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Abstract: Through considering both nonlocality and surface energy effects, this paper suggests
suitable mathematical-continuum-based models for free vibration of nanorods with multiple defects
acted upon by a bidirectional-transverse magnetic field. By employing both theories of elasticity of
Eringen and Gurtin–Murdoch, the equations of motion for the magnetically affected-damaged rod-like
nanostructures are derived using the nonlocal-differential-based and the nonlocal-integral-based
models. The local defects are modeled by a set of linearly appropriate axial springs at the interface
of appropriately divided nanorods. Through constructing the nonlocal-differential equations of
motion for sub-divided portions and by imposing the appropriate interface conditions, the natural
frequencies as well as the vibrational modes are explicitly obtained for fixed–free and fixed–fixed
nanorods with low numbers of defects. The extracted nonlocal-integral governing equations are
also solved for natural frequencies using the finite-element technique. For a particular situation,
the model’s results are successfully verified with those of another work. Subsequently, the effects of
nonlocality, surface energy, defect’s location, nanorod’s diameter, magnetic field strength, and number
of defects on the dominant free vibration response of the magnetically defected nanorods with various
end conditions are displayed and discussed.

Keywords: defected nanorods; longitudinal free vibration; bilaterally applied magnetic field;
nonlocal-integro-based model; surface energy effect; finite-element method (FEM)

1. Introduction

Nanorods represent a special morphology of nanoscale objects whose sizes range from 1 to
100 nm and their lateral dimensions are fairly negligible in comparison to their lengths. They are
commonly created by chemical synthesis, including cation exchange [1–3] and hydrothermal method [4,5].
Nanorods would have great applications in display technologies [6,7], micro-electro-mechanical
systems [8–11], cancer therapy [12,13], energy harvesting [14,15], light-emitting devices [16,17], and solar
cells [18–20]. Any defect in nanorods during their synthesis or after that may limit their applications.
As a result, recognizing the mechanical behavior of defected nanorods would greatly expand our basic
understanding about their mechanical limit and optimal design for the considered duty.

From applied mechanics point of view, the main structural mechanic characteristic of nanorods is
the axial rigidity. At the nanoscale, nonlocality and the potential surface energy are among the crucial
factors that discriminate the nature of the axial rigidity from that at the macroscale. If a nanorod is
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defected by an external agent in one limited zone or several distinct points, one confronts to a locally
defected nanorod whose axial rigidity as well as axial stiffness at the defected points or zones would
be lower than those of the intact zones and depends on the damage level. As a result, the assessment
of the mechanical behavior of defected nanorods is of great importance. This study concerns with the
role of local defects on the axial vibration of nanorods by considering the nonlocality as well as the
surface influence.

In nanorod structures, each atom’s vibration could influence its adjacent atoms’ vibrations
due to the existence of the inter-atomic bonds. In other words, the stress status at a point
depends on the statuses of stress at the contiguous points. This important vision of the stress
field cannot be captured and displayed by the traditional elasticity theory (TET). To vanquish this
shortcoming, nonlocal elasticity theory (NET) was developed by Eringen [21,22]. To date, the NET
of Eringen has been vastly utilized for mechanical analysis of rod-like [23–28], beam-like [29–38],
and plate-like [39–43] nanostructures. Recently, the nonlocal stress-driven formulations have been
established for thermoelastic analysis of straight nanobeams as well as elastostatics of curved
ones [44,45] to overcome the ill-posed nonlocal-differential-based models under certain situations.
In another perspective, configuration of electron gases in core-shell-based nanowires was examined
using a nonlocal pseudospectral approach [46]. Actually, this research work recasts a nonlocal term into
a separate differential equation that must be solved simultaneously as a system of partial differential
equations. On the other hand, at the nanoscale, the strain energy of the surface layer could not be
neglected due to the fairly high ratio of the surface area to the bulk volume. Gurtin and Murdoch [47–50]
suggested a surface continuum-based theory to explain the influence of the surface energy on the
overall mechanical response of structures at the nanoscale. Based on their suggested model, at the
low-dimensional scales, the whole body of the structure could be imagined consisting of two crucial
parts: surface layer (SL) and the bulk zone (BZ). The constitution relations of the BZ are the same
as those of macroscale structures in the absence of the nonlocality. Further, the surface elasticity
theory (SET) displays that the strain–stress relations of the SL are dissimilar to those of the BZ [51].
The constants of these relations (i.e., Lame’s constants of the SL plus to the initial stress at unstrained
conditions) could be evaluated by comparing the predicted SET-based results and those of a suitable
atomic model. Until now, the SET has been adopted to many problems associated with the mechanics
of nanostructures [52–60]. For more rational modeling of nanostructures, mixed-formulations of the
NET by Eringen and the SET by Gurtin and Murdoch, the so-called nonlocal surface elasticity theory
(NSET), should be employed. There exist several works on the application of the NSET to mechanical
problems of nanostructures such as nanorods [61,62], nanobeams [63–67], and nanoplates [68–71].
Further, modeling of rod-like and beam-like nanostructures based on the nonlocal strain elasticity
theory has been the subject of various research works in recent years [72–74]; however, vibrations of
nanorods with multiple defects in the presence of both lateral and transverse magnetic fields have not
been addressed in the context of the NSET.

In highly conducting materials, the exertion of an appropriately oriented magnetic field would
generally change the whole stiffness (i.e., the sum of the internal, external, and geometrical stiffness
values) of the nanostructure in desired directions. Thereby, the application of a magnetic field would
effectively influence on the characteristics of sound waves propagate within them as well as their
vibrations in particular directions. So far, vibrations of nonlocal nanobeams [75–77], nanoplates [78,79],
and nanorods [80,81] under various actions of magnetic fields have been scrutinized in some details.
All of these magnetically affected nanostructures were defect-free. This brief literature survey shows
that the influence of the magnetic field on defected nanostructures has not been methodically explained.

The present paper has been organized as follows: in Section 2, the nonlocal-differential-based
relations of the longitudinal motion for locally damaged nanorods, acted upon by an arbitrarily
transverse magnetic field as well as the governing interfacial conditions, are displayed—the so-called
nonlocal-differential-surface energy-based model (NDSM). For the magnetically affected nanostructure
with fixed–free and fully fixed ends, the dispersion relation associated with longitudinal vibrations are
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explicitly derived, and the vibration modes pertinent to each boundary condition are computed for
the case of a single defect. In Section 3, the nonlocal-integral governing equations of the magnetically
affected nanorod with multiple defects are explained; the so-called nonlocal-integral-surface
energy-based model (NISM). Then, a finite-element method (FEM) is suggested for its frequency
analysis. In Section 4, a comparison study as well as a fairly inclusive parametric study is given, and the
roles of crucial factors on the axial vibration of magnetically affected rod-like nanostructures with
multiple defects and different end conditions are discussed in some details.

2. Establishing an NDSM for the Magnetically Affected Defected Nanorods

2.1. Problem Delineation

Consider a magnetically influenced nanorod with multiple defects as depicted schematically
in Figure 1a. The length and the diameter of the nanorod are denoted by lb and D0, respectively,
and the locations of the localized defects from the left end are symbolized by ci where i = 1, 2, . . . , N.
The defects are configured in an axisymmetric manner and the their lengths would be almost slight in
comparison with the length of the nanostructure. The nanorod is assumed to be uniform (except at
the defected zones), homogeneous, isotropic, and highly conductive. The defected nanorod is under
action of a transversely oblique magnetic field whose strength vector is given by: H = Hy ey + Hz ez

where ey and ez represent the unit base vectors along the y-axis and z-axis, respectively, and Hy and
Hz in order are the components of the magnetic field strength along the y and z axes (see Figure 1a).
Since the defects are axisymmetric and locally placed along the length of the nanorod, they could be
appropriately modeled by axial springs of constant ki, as shown in Figure 1b. The magnitude of ki for
the ith defect mainly depends on the geometry of the defected zone, the mechanical properties of the
BZ and the SL of the defect zone, and the transverse strengths of the magnetic field.
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Figure 1. (a) A nanorod with multiple defects acted upon by bilateral magnetic fields with fixed–fixed
ends. (b) Schematically represented continuum-based defected nanorod.

