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Abstract: The buckling behavior of functionally graded carbon nanotube reinforced composite
conical shells (FG-CNTRC-CSs) is here investigated by means of the first order shear deformation
theory (FSDT), under a combined axial/lateral or axial/hydrostatic loading condition. Two types
of CNTRC-CSs are considered herein, namely, a uniform distribution or a functionally graded
(FG) distribution of reinforcement, with a linear variation of the mechanical properties throughout
the thickness. The basic equations of the problem are here derived and solved in a closed form,
using the Galerkin procedure, to determine the critical combined loading for the selected structure.
First, we check for the reliability of the proposed formulation and the accuracy of results with respect
to the available literature. It follows a systematic investigation aimed at checking the sensitivity of
the structural response to the geometry, the proportional loading parameter, the type of distribution,
and volume fraction of CNTs.
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1. Introduction

Conical shells are well known to play a key role in many applications, including aviation, rocket
and space technology, shipbuilding and automotive, energy and chemical engineering, as well as
industrial constructions. In such contexts, carbon nanotubes (CNTs) have increasingly attracted
the attention of engineers and designers for optimization purposes, due to their important physical,
chemical, and mechanical properties. The shell structures reinforced with CNTs, indeed, are lightweight
and resistant to corrosion and feature a high specific strength, with an overall simplification in their
manufacturing, transportation, and installation processes.

In many engineering and building structures, shells are subjected to a simultaneous action
of different loads, such as a combined compressive force and external pressure, which can affect
significantly their global stability, as observed in the pioneering works [1–5], within a parametric study
of the buckling response for homogeneous composite cylindrical and conical shells subjected to a
combined loading (CL). Among the novel class of composite functionally graded materials (FGMs),
the first studies on the buckling response of FGM-based shells subjected to a CL can be found in [6]
and [7], for cylindrical and conical shells, as well as in [8–14] for different shell geometries and
boundary conditions, while considering different theoretical approaches. Moreover, the increased
development of nanotechnology has induced a large adoption of nano-scale materials, e.g., CNTs,
in many engineering systems and devices, discovered experimentally by Iijima [15] in 1991 during
the production of fullerene by arc discharge evaporation. It is known from the literature, indeed,
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that the generation of CNTs is strictly related to the creation and evaporation of fullerene, which is
decomposed into graphene to yield different types of CNTs. The tubes obtained by graphite with
the arc-evaporation process become hollow pipes when the graphite layer, i.e., graphene, turns into
a cylindrical shape [16,17]. Improving the properties of materials through a reinforcement phase is
one of the most relevant topics in modern materials science (metamaterials, heterogeneous materials,
architectured materials etc.) [18–20]. The outstanding mechanical, electrical, and thermal properties of
FG CNTs make them very attractive for many current and future engineering applications, more than
conventional carbon fiber reinforced composites [21–23]. The modern technology has also allowed a
combined use of FGMs and CNTs in various structural elements, which is reflected in the introduction
of a great number of advanced theoretical and numerical methods to solve even more complicated
problems, with a special focus on mesh-free methods [24–32].

Among the available literature, the formulation and solution of the buckling and postbuckling
problems of carbon nanotube reinforced composite (CNTRC)-cylindrical shells under a CL, was
introduced for the first time by Shen and Xiang [33], followed by Sahmani et al. [34] for composite
nanoshells, including the effect of surface stresses at large displacements, and by the instability study
in [35] for rotating FG-CNTRC-cylindrical shells. In the literature, however, many works focusing
on the buckling behavior of FG-CNTRC-shells consider the separate action of axial or lateral loads,
see [36–44], whereas limited attention has been paid, up to date, to a CL condition. This aspect is
considered in the present work for FG-CNTRC-conical shells, whose problem is solved in a closed
form through the Galerkin method. A systematic study is performed to evaluate the sensitivity of
the buckling response to the geometry, loading condition, distribution, and volume fraction of the
reinforcing CNTs, which could be of great interest for design purposes.

The paper is structured as follows: in Section 2 we present the basic formulation of the problem,
whose governing equations are presented in Section 3, and solved in closed form in Section 4. The
numerical results from the parametric investigation are analyzed in Section 5, while the concluding
remarks are discussed in Section 6.

