **2019**, *371*, 355–364. [CrossRef]
- 29. Huang, C.W.; Wu, M.Y.; Lin, Y.W. Solvothermal synthesis of Ag hybrid BiPO₄ heterostructures with enhanced photodegradation activity and stability. *J. Colloid Interface Sci.* **2017**, 490, 217–225. [CrossRef]
- Huang, C.K.; Wu, T.; Huang, C.W.; Lai, C.Y.; Wu, M.Y.; Lin, Y.W. Enhanced photocatalytic performance of BiVO₄ in aqueous AgNO₃ solution under visible light irradiation. *Appl. Surf. Sci.* 2017, 399, 10–19. [CrossRef]
- Hu, X.F.; Mohamood, T.; Ma, W.H.; Chen, C.C.; Zhao, J.C. Oxidative decomposition of rhodamine B dye in the presence of VO²⁺ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. *J. Phys. Chem. B* 2006, *110*, 26012–26018. [CrossRef] [PubMed]
- Qu, P.; Zhao, J.C.; Shen, T.; Hidaka, H. TiO₂-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO₂ colloidal solution. *J. Mol. Catal. A Chem.* 1998, 129, 257–268. [CrossRef]
- Huang, T.Y.; Chen, Y.J.; Lai, C.Y.; Lin, Y.W. Synthesis, characterization, enhanced sunlight photocatalytic properties, and stability of Ag/Ag₃PO₄ nanostructure-sensitized BiPO₄. *RSC Adv.* 2015, *5*, 43854–43862. [CrossRef]
- 34. Bansal, P.; Verma, A.; Mehta, C.; Sangal, V.K. Potential use of waste foundry sand in dual process (photocatalysis and photo-Fenton) for the effective removal of phenazone from water: Slurry and fixed-bed approach. *J. Environ. Manag.* **2019**, 233, 793–801. [CrossRef] [PubMed]

- 35. Bansal, P.; Verma, A. N, Ag co-doped TiO₂ mediated modified *in-situ* dual process (modified photocatalysis and photo-Fenton) in fixed-mode for the degradation of Cephalexin under solar irradiations. *Chemosphere* **2018**, *212*, 611–619. [CrossRef] [PubMed]
- 36. Bansal, P.; Verma, A. Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of Cephalexin using TiO₂ immobilized novel clay beads with waste fly ash/foundry sand. *J. Photochem. Photobiol. A Chem.* **2017**, *342*, 131–142. [CrossRef]
- 37. Lima, M.J.; Silva, C.G.; Silva, A.M.T.; Lopes, J.C.B.; Dias, M.M.; Faria, J.L. Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. *Chem. Eng. J.* **2017**, *310*, 342–351. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).