2.2. Construction of Nonlocal-Differential-Surface-Based Governing Equations

2.2.1. Preliminaries

On the basis of the theory of elastic bodies of Gurtin and Murdoch [47–49], the SL is a skinny layer
attached strongly to its underlying BZ. Herein, the longitudinal displacement and the corresponding

strain of both SL and BZ in order are denoted by u = u(x, t) and ε =
∂u
∂x

. The physical and mechanical
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properties of the SL are basically unlike those of the BZ. These properties are typically assessed by
comparing the surface-energetic mechanical behavior of fairly long nanorods and that predicted by
an appropriate atomic model. The Young’s modulus, density, and the cross-section area of the BZ are
Eb, ρb, and Ab while the elastic modulus, density, and cross-sectional pyramid of the SL are represented
by E0, ρ0, and A0, respectively. The only nonzero local stress within the BZ and the SL in order are given
by: σl

bx = Ebεx and σl
sx = E0εx + τ0, where τ0 is the residual stress within the SL. On the other hand,

these are local stresses which would be valid for nanorods acted upon by longitudinal waves with fairly
long wavelengths. If the longitudinal vibration occurs due to the waves of wavelengths comparable
with the inter-atom bonds, the nonlocality becomes important. According to the nonlocal continuum
theory of Eringen [21,22], the nonlocal elastic stresses at a point of the SL or the BZ could be related

to the local ones by the following constitutive relation: σnl
αx − (e0a)2 ∂2

∂x2 σnl
αx = σl

αx, where α = b or s,
and e0a denotes the small-scale parameter. Through integrating of both sides of the recent relation over
the cross-sectional domain of the nanorod and then adding the resulted expressions, it is obtainable:

Nnl − (e0a)2 ∂2Nnl

∂x2 = Ncl , (1)

where Ncl and Nnl are the local and nonlocal axial forces. In the following part, we proceed in
evaluating the local axial force within the magnetically affected nanorods with the surface effect.

2.2.2. Classical Axial Force within a Magnetically Influenced Nanorod

Since the evaluation of only the local axial force of the magnetically affected nanorod is of
special concern in this part, the small-scale parameter is set equal to zero. Hence, the requirement of
dynamic equilibrium for an infinitesimal element of the magnetically affected nanorod of length dx by
considering the inertia of the SL leads to:

∂N
∂x

+ fmx = (ρb Ab + ρ0 A0)
∂2u
∂t2 , (2)

where N = N(x, t) denotes the dynamical axial force field within the nanorod in the absence of the
magnetic field, and fmx represents the magnetic force per unit length of the nanorod. In the framework
of linear surface elasticity theory of Gurtin and Murdoch [47,48], the aforementioned axial force is
stated by:

N = (Eb Ab + E0 A0)
∂u
∂x

+ τ0S0, (3)

in which S0 is the length of the cross-section of the SL. From the structural engineering standpoint,
Eb Ab and E0 A0 represent the axial rigidity of the BZ and the SL, respectively, and τ0S0 is the resulted
axial force within the nanorod (compressive or tensile force depend on the sign of τ0).

By using Ref. [76], the magnetic field force applied on both SL and BZ of the highly conducting
nanorod is evaluated by:

fms = η0 (∇× (∇× (u×H)))×H, (4a)

fmb = ηb (∇× (∇× (u×H)))×H, (4b)

where ∇ is the gradient symbol, H denotes the strength of the magnetic field vector, η0 and ηb
represent the magnetic permeability of the SL and the BZ, respectively, and u denotes the vector of
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displacement field. By introducing u = u(x, t)ex and H = Hx ex + Hy ey + Hz ez to Equation (4),
the only non-vanishing component of the exerted magnetic field on the nanorod is derived as:

fmx = (η0 A0 + ηb Ab)
(

H2
y + H2

z

) ∂2u
∂x2 . (5)

Now, Equations (3) and (5) are substituted into Equation (2) to result in the local equation of
motion accounting for the surface energy effect:

∂Ncl

∂x
= (ρb Ab + ρ0 A0)

∂2u
∂t2 , (6)

where
Ncl =

[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂u
∂x

+ τ0S0. (7)

Equation (7) furnishes us with the classical axial force within a magnetically affected nanorod.
In the case of E0 > 0, both SL and applied transverse magnetic field tend to increase the nanorod’s
axial rigidity. It is noticed that the residual surface axial force does not incorporate to the axial rigidity
of the nanostructure; however, it results in initial static deformation within the defected nanorod.
Such an axial internal load could have influence the nanostructure’s transverse vibration, which is not
of concern of authors in the present work.

2.3. Equations of Motion Associated with the NDSM

By virtue of Equation (2), the equation of motion as a function of the nonlocal axial force in the
absence of body force takes the following form:

∂Nnl

∂x
= (ρb Ab + ρ0 A0)

∂2u
∂t2 , (8)

where the nonlocal axial force is governed by the following equation through introducing Equation (7)
to Equation (1),

Nnl − (e0a)2 ∂2Nnl

∂x2 =
[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂u
∂x

+ τ0S0. (9)

By mixing Equation (8) and Equation (9), the nonlocal axial force within the defect-free nanorod
under a transverse magnetic field is written by:

Nnl =
[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂u
∂x

+(e0a)2 (ρb Ab + ρ0 A0)
∂3u

∂t2∂x
+ τ0S0,

(10)

and the nonlocal-surface energy-based governing equation is derived as follows:

[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂2u
∂x2 = (ρb Ab + ρ0 A0)

[
1− (e0a)2 ∂2

∂x2

]
∂2u
∂t2 . (11)

For a nanorod with N locally defected zones (see Figure 1b), the magnetically affected
nanostructure is divided to N + 1 distinct parts (i.e., segments) such that the longitudinal dynamic
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displacement of the ith segment are represented by ui = ui(x, t). Using Equation (11), the governing
equations of the first, intermediate, and last segments would be:

[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂2u1

∂x2 =

(ρb Ab + ρ0 A0)

[
1− (e0a)2 ∂2

∂x2

]
∂2u1

∂t2 ; 0 < x < c1,
(12a)

[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂2ui
∂x2 =

(ρb Ab + ρ0 A0)

[
1− (e0a)2 ∂2

∂x2

]
∂2ui
∂t2 ; ci−1 < x < ci,

(12b)

[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)] ∂2uN+1

∂x2 =

(ρb Ab + ρ0 A0)

[
1− (e0a)2 ∂2

∂x2

]
∂2uN+1

∂t2 ; cN < x < 1,
(12c)

where i = 2, 3, . . . , N.
By modeling of the ith locally defect zone by an axial spring of constant ki, the continuity of the

nonlocal axial force at the interface yields the following interface conditions:

ki [ui+1 (ci, t)− ui (ci, t)] =
[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)
+

(e0a)2 (ρb Ab + ρ0 A0)
∂2

∂t2

]
∂ui
∂x

(ci, t); i = 1, 2, . . . , N,
(13a)

[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)
+ (e0a)2 (ρb Ab + ρ0 A0)

∂2

∂t2

]
∂ui
∂x

(ci, t) =[
(Eb Ab + E0 A0) + (η0 A0 + ηb Ab)

(
H2

y + H2
z

)
+ (e0a)2 (ρb Ab + ρ0 A0)

∂2

∂t2

]
∂ui+1

∂x
(ci, t) .

(13b)

The boundary conditions of the fixed–fixed (FIFI) and the fixed–free (FIFR) damaged nanorods
are expressed by:

fixed-fixed (FIFI) : u1(0, t) = 0, uN+1(lb, t) = 0, (14a)

fixed-free (FIFR) :


u1(0, t) = 0, (Eb Ab + E0 A0) + (e0a)2 (ρb Ab + ρ0 A0)

∂2

∂t2

+ (η0 A0 + ηb Ab)
(

H2
y + H2

z

)
 ∂uN+1

∂x
(lb, t) = 0

. (14b)

For the sake of convenience in the dynamical analysis of the nanomechanical problem,
the following dimensionless factors are introduced:

ξ =
x
lb

, ū1 =
u1

lb
, ū2 =

u2

lb
, c̄i =

ci
lb

, µ =
e0a
lb

, τ =
t
lb

√
Eb
ρb

, k̄i =
kilb

Eb Ab
,

χ2
1 =

ρ0 A0

ρb Ab
, χ2

2 =
E0 A0

Eb Ab
, χ2

3 =
η0 A0

ηb Ab
, H̄y = Hy

√
ηb
Eb

, H̄z = Hz

√
ηb
Eb

.