2. Formulation of the Problem

Let us consider an FG-CNTRC truncated conical shell, with length L, half-vertex angle γ, end
radii R1 and R2 (with R1 < R2), and thickness h, as schematically depicted in Figure 1, along
with the displacement components u, v, and w of an arbitrary point at the reference surface. The
FG-CNTRC-conical shells (CSs) are subjected to a combined axial compression and uniform external
pressures, as follows:

Nx0 = −Tax − 0.5xP1 tanγ, Nθ0 = −xP2 tanγ, Nxθ0 = 0 (1)

where Nx0, Nθ0, Nxθ0 are the membrane forces for null initial moments, Tax is the axial compression,
and P j( j = 1, 2) stands for the uniform external pressures.

If the external pressures in Figure 1 consider only the lateral pressure, it is Tax = P1 = 0 and
P2 = PL, whereas for a hydrostatic pressure, it is assumed Tax = 0 and P1 = P2 = PH.

In the following formulation, we consider the volume fraction of CNTs and matrix, denoted by
VCN and Vm, respectively, with normal and shear elastic properties ECN

11 , ECN
22 , GCN

12 , for CNTs, and Em,
Gm, for the matrix, and efficiency parameters η j( j = 1, 2, 3) for CNTs. Thus, the mechanical properties
of CNTRC-CSs can be expressed, according to an improved mixture rule [33], as follows:

E11 = η1VCNECN
11 + VmEm, η2

E22
=

VCN
ECN

22
+ Vm

Em , η3
G12

=
VCN
GCN

12
+ Vm

Gm , G13 = G12, G23 = 1.2G12

(2)
where the volume fraction of CNTs and matrix are related as VCN + Vm = 1.
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Figure 1. The functionally graded carbon nanotube reinforced composite conical shell (FG-CNTRC-
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Figure 1. The functionally graded carbon nanotube reinforced composite conical shell (FG-CNTRC-CS)
subjected to a combined loading (CL).

The volume fraction of the FG-CNTRC-CS is assumed as follows:

VCN = (1− 2z)V∗CN for FG−V

VCN = (1 + 2z)V∗CN for FG−Λ

VCN = 4
∣∣∣z∣∣∣V∗CN for FG−X, z = z/h

(3)

where V∗CN is the volume fraction of the CNT, expressed as

V∗CN =
wCN

wCN + (ρCN/ρm) − (ρCN/ρm)wCN
(4)

whereby the mass fraction of CNTs is denoted by wCN, and the density of CNTs and matrix are defined
as ρCN and ρm, respectively. In our case, for a uniform distribution (UD)-CNTRC-CSs, it is VCN = V∗CN.
The Poisson’s ratio is defined as

µ12 = V∗CNµ
CN
12 + Vmµ

m (5)

The topologies of UD- and FG-CNTRC-CSs are shown in Figure 2.
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3. The Governing Equations

Based on the first order shear deformation theory (FSDT), the constitutive stress–strain relations
for FG-CNTRC-CSs are expressed as follows:

τx

τθ
τxz

τθz
τxθ


=



E11(z) E12(z) 0 0 0
E21(z) E22(z) 0 0 0

0 0 E44(z) 0 0
0 0 0 E55(z) 0
0 0 0 0 E66(z)




εx

εθ
γxz

γθz
γxθ


(6)

where τi j(i, j = x,θ, z), ε j j( j = x,θ), and γi j(i, j = x,θ, z) are the stress and strain tensors of
FG-CNTRC-CSs, respectively, and the coefficients Ei j(z), (i, j = 1, 2, 6) are defined as

E11(z) =
E11(z)

1−µ12µ21
, E22(z) =

E22(z)
1−µ12µ21(z)

E12(z) =
µ21E11(z)
1−µ12µ21

=
µ12E22(z)
1−µ12µ21

= E21(z),

E44(z) = G23(z), E55(z) = G13(z), E66(z) = G12(z)

(7)

The shear stresses of FG-CNTRC-CSs vary throughout the thickness direction as follows [45,46]:

τz = 0, τxz =
du1(z)

dz ϕ1(x,θ), τθz =
du2(z)

dz ϕ2(x,θ) (8)

whereϕ1(x,θ) andϕ2(x,θ) are the rotations of the reference surface about the θ and x axes, respectively,
and u1(z) and u2(z) refer to the shear stress shape functions.