(15)
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where k̄i is the dimensionless damage factor of the ith defect. By introducing Equation (15) to
Equations (12a)–(12c), the dimensionless equations of motion of various portions of the damaged
nanorod take the following form:

(
1 + χ2

1

)(∂2ū1

∂τ2 − µ2 ∂4ūi
∂τ2∂ξ2

)
−
[(

1 + χ2
2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)] ∂2ū1

∂ξ2 = 0; 0 < ξ < c̄1,

(16a)

(
1 + χ2

1

)(∂2ūi
∂τ2 − µ2 ∂4ūi

∂τ2∂ξ2

)
−
[(

1 + χ2
2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)] ∂2ūi
∂ξ2 = 0; c̄i−1 < ξ < c̄i; i = 2, 3, . . . , N,

(16b)

(
1 + χ2

1

)(∂2ūN+1

∂τ2 − µ2 ∂4ūi
∂τ2∂ξ2

)
−
[(

1 + χ2
2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)] ∂2ūN+1

∂ξ2 = 0; c̄N < ξ < 1.

(16c)

Furthermore, by introducing Equation (15) to Equations (13a) and (13b), the dimensionless
boundary conditions of segments at their connection points take the following form:

k̄i [ūi+1 (c̄i, τ)− ūi (c̄i, τ)] =
[(

1 + χ2
2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)
+

µ2
(

1 + χ2
1

) ∂2

∂τ2

]
∂ūi
∂ξ

(c̄i, τ);
(17a)

[(
1 + χ2

2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)
+ µ2

(
1 + χ2

1

) ∂2

∂τ2

]
∂ūi
∂ξ

(c̄i, τ) =[(
1 + χ2

2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)
+ µ2

(
1 + χ2

1

) ∂2

∂τ2

]
∂ūi+1

∂ξ
(c̄i, τ) ,

(17b)

where i = 1, 2, . . . , N. The dimensionless conditions pertinent to the FIFI and FIFR ends could be
written through introducing Equation (15) to Equations (14a) and (14b) as follows:

FIFI : ū1(0, τ) = 0, ūN+1(1, τ) = 0, (18a)

FIFR : ū1(0, τ) = 0,


(

1 + χ2
2

)
+ µ2

(
1 + χ2

1

) ∂2

∂τ2

+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)
 ∂ūN+1

∂ξ
(1, τ) = 0. (18b)

2.4. Frequency Analysis via a Semi-Analytical Methodology

For free vibration analysis of the derived governing equations, we consider the following harmonic
versions of dimensionless longitudinal displacements:

ūi (ξ, τ) = Ūi (ξ) eiv τ ; i = 1, 2, . . . , N + 1, (19)
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in which i=
√
−1, v is the dimensionless frequency (v = ω lb

√
ρb
Eb

), and τ is the dimensionless time

parameter. By substituting Equation (19) into Equations (16a) and (16b), the following second-order
ordinary differential equations are attained:

d2Ū1

dξ2 +

(
1 + χ2

1
)

v2(
1 + χ2

2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
− µ2v2

(
1 + χ2

1
) Ū1 = 0; 0 < ξ < c̄1, (20a)

d2Ūi
dξ2 +

(
1 + χ2

1
)

v2(
1 + χ2

2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
− µ2v2

(
1 + χ2

1
) Ūi = 0; c̄i−1 < ξ < c̄i, (20b)

d2ŪN+1

dξ2 +

(
1 + χ2

1
)

v2(
1 + χ2

2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
− µ2v2

(
1 + χ2

1
) ŪN+1 = 0; c̄N < ξ < 1 (20c)

where i = 2, 3, . . . , N, and in view of Equations (17a) and (17b), the dimensionless interfacial
conditions read:

k̄i Ūi (c̄i) +
((

1 + χ2
2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)
− µ2v2

(
1 + χ2

1

)) dŪi (c̄i)

dξ
= k̄i Ūi+1 (c̄i) , (21a)

dŪi (c̄i)

dξ
=

dŪi+1 (c̄i)

dξ
; i = 1, 2, . . . , N. (21b)

For the FIFI and FIFR boundary conditions (see Equations (18a) and (18b)), the following relations
should be satisfied by the amplitude functions of the constitutive segments of the defected nanorod at
its ends:

FIFI : Ū1 (0) = 0; ŪN+1 (1) = 0, (22a)

FIFR : Ū1 (0) = 0;
dŪN+1 (1)

dξ
= 0. (22b)

By assuming v <

√√√√(
1 + χ2

2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
µ2
(
1 + χ2

1
) , the general solution to Equations (20a)

and (20b) could be readily sought as:

Ūk (ξ) = Ak cos (Λξ) + Bk sin (Λξ) ; k = 1, 2, . . . , N + 1, (23)

where Ak and Bk are the unknown constants, and

Λ =
v
√

1 + χ2
1√(

1 + χ2
2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
− µ2v2

(
1 + χ2

1
) . (24)
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To evaluate these unknowns, the given boundary conditions in Equations (21a), (21b), (22a),
and (22b) should be carefully enforced. By introducing Equation (23) to these conditions, the following
set of eigenvalue relations would be derivable:

Lx = 0, (25)

where
xT =< A1,B1,A2,B2, . . . ,Ai,Bi, . . . ,AN+1,BN+1 >, (26)

and the nonzero elements of the matrix L for the cases of the FIFR and FIFI boundary conditions are
provided in Appendix A. A nontrivial solution to Equation (25) with 2N + 2 unknowns exists if and
only if det L = 0. By solving this nonlinear relation via bisection approach, all natural frequencies of the
nonlocal-surface energetic nanorod with arbitrarily distributed defects could be determined. For the
special case of a magnetically affected nanorod with an individual defect, the explicit expressions
of the characteristic equations as well as the analytical mode shapes pertinent to the FIFI and FIFR
conditions are provided in Appendix B.

3. Establishing an NISM for the Magnetically Affected Defected Nanorods

3.1. Governing Equations Associated with the NISM

In the context of the integral-based version of the nonlocal continuum theory of Eringen [22],
the nonlocal stresses within the solid body (i.e., both BZ and SL) are stated by an integral of the product
of a kernel function and the local stresses over the spatial domain. In fact, the kernels are appropriate
attenuating functions which are not unique, and for one-, two-, and three-dimensional domains have
been introduced by Eringen in his conspicuous book [22]. On the other hand, the applied magnetic
forces on both BZ and SL of the defected nanorod are not conservative at all; actually, these influential
forces are displacement-dependent and they are incorporated into the longitudinal stiffness of the
nanorod. The wholly classical magnetic force applied on both BZ and SL of the defected nanorod is
simply displayed by Equation (5), and the resultant classical force within the nanorod accounting for
both elastic and magnetic axial rigidities is given by Equation (7).

The explanations mentioned above guide us to express the nonlocal-integral stresses within the
SL and BZ of the magnetically affected ith nanorod’s segment in terms of the displacement by:

σnl
b,i(x, t) =

∫
Ωi

Γb(|x∗ − x|; e0a)
(

Eb + ηb

(
H2

y + H2
z

)) ∂ui
∂x

(x∗, t)dΩ∗, (27a)

σnl
s,i(x, t) =

∫
Si

Γs(|x∗ − x|; e0a)
(

E0 + η0

(
H2

y + H2
z

)) ∂ui
∂x

(x∗, t)dS∗, (27b)

where σnl
b,i and σnl

s,i denote the nonlocal stresses of the BZ and the SL of the ith segment, x is
the coordinate of a point from the continuum of the ith nanorod, Γb and Γs represent the kernel
functions pertinent to the BZ and the SL. Finally, dΩ∗ and dS∗ are the volume and surface
of arbitrarily infinitesimal elements from the BZ and the SL, respectively. Let us consider:
Γb = Γb0 g(|x|; e0a) and Γs = Γs0 g(|x|; e0a), where g is an appropriate attenuation function.
By assuming Γb0 = Γ0/Ab and Γs0 = Γ0/A0, the requirement of completeness condition for kernel

functions yields Γ0 =
[∫ ∞
−∞ g(|x∗|; e0a)dx∗

]−1
.

Now by taking into account the uniform longitudinal stress in each cross-section, Equations (27a)
and (27b) are reduced to:

σnl
b,i(x, t) =

∫ lb

0
Γb0 g(|x∗ − x|; e0a)

(
Eb + ηb

(
H2

y + H2
z

)) ∂ui
∂x

(x∗, t)dx∗, (28a)
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σnl
s,i(x, t) =

∫ lb

0
Γs0 g(|x∗ − x|; e0a)

(
E0 + η0

(
H2

y + H2
z

)) ∂ui
∂x

(x∗, t)dx∗. (28b)

The whole nonlocal-integral-based longitudinal force within the ith segment is evaluated by
summing up the integration of the given nonlocal stresses in Equations (28a) and (28b) over the
cross-sections of the BZ and the SL, respectively. Therefore,

Nnl
i (x, t) =

[
(EbAb + E0A0) + (ηbAb + η0A0)

(
H2

y + H2
z

)]
×∫ lb

0
Γ0 g(|x∗ − x|, e0a)

∂ui
∂x

(x∗, t)dx∗.
(29)

By introducing Equation (29) to Equation (8), the nonlocal-integral-partial differential equation of
the ith segment of the magnetically affected nanorod with defects is expressed by:

(ρbAb + ρ0A0)
∂2ui
∂t2 −

∂

∂x


[
(EbAb + E0A0) + (ηbAb + η0A0)

(
H2

y + H2
z

)]
×∫ lb

0
Γ0 g(|x∗ − x|, e0a)

∂ui
∂x

(x∗, t)dx∗

 = 0, (30)

with the following interfacial boundary conditions:

ki [ui+1 (ci, t)− ui (ci, t)] =
[
(EbAb + E0A0) + (ηbAb + η0A0)

(
H2

y + H2
z

)]
×∫ ci

ci−1

Γ0 g(|x∗ − ci|, e0a)
∂ui
∂x

(x∗, t)dx∗; i = 1, 2, . . . , N,
(31a)

∫ ci

ci−1

Γ0 g(|x∗ − ci|, e0a)
∂ui
∂x

(x∗, t)dx∗ =
∫ ci+1

ci

Γ0 g(|x∗ − ci|, e0a)
∂ui+1

∂x
(x∗, t)dx∗, (31b)

while the conditions for FIFI and FIFR nanorods are displayed by:

FIFI : u1(0, t) = 0, uN+1(lb, t) = 0, (32a)

FIFR : u1(0, t) = 0,
∫ lb

cN

g(|x∗ − lb|, e0a)
∂uN+1

∂x
(x∗, t)dx∗ = 0. (32b)

The (N+1) nonlocal-integro-partial differential equations in Equation (30) with the provided
boundary conditions in Equations (31) and (32) furnish us regarding the equations of motion of the
nonlocal-integral-surface energy model with their appropriate conditions. To solve these for natural
frequencies, a finite-element-based approach is proposed in the next part.

3.2. Frequency Analysis via FEM

Let us rewrite Equation (30) in terms of the nonlocal-integral-based axial forces within the
constitutive segments of the magnetically affected-defected nanorod as follows:

(ρ0A0 + ρbAb)
∂2un

∂t2 −
∂Nnl

n
∂x

= 0; n = 1, 2, . . . , N + 1, (33)

where the nonlocal axial forces are displayed by Equation (29). In order to seek harmonic solutions to
these relations, the Galerkin method is applied. By pre-multiplying both sides of Equation (33) by the
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variation of the displacement field of the ith segment, namely δun(x, t), and by integrating the resulted
statement over the length of the nth segment, one can write:

N+1

∑
n=1

{∫ cn

cn−1

[
(ρbAb + ρ0A0) δun

∂2un

∂t2 +
∂δun

∂x
Nnl

n

]
dx−

[
δunNnl

n

]cm

cm−1

}
= 0. (34)

The longitudinal displacements of the constitutive segments (i.e., un; n = 1, 2, . . . , N+1) as well as

their variations can be discretized in terms of the FEM shape functions as: un(x, t) =
NEn

∑
i=1
Un

i (t)Nn
i (x),

in which Nn
i (x) is the vector of shape functions associated with the ith element of the mth segment

(for example, it is a column vector whose size would be 2 for two-nodes-based elements), Un
i (t) denotes

the unknown time-varying vector, and NEn is the number of elements used for discretization of the
longitudinal displacement field of the nth segment. By introducing the recent relation to Equation (34)
through imposing the given boundary conditions in Equations (31) and (32), one can arrive at:

M
d2U
dt2 + KU = 0, (35)

where the vector of the unknown parameters as well as the mass and stiffness matrices are defined by:

U (t) =
{
U 1

1 (t),U 1
2 (t), . . . ,U 1

N1
e
(t), . . . ,UN+1

1 (t),UN+1
2 (t), . . . ,UN+1

NN+1
e

(t)
}T

, (36a)

M =
N+1

∑
n=1

∫ cn

cn−1

(ρbAb + ρ0A0)Nn
i (x)

(
Nn

j

)T
(x)dx, (36b)

K =
N+1

∑
n=1

∫ cn

cn−1

∫ cn

cn−1


[
(EbAb + E0A0) + (ηbAb + η0A0)

(
H2

y + H2
z

)]
×

Γ0 g(|x∗ − x|, e0a)
dNn

i
dx

(x)
d
(

Nn
j

)T

dx
(x∗)

 dx∗dx

+
N

∑
n=1

kn

(
Nn+1

i (cn)−Nn
i (cn)

)((
Nn+1

j

)T
(cn)−

(
Nn

j

)T
(cn)

)

+
2

∑
n=1

αpn

(
N1

i (xn)
(

N1
j

)T
(xn) + NN+1

i (xn)
(

NN+1
j

)T
(xn)

)
,

(36c)

where x1 = 0, x2 = lb, and αpm are the penalty factors used for enforcing the essential
boundary conditions. For the FIFR and FIFI end conditions, we set (αp1 ,αp2) = 108 EbAb(1,0) and
108 EbAb(1,1), respectively.

To investigate the free vibration of the magnetically affected nanorod with multiple defects more
conveniently, we use effectively the dimensionless quantities given in Equation (15). As a result,
the dimensionless set of equations takes the following form:

M̄
d2Ū
dτ2 + K̄ Ū = 0, (37)

where

Ū (τ) =
{
Ū 1

1 (τ), Ū 1
2 (τ), . . . , Ū 1

N1
e
(τ), . . . , ŪN+1

1 (τ), ŪN+1
2 (τ), . . . , ŪN+1

NN+1
e

(τ)
}T

, (38a)
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M̄ =
N+1

∑
n=1

∫ c̄n

c̄n−1

(
1 + χ2

1

)
Nn

i (ξ)
(

Nn
j

)T
(ξ)dξ, (38b)

K̄ =
N+1

∑
n=1

∫ c̄n

c̄n−1

∫ c̄n

c̄n−1


[(

1 + χ2
2

)
+
(

1 + χ2
3

) (
H̄2

y + H̄2
z

)]
×

Γ̄0 g(|ξ∗ − ξ|, µ)
dNn

i
dξ

(ξ)
d
(

Nn
j

)T

dξ
(ξ∗)

 dξdξ∗

+
N

∑
n=1

k̄n

(
Nn+1

i (c̄n)−Nn
i (c̄n)

)((
Nn+1

j

)T
(c̄n)−

(
Nn

j

)T
(c̄n)

)

+
2

∑
n=1

ᾱpn

(
N1

i (ξn)
(

N1
j

)T
(ξn) + NN+1

i (ξn)
(

NN+1
j

)T
(ξn)

)
,

(38c)

and

ξ1 = 0, ξ2 = 1, Ū j
i =
U j

i
lb

, Γ̄0 = Γ0lb, ᾱpm =
αpm

EbAb
. (39)

4. Results and Discussion

Take into account a nanorod made from silver with the following mechanical properties:
Eb = 76 GPa, ρb = 10500 kg/m3, ρ0 = 10−7 kg/m2, E0 = 1.22 N/m, and τ0 = 0.89 N/m. Concerning
the magnetic permeability of such nanorods, the value of this factor for the nanorod’s bulk of silver
is rationally considered to be equal to that of the free space, namely ηb = 1.256637 × 10−7 N/A2.
Furthermore, the magnetic permeability of the SL is assumed to be 1.256637× 10−17 N.m/A2. In the
following, we provide a comparison study, and then, the roles of influential factors on the free vibration
behavior of defected nanorods subjected to transverse magnetic fields are explained and discussed in
some details.