By combining Equations (6) and (8), we get the following strain relationships:
εx

εθ

γxθ


=


ex − z∂

2w
∂x2 + F1(z)

∂ϕ1
∂x

eθ − z
(

1
x2
∂2w
∂α2 + 1

x
∂w
∂x

)
+ F2(z) 1

x
∂ϕ2
∂α

γ0xθ − 2z
(

1
x
∂2w
∂x∂α −

1
x2
∂w
∂α

)
+ F1(z) 1

x
∂ϕ1
∂α + F2(z)

∂ϕ2
∂x

 (9)

where α = θ sinγ and ex, eθ, γ0xθ stand for the strain components at the reference surface, and F1(z),
F2(z) are defined as

F1(z) =
z∫

0

1
E55(z)

du1
dz dz, F2(z) =

z∫
0

1
E44(z)

du1
dz dz (10)

The internal actions can be defined in approximate form as follows [46–48]:

(
Ni j, Qi, Mi j

)
=

h/2∫
−h/2

(
τi j, τiz, zτi j

)
dz, (i, j = x,θ) (11)

By introducing the Airy stress function (Φ) satisfying [45,47], Equation (11) becomes as follows:

(Nx, Nθ, Nxθ) = h
[

1
x

(
1
x
∂2

∂α2 +
∂
∂x

)
,
∂2

∂x2 ,−
1
x

(
∂2

∂x∂α
−

1
x
∂
∂α

)]
Φ (12)

By using Equations (6), (9), (11), and (12), we obtain the expressions for force, moment, and strain
components in the reference surface, which are then substituted in the stability and compatibility
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equations [45,47] to obtain the following governing differential equations for FG-CNTRC-CSs under a
CL, with independent parameters Φ, w, ϕ1, ϕ2, i.e.,

L11Φ + L12w + L13ϕ1 + L14ϕ2 = 0

L21Φ + L22w + L23ϕ1 + L24ϕ2 = 0

L31Φ + L32w + L33ϕ1 + L34ϕ2 = 0

L41Φ + L42w + L43ϕ1 + L44ϕ2 = 0

(13)

where Li j(i, j = 1, 2, 3, 4) are differential operators, whose details are described in Appendix A.

4. Solution Procedure

The approximating functions for conical shells with free supports are assumed as

Φ = Φx2e(a+1)xsin(n1x
)
cos(n2α), w = weaxsin(n1x

)
cos(n2α),

ϕ1 = ϕ1eaxcos(n1x
)
cos(n2α), ϕ2 = ϕ2eaxsin(n1x

)
sin(n2α)

(14)

where Φ, w, ϕ1, ϕ2 are the unknown constants, a is an unknown coefficient to be determined with
the enforcement of the minimum conditions for combined buckling loads, x = ln

(
x
x2

)
, n1 = mπ

x0
,

n2 = n
sinγ , x0 = ln

( x2
x1

)
, with m and n the wave numbers.

By introducing Equation (14) into Equation (13), and by some manipulation and integration, we
determine the nontrivial solution by enforcing

det(ci j) = 0 (15)

where ci j(i, j = 1, 2, . . . , 4) are the matrix coefficients, as defined in Appendix B.
Equation (15) can be rewritten in expanded form as follows:

c41Γ1 −
(
TaxcT + P1cP1 + P2cP2

)
Γ2 + c43Γ3 + c44Γ4 = 0 (16)

where cT is the axial load parameter, cP1 and cP2 are the external pressure parameters, whose expression
are given in Appendix B, while parameters Γ j( j = 1, 2, 3, 4) are defined as

Γ1 = −

∣∣∣∣∣∣∣∣∣
c12 c13 c14

c22 c23 c24

c32 c33 c34

∣∣∣∣∣∣∣∣∣, Γ2 =

∣∣∣∣∣∣∣∣∣
c11 c13 c14

c21 c23 c24

c31 c33 c34

∣∣∣∣∣∣∣∣∣, Γ3 = −

∣∣∣∣∣∣∣∣∣
c11 c12 c14

c21 c22 c24

c31 c32 c34

∣∣∣∣∣∣∣∣∣, Γ4 =

∣∣∣