4.1. Several Comparison Studies

4.1.1. A Particular Verification Study

In order to become ensure on some parts of the performed calculations, we compare the predicted
free dynamic response by the proposed model with those of Hsu et al. [82] for the case of the magnetic
field free. These researchers studied longitudinal vibrations of nanorods by developing a nonlocal
model. Herein we established a more sophisticated model accounting for both nonlocality and surface
energy effect as well. In the lack of the surface and nonlocal effects, the predicted results by the
suggested model and those of Hsu et al. [82] have been presented in Table 1 for FIFI-based and
FIFR-based damaged nanorods. As it is seen, there exists a good agreement between the estimated
first six frequencies of the defected nanostructure and those of Hsu et al. [82].

Table 1. Verification of the predicted first six dimensionless frequencies by the proposed
nonlocal-differential-based model and those obtained by the model of Hsu et al. [82] for both fixed–fixed
(FIFI) and fixed–free (FIFR) ends (lb = 20 nm, c1 = 4.004 nm, k̄1 = 8.7413, e0a = 0, χ2

1, χ2
2 = 0, Hy = Hz = 0).

Conditions i 1 2 3 4 5 6

FIFI vi (PS §) 2.9429 6.2236 9.3013 11.5211 14.5149 18.1339
vi [82] 2.9429 6.2236 9.3013 11.5211 14.5149 18.1339

FIFR vi (PS) 1.4278 4.5578 7.8540 10.4472 12.8743 16.2952
vi [82] 1.4278 4.5576 7.8540 10.4486 12.8741 16.2952

§: PS stands for the present work.
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4.1.2. NDSM vs. NISM

To check the proposed NISM using FEM, its natural frequencies are verified with those of NDSM
using the suggested semi-analytical solution. For the NISM based on the FEM, each segment is divided
into 20 identical elements with two nodes at the ends and Hermitian shape functions, the attenuation
function is considered to be: g(x; e0a) = exp(−|x|/(e0a)), and the essential boundary conditions are
imposed by the penalty method as explained in Section 3.2.

In Tables 2 and 3, the predicted first two longitudinal frequencies of the defected nanorod
under the transverse magnetic field with H̄y = H̄z = 1 based on the NDSM and NISM have been
presented for the FIFI and FIFR ends, respectively. The results are provided for four numbers of defects
(i.e., N = 2, 3, 4, and 5) and four nanorod lengths (i.e., lb = 10, 15, 20, 25, and 30 nm). In most of the
cases, the predicted frequencies by the NISM are close to those of the NDSM. A careful scrutiny of
the obtained results for the FIFI-defected nanorod reveals that the relative differences between the
predicted fundamental frequencies by the NDSM and those estimated based on the NISM would
generally reduce by lessening the nanorod’s length or increasing the number of defects. Such a
trend is not exactly right for the predicted second frequencies. Concerning the magnetically affected
nanorod with FIFI ends, these maximum relative differences for the first and second frequencies are
approximately equal to 8.8 and 5.7 percent, which are observed in the cases of (N,lb) = (2,30) and (3,30),
respectively. Regarding the magnetically affected nanorod with FIFR ends, the maximum differences
between the NISM’s results and the NDSM’s results in order are reported to be 20.2 and 6.7 percent for
the first and the second frequencies, in the case of (N,lb) = (6,30). In other cases, the predicted results
by the NISM are very close to those of the NDSM such that the maximum relative differences are lower
than 6 percent.

Tables 4 and 5 display the predicted first three longitudinal frequencies by the NDSM and
NISM for magnetically affected nanorods with the FIFI and FIFR ends, respectively. The results are
given for four defect parameters (i.e., ki = 2, 3, 4, and 5) and four magnetic field strength values
(i.e., H̄y = H̄z = 1, 2, 3, and 4). Generally, the results of the NDSM are so close to those of the NISM
such that the maximum relative differences of the first, second, and third frequencies are lower than
10.5(7.2), 9.36(8.2), and 12.9(7.5) percent for the FIFI(FIFR) defected nanorod. For both FIFR and FIFI
end conditions, the above-mentioned relative differences would increase by growing of the defect
parameter; however, an increase of the magnetic field strength leads to the lessening of the relative
differences between the NDSM’s results and the NISM’s results. A more detailed influence of the
transverse magnetic field on the free vibration of the defected nanorod will be explained and discussed
in an upcoming subsection.

Table 2. A verification between the predicted first two longitudinal frequencies of the magnetically
affected nanorod with FIFI ends according to the nonlocal-differential-surface energy-based model
(NDSM) and those of the nonlocal-integral-surface energy-based model (NISM) (k̄i = 3, D0 = 4 nm,
e0a = 1 nm, H̄y = H̄z = 1).

lb N = 2 N = 3 N = 4 N = 5

(nm) NDSM NISM NDSM NISM NDSM NISM NDSM NISM

10 0.9477 1.0204 0.8024 0.8521 0.7073 0.7448 0.6388 0.6683
2.2301 2.0107 1.4714 1.5521 1.3404 1.4083 1.2307 1.2875

15 0.6341 0.6888 0.5360 0.5736 0.4721 0.5005 0.4262 0.4486
1.5722 1.4625 0.9856 1.0425 0.8971 0.9458 0.8229 0.8637

20 0.4762 0.5196 0.4023 0.4323 0.3543 0.3769 0.3198 0.3377
1.2042 1.1430 0.7404 0.7840 0.6737 0.7115 0.6177 0.6495

25 0.3812 0.4170 0.3220 0.3469 0.2835 0.3023 0.2559 0.2708
0.9730 0.9363 0.5928 0.6281 0.5393 0.5702 0.4944 0.5205

30 0.3178 0.3482 0.2683 0.2896 0.2362 0.2524 0.2132 0.2260
0.8153 0.7923 0.4941 0.5238 0.4495 0.4757 0.4121 0.4342
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Table 3. A verification between the predicted first two longitudinal frequencies of the magnetically
affected nanorod with FIFR ends according to the NDSM and those of the NISM (k̄i = 3, D0 = 4 nm,
e0a = 1 nm, H̄y = H̄z = 1).

lb N = 2 N = 3 N = 4 N = 5

(nm) NDSM NISM NDSM NISM NDSM NISM NDSM NISM

10 0.4173 0.4287 0.3631 0.3756 0.3254 0.3367 0.2974 0.3071
1.1600 1.2215 1.0413 1.0886 0.9473 0.9867 0.8731 0.9064

15 0.2784 0.2898 0.2421 0.2533 0.2170 0.2267 0.1983 0.2065
0.7762 0.8216 0.6960 0.7315 0.6327 0.6621 0.5829 0.6077

20 0.2088 0.2189 0.1816 0.1910 0.1628 0.1708 0.1487 0.1555
0.5828 0.6184 0.5225 0.5507 0.4748 0.4982 0.4374 0.4571

25 0.1671 0.1758 0.1453 0.1532 0.1302 0.1372 0.1190 0.1235
0.4665 0.4957 0.4181 0.4415 0.3800 0.3994 0.3500 0.3659

30 0.1393 0.1468 0.1211 0.1246 0.1085 0.1025 0.0992 0.1243
0.3889 0.4136 0.3485 0.3676 0.3167 0.3303 0.2917 0.3127

Table 4. A verification between the predicted first three longitudinal frequencies of the magnetically
affected nanorod with FIFI ends according to the NDSM and those of the NISM (lb = 20 nm, N = 3,
D0 = 4 nm, e0a = 1 nm).

H̄y k̄i = 2 k̄i = 3 k̄i = 4 k̄i = 5

NDSM NISM NDSM NISM NDSM NISM NDSM NISM

1 0.3434 0.3610 0.4023 0.4323 0.4456 0.4886 0.4790 0.5354
0.6216 0.6453 0.7404 0.7840 0.8311 0.8981 0.9031 0.9963
1.5239 1.3700 1.5609 1.4172 1.5947 1.4633 1.6253 1.5082

2 0.3663 0.3726 0.4414 0.4528 0.5016 0.5188 0.5522 0.5756
0.6447 0.6523 0.7827 0.7968 0.8959 0.9176 0.9927 1.0232
2.5658 2.2804 2.5903 2.3081 2.6141 2.3358 2.6374 2.3633

3 0.3727 0.3758 0.4529 0.4585 0.5189 0.5275 0.5758 0.5875
0.6506 0.6542 0.7936 0.8002 0.9127 0.9228 1.0162 1.0305
3.6977 3.2780 3.7151 3.2971 3.7322 3.3162 3.7492 3.3353

4 0.3752 0.3770 0.4575 0.4607 0.5259 0.5309 0.5853 0.5922
0.6529 0.6549 0.7977 0.8015 0.9190 0.9248 1.0251 1.0332
4.8577 4.3023 4.8710 4.3168 4.8842 4.3313 4.8974 4.3458

Table 5. A verification between the predicted first three longitudinal frequencies of the magnetically
affected nanorod with FIFR ends according to the NDSM and those of the NISM (lb = 20 nm, N = 3,
D0 = 4 nm, e0a = 1 nm).

H̄y k̄i = 2 k̄i = 3 k̄i = 4 k̄i = 5

NDSM NISM NDSM NISM NDSM NISM NDSM NISM

1 0.1542 0.1599 0.1816 0.1910 0.2022 0.2153 0.2184 0.2352
0.4407 0.4567 0.5225 0.5507 0.5846 0.6265 0.6343 0.6908
0.6552 0.6752 0.7860 0.8227 0.8888 0.9451 0.9731 1.0512

2 0.1634 0.1656 0.1972 0.2011 0.2245 0.2302 0.2476 0.2552
0.4614 0.4669 0.5587 0.5687 0.6380 0.6531 0.7054 0.7263
0.6735 0.6800 0.8194 0.8314 0.9398 0.9583 1.0438 1.0696

3 0.1661 0.1671 0.2019 0.2038 0.2315 0.2344 0.2571 0.2610
0.4671 0.4697 0.5689 0.5737 0.6534 0.6608 0.7266 0.7368
0.6782 0.6812 0.8280 0.8336 0.9531 0.9618 1.0623 1.0745

4 0.1671 0.1677 0.2038 0.2049 0.2344 0.2361 0.2609 0.2633
0.4692 0.4708 0.5729 0.5757 0.6595 0.6637 0.7350 0.7409
0.6799 0.6817 0.8313 0.8345 0.9582 0.9632 1.0694 1.0763
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4.2. Effect of the Nonlocality

In Figure 2a, the plots of the first three frequencies of the magnetically affected nanobars with
defects under FIFI and FIFR boundary conditions as a function of the nonlocal parameter have been
demonstrated. The main aim of these plots is to show how the nonlocality influences on the softening
behavior of the defected nanostructure for three damage level of the single defect (i.e., k̄1 = 4, 8,
and 10,000) in the lack of the surface effect (i.e., χ1 = χ2 = 0). By increasing the stiffness of the
local defect, the natural frequencies would increase. This fact is more obvious for higher frequencies.
Additionally, the variation of the defect parameter is more influential on the nanorod’s frequencies with
lower nonlocality. This fact is mainly related to reducing the nanorod’s axial stiffness due to an increase
in e0a. Figure 2b displays the influence of the e0a on the fundamental frequencies based on the NET
and the NSET. According to the plotted results, the predicted fundamental frequencies by the NSET are
greater than those of the NET, irrespective of the considered e0a. This fact is ascertained to the positive
incorporation of the surface axial rigidity into the elastic strain energy of the defected nanobars.
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Figure 2. The first three frequencies as a function of e0a for: (a) different defect parameters: (χ2
1, χ2

2 = 0,
c1 = 8 nm; (−.−) ω1, (−−) ω2, (—) ω3; (�) k̄1 = 4, (♦) k̄1 = 8, (4) k̄1 = 10,000), (b) both nonlocal
elasticity theory (NET)-based and nonlocal surface elasticity theory (NSET)-based models; (lb = 20 nm,
D0 = 0.5 nm, c1 = 8 nm, k̄1 = 4, N = 1, H̄y = H̄z = 0.1; (−−) NET, (—) NSET).

4.3. Effect of the Defect’s Location

We are also interested in examining the role of the location of the local defect on the free vibration
behavior of the defected nanobars. In doing so, in Figure 3a, for a constant value of the defect’s
axial stiffness, the plots of the fundamental frequency as a function of defect’s location have been
graphed for three nonlocal factors (i.e., e0a = 0, 1, and 2 nm) in the lack of surface energy. As seen,
the nanostructure’s fundamental frequency enlarges as the defect approach to the center of the FIFI
nanorod. For FIFR nanorods, the fundamental frequency would lessen by approaching to its free end.
As a general conclusion, as the defect becomes far away from the nanorod’s supports, the nanorod
becomes stiffer, and its natural frequencies would grow. This fact is because the elastic strain energy of
the defected nanorod with a defect near the support is lesser than that whose defect is father. This issue
is valid for each value of e0a. Furthermore, irrespective of the defect’s location, the fundamental
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frequency of FIFI and FIFR nanobars lessens by increasing the nonlocality. Such a fact is more
obvious for defected nanorods whose defects are farther from the support. In Figure 3b, the predicted
fundamental frequencies of the defected nanorod with FIFI and FIFR ends based on the SET and the
NSET have been demonstrated as a function of the defect’s location. The plotted results clearly display
that the surface energy’s role on the free vibration behavior of the FIFI nanorods reaches its maximum
when the nanorod becomes defected at its midspan point. By approaching the defect to the nanorods
supports, the relative discrepancies between the results of the NSET and those of the NET would
reduce, and the influence of the surface energy on the vibrational response of the FIFI nanorod lessens.
This fact also holds valid for nanorods with FIFR ends such that the maximum influence of the surface
energy on the free vibration behavior of the nanostructure is observed when the defect occurs close to
the free end. Additionally, in the case of the FIFI end conditions, the predicted natural frequencies by
the NSET are greater than those of the NET for all locations of the local defect. However, in the case of
the FIFR ends when the defect is fairly close to the fixed-end (i.e., c < 5 nm), the estimated fundamental
frequency by the NET is greater than that obtained by the NSET. For c > 5 nm, the results of the NSET
are commonly greater than those of the NET and their discrepancies reach to their maximum level
when the defect approaches to the free end.
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Figure 3. The fundamental frequency in terms of the single defect’s location for: (a) three values of e0a;
((−.−) e0a = 0, (−−) e0a = 1 nm, (—) e0a = 2 nm; k̄1 = 4, χ2

1, χ2
2 = 0), (b) both NET-based and NSET-based

models; (lb = 20 nm, D0 = 0.5 nm, e0a = 2 nm, k̄1 = 4, N=1, H̄y = H̄z = 0.1; (−−) NET, (—) NSET).

4.4. Effect of the Nanorod’s Diameter

For three small-scale parameters (i.e., e0 a = 0, 1, and 2 nm), the graphs of the fundamental
frequency in terms of the defected nanorod’s diameter have been provided in Figure 4a for the cases of
the FIFI and FIFR conditions. The predicted results are based on the NET and the NSET in the case
of c1 = 8 nm and k̄1 = 4. For a given small-scale parameter, the NET displays that the variation of the
diameter of the defected nanorod does not influence on the variation of its fundamental frequency.
However, the plotted results based on the NSET obviously show that the fundamental frequency would
decrease by reducing the nanorod’s diameter. Factually, the ratio of the surface to the volume of the
defected nanorod would reduce as its diameter increases, and thereby, the effect of the surface energy
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on the free vibration behavior of the nanostructure diminishes by growing the nanorod’s diameter.
This important issue could not be displayed by the suggested model by Hsu et al. [82]. Figure 4b
demonstrates variation of the fundamental frequencies of both FIFI and FIFR defected nanorods as
a function of the diameter for several locations of the defect based on the NET and the NSET. As it is
seen, the relative discrepancies between the results of the NSET and those of the NET would increase
as the nanorod’s becomes thinner and the distance of the defect from the support increases. It implies
that the need for consideration of the surface energy intensifies as the defect approaches to the support
of the nanorod. Furthermore, for all considered locations of the defect, the predicted results by the
NSET would approach to those of the NET as the diameter of the locally defected nanorod increases.
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Figure 4. The fundamental frequency as a function of the defected nanorod’s diameter with and
without considering the surface effect for: (a) different values of e0a; ((−.−) e0a = 0, (−−) e0a = 1 nm,
(—) e0a = 2 nm; c1 = 8 nm, k̄1 = 4; (♦) χ2

1, χ2
2 = 0; (�) χ2

1, χ2
2 6= 0), (b) different locations of the single

defect; (lb = 20 nm, e0a = 2 nm, k̄1 = 4, N = 1, H̄y = H̄z = 0.1; (�) c1 = 2, (4) c1 = 6, (∇) c1 = 8 nm,
(◦) c1 = 10 nm; (−−) NET, (—) NSET).

4.5. Effect of the Magnetic Field Strength

The role of the magnetic field strength on the free vibration of the defected nanorod is investigated
in this part. Figure 5a shows fundamental frequencies of the FIFI and FIFR nanorods vs. magnetic field

strength. The derived results are graphed in the case of Hy = Hz, three uniform defects (i.e., c̄i =
i
4

),
and for three defect factors (i.e., k1 = 4, 8, and 16). According to the presented results, two distinct
branches are detectable. In the first branch, the predicted fundamental frequency by both NET and
NSET grows by growing the magnetic field strength. Further, the influence of the defect parameter on
the plots’ growth is so apparent; actually, the variation of the magnetic field strength on the variation of
the fundamental frequency of defected nanorods with a higher defect factor is more noticeable. For the
magnetic field strength greater than a particular value, the fundamental frequency of the defected
nanorod trivially varies by enlarging the magnetic field strength. This is the main characteristic
of the second branch, and the aforementioned particular value strongly relies on the defect factor.
The demonstrated results indicate that a higher defect factor results in a higher particular value.
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Figure 5b shows the plots of fundamental frequencies in terms of the magnetic field strength for
three configurations of the uniform defects (i.e., N = 3, 4, and 5) in the case of ki = 4. Irrespective of
the applied magnetic field, the frequency reduces by increasing the number of defects. In the second
branch (i.e., a magnetic field greater than a specific value), such a reduction rate is slightly affected by
the strength of the magnetic field. However, in the first branch, the amount of reduction in fundamental
frequency due to an increase in the number of defects depends on the magnetic field strength.
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Figure 5. The fundamental frequency in terms of the magnetic field strength with and without
considering the surface effect: (a) different defect parameters; ((◦) k̄1 = 4, (�) k̄1 = 8, (4) k1 = 16; N = 3),
(b) different number of defects; ((◦) N = 2, (�) N = 3, (4) N = 4; ki = 4); (e0a = 1 nm, lb = 20 nm,
D0 = 1 nm; (−−) NET, (—) NSET).

4.6. Effect of the Number of Defects

The influence of the number of local defects on the vibration behavior of the magnetically affected
nanorod is of great interest. In Figure 6a, the plotted results of the fundamental frequency in terms of

the number of uniformly caused defects (i.e., c̄i =
i

N + 1
; i = 1, 2, . . . , N along the nanorod for three

defect factors (i.e., k̄i = 4, 8, and 16) are presented. As it is seen, the fundamental frequency of the
defected nanorod decreases by an increase in the number of local defects for all considered levels of the
defect factors. For a given number of defects, the fundamental frequency grows by increasing the defect
factor. Additionally, the plotted results based on the NSET are higher than those demonstrated based
on the NET for most cases. By increasing the number of uniformly caused defects, the slopes of the
plots reduce, irrespective of the defect factor. Actually, the variation of the defects’ number for a lower
number of defects is more influential on the axial vibration of the magnetically affected nanorod. It is
anticipated that the fundamental frequency of the defected nanostructure approaches to a constant
whose value is chiefly influenced by the defect factor and magnetic field strength. Such a fact holds
correct for both FIFI and FIFR defected nanorods. This issue guides us that the transverse magnetic
field could be effectively employed for controlling axial vibration of fully defected nanorods.

Figure 6b displays the influence of the number of defects on the first three dominant natural
frequencies of the magnetically affected defected nanorod for both FIFI and FIFR boundary conditions.
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The considered frequencies generally reduce as the number of defects reduces. The rate of reduction is
more obvious for higher vibrational frequencies.
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Figure 6. The natural frequencies as a function of the number of uniformly placed defects with and
without considering the surface effect: (a) fundamental frequency for different defect parameters;
((◦) k̄i = 4, (�) k̄i = 8, (4) ki = 16) (b) first, second, and third frequencies for the case of k̄i = 4; ((◦) ω1,

(�) ω2, (4) ω3; lb = 20 nm, D0 = 1 nm, e0a = 1 nm, c̄i =
i

N + 1
, H̄y = H̄z = 0.5; (−−) NET, (—) NSET).

5. Conclusions

Longitudinal vibrations of FIFI and FIFR defected nanorods in the presence of transverse magnetic
field were investigated using the nonlocal-differential/integral continuum-based theory of Eringen
and the surface elasticity theory of Gurtin–Murdoch. By considering a linear spring model for the
locally defected zones of the nanorod, the nanostructure was divided into appropriate segments.
By enforcing the appropriate nonlocal-surface energy-based conditions at the interfaces as well as
the ends, the explicit dispersion relations for locally defected nanorods with FIFI and FIFR could be
derived. In the case of a single defect, their corresponding mode shapes were displayed as well, and in
the absence of both magnetic field and surface energy, the results of the nonlocal-differential-based
model were successfully verified with those of other research work. Additionally, the nonlocal-integral
equations of motion of the magnetically affected rod-like nanostructure were displayed and solved by
employing the finite-element method. For a particular kernel function, the predicted results by the
nonlocal-integral formulations are compared with those of the nonlocal-differential model. The roles of
the nonlocality, stiffness, and location of the local defects, number of defects, surface energy, diameter,
and magnetic field strength on the natural frequencies of the defected nanorods were explained in
some detail.

One of the crucial findings of this work is to reveal the shortcoming of the
nonlocal-differential-based formulations in capturing the free vibration behavior of the locally defected
nanorods based on the nonlocal-integral formulations. Another major finding is that, beyond the
nonlocality, the surface effect should also be considered in the modeling of the axial vibration of
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defected nanorod structures. This matter becomes more crucial as the diameter of the defected nanorod
or the distance between the defect and the support decreases.
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Appendix A. The Elements of the L Matrix

For the case of the FIFI condition, the nonzero elements of the matrix L are as,

L11 = 1, L2(2N+1) = cos(Λ), L2(2N+2) = sin(Λ),

L(2i+1)(2i−1) = − sin(Λc̄i), L(2i+1)(2i) = cos(Λc̄i),

L(2i+1)(2i+1) = sin(Λc̄i), L(2i+1)(2i+2) = − cos(Λc̄i),

L(2i+2)(2i−1) = k̄i cos(Λc̄i)−v
√

1 + χ2
1

×
√(

1 + χ2
2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
−v2µ2(1 + χ2

1) sin(Λc̄i),

L(2i+2)(2i) = k̄i sin(Λc̄i) + v
√
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×
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1 + χ2
2
)
+
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3
) (
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z

)
−v2µ2(1 + χ2

1) cos(Λc̄i),

L(2i+2)(2i+1) = −k̄i cos(Λc̄i), L(2i+2)(2i+2) = −k̄i sin(Λc̄i),

(A1)

and in the case of the FIFR condition, the nonvanishing elements of L are given by:

L11 = 1, L2(2N+1) = − sin(Λ), L2(2N+2) = cos(Λ),
L(2i+1)(2i−1) = − sin(Λc̄i), L(2i+1)(2i) = cos(Λc̄i),

L(2i+1)(2i+1) = sin(Λc̄i), L(2i+1)(2i+2) = − cos(Λc̄i),

L(2i+2)(2i−1) = k̄i cos(Λc̄i)−v
√
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1
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1) cos(Λc̄i),

L(2i+2)(2i+1) = −k̄i cos(Λc̄i), L(2i+2)(2i+2) = −k̄i sin(Λc̄i).

(A2)

Appendix B. Frequencies and Vibration Modes of a Magnetically Affected Nanorod with a
Single Defect

Using Equation (23), the amplitude functions of the doubly constitutive portions of
the locally defected nanorod under action of the transverse magnetic field are given by:
Ū1 (ξ) = A1 cos (Λξ) + B1 sin (Λξ) and Ū2 (ξ) = A2 cos (Λξ) + B2 sin (Λξ). In the following parts,
we proceed in analytical solution of the free vibration of the problem for both FIFI and FIFR ends.
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Appendix B.1. FIFI Boundary Conditions

Through satisfying the given conditions in Equations (21a), (21b), and (22a), the following set of
algebraic equations is gained:
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(A3)

A solution to Equation (A3) can be sought by setting the coefficient matrix determinant equal to
zero. By doing so, the dispersion relation (i.e., characteristic equation) takes the following form:
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(A4)

and the vibration mode shapes (i.e., amplitude functions) are stated by:

Ū1 (ξ) = B1 sin
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Ū2 (ξ) = A2 sin

 v
√

1 + χ2
1 (1− ξ)√(

1 + χ2
2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
− µ2v2

(
1 + χ2

1
)
 . (A5b)

In the particular case of the removal of the local defect from the nanorod (i.e., k → ∞),
the nonlocal-surface energetic-natural frequencies of the FIFI nanorod in the dimensionless form
are evaluated from Equation (A4) as follows:

vsnl
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) ; m = 1, 2, ... (A6)
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and by ignoring both nonlocality and surface effects, the dimensionless-classical natural frequencies of
the perfect nanorod are readily given by: vcl

m = mπ. To show the roles of these effects on the classical
natural frequencies, the frequency ratio (FR) factor is defined by:
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vsnl
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) . (A7)

Appendix B.2. FIFR Boundary Conditions

By enforcing the conditions in Equations (21a), (21b), and (22b),
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The requirement of non-zero free dynamic response leads to the dispersion relation of the
magnetically affected FIFR nanorod with a locally defected zone as follows:
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and the corresponding mode shapes are written as:
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Ū2 (ξ) = A2 cos

 v
√

1 + χ2
1 (1− ξ)√(

1 + χ2
2
)
+
(
1 + χ2

3
) (

H̄2
y + H̄2

z

)
− µ2v2

(
1 + χ2

1

)
 (A10b)

As a particular case, for a perfect nanorod (i.e., k1 → ∞), the dimensionless natural frequencies
for the FIFR condition are calculated from Equation (A9) as:
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and the frequency ratio is given by:
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62. Kiani, K.; Żur, K.K. Vibrations of double-nanorod-systems with defects using nonlocal-integral-surface
energy-based formulations. Compos. Struct. 2020, 256, 113028. [CrossRef]

63. Hosseini-Hashemi, S.; Nahas, I.; Fakher, M.; Nazemnezhad, R. Surface effects on free vibration of
piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 2014, 225, 1555–1564.
[CrossRef]

64. Hosseini-Hashemi, S.; Nazemnezhad, R.; Bedroud, M. Surface effects on nonlinear free vibration of
functionally graded nanobeams using nonlocal elasticity. Appl. Math. Model. 2014, 38, 3538–3553. [CrossRef]

65. Attia, M.A.; Mahmoud, F.F. Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity
and surface energy theories. Int. J. Mech. Sci. 2016, 105, 126–134. [CrossRef]

66. Ghadiri, M.; Shafiei, N.; Akbarshahi, A. Influence of thermal and surface effects on vibration behavior of
nonlocal rotating Timoshenko nanobeam. Appl. Phys. A 2016, 122, 673. [CrossRef]

67. Attia, M.A. On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int. J.
Eng. Sci. 2017, 115, 73–101. [CrossRef]

68. Zhang, L.L.; Liu, J.X.; Fang, X.Q.; Nie, G.Q. Effects of surface piezoelectricity and nonlocal scale on wave
propagation in piezoelectric nanoplates. Eur. J. Mech. A-Solid. 2014, 46, 22–29. [CrossRef]

69. Karimi, M.; Haddad, H.A.; Shahidi, A.R. Combining surface effects and non-local two variable refined
plate theories on the shear/biaxial buckling and vibration of silver nanoplates. IET Micro Nano Lett. 2015,
10, 276–281. [CrossRef]

70. Wang, W.; Li, P.; Jin, F.; Wang, J. Vibration analysis of piezoelectric ceramic circular nanoplates considering
surface and nonlocal effects. Compos. Struct. 2016, 140, 758–775. [CrossRef]

http://dx.doi.org/10.1063/1.4754603
http://dx.doi.org/10.1007/BF00261375
http://dx.doi.org/10.1016/0020-7683(78)90008-2
http://dx.doi.org/10.1063/1.322403
http://dx.doi.org/10.1016/0022-5096(76)90023-5
http://dx.doi.org/10.1088/0957-4484/11/3/301
http://dx.doi.org/10.1016/j.ijengsci.2011.01.007
http://dx.doi.org/10.1088/0957-4484/22/24/245703
http://www.ncbi.nlm.nih.gov/pubmed/21508448
http://dx.doi.org/10.1088/0022-3727/44/7/075404
http://dx.doi.org/10.1088/0022-3727/45/28/285301
http://dx.doi.org/10.1016/j.physe.2011.12.006
http://dx.doi.org/10.1016/j.compositesb.2013.04.023
http://dx.doi.org/10.1016/j.physleta.2014.04.039
http://dx.doi.org/10.1016/j.tws.2015.03.013
http://dx.doi.org/10.1088/0964-1726/23/3/035020
http://dx.doi.org/10.1016/j.compstruct.2015.11.059
http://dx.doi.org/10.1016/j.compstruct.2020.113028
http://dx.doi.org/10.1007/s00707-013-1014-z
http://dx.doi.org/10.1016/j.apm.2013.11.068
http://dx.doi.org/10.1016/j.ijmecsci.2015.11.002
http://dx.doi.org/10.1007/s00339-016-0196-3
http://dx.doi.org/10.1016/j.ijengsci.2017.03.011
http://dx.doi.org/10.1016/j.euromechsol.2014.01.005
http://dx.doi.org/10.1049/mnl.2014.0651
http://dx.doi.org/10.1016/j.compstruct.2016.01.035


Nanomaterials 2020, 10, 2306 26 of 26

71. Lu, L.; Guo, X.; Zhao, J. On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy.
Int. J. Eng. Sci. 2018, 124, 24–40. [CrossRef]

72. Zhu, X.; Li, L. On longitudinal dynamics of nanorods. Int. J. Eng. Sci. 2017, 120, 129–145. [CrossRef]
73. Apuzzo, A.; Barretta, R.; Faghidian, S.A.; Luciano, R.; De Sciarra, F.M. Nonlocal strain gradient exact

solutions for functionally graded inflected nano-beams. Compos. Part B-Eng. 2019, 164, 667–674. [CrossRef]
74. Barretta, R.; de Sciarra, F.M. Variational nonlocal gradient elasticity for nano-beams. Int. J. Eng. Sci. 2019,

143, 73–91. [CrossRef]
75. Murmu, T.; McCarthy, M.A.; Adhikari, S. Nonlocal elasticity based magnetic field affected vibration response

of double single-walled carbon nanotube systems. J. Appl. Phys. 2012, 111, 113511. [CrossRef]
76. Kiani, K. Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field.

J. Phys. Chem. Solid. 2014, 75, 15–22. [CrossRef]
77. Ansari, R.; Hasrati, E.; Gholami, R.; Sadeghi, F. Nonlinear analysis of forced vibration of nonlocal third-order

shear deformable beam model of magneto–electro–thermo elastic nanobeams. Compos. Part B-Eng. 2015,
83, 226–241. [CrossRef]

78. Murmu, T.; McCarthy, M.A.; Adhikari, S. In-plane magnetic field affected transverse vibration of embedded
single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. 2013, 96, 57–63.
[CrossRef]

79. Ke, L.L.; Wang, Y.S.; Yang, J.; Kitipornchai, S. Free vibration of size-dependent magneto-electro-elastic
nanoplates based on the nonlocal theory. Acta Mech. Sin. 2014, 30, 516–525. [CrossRef]

80. Murmu, T.; Adhikari, S.; McCarthy, M.A. Axial vibration of embedded nanorods under transverse magnetic
field effects via nonlocal elastic continuum theory. J. Comput. Theor. Nanosci. 2014, 11, 1230–1236. [CrossRef]
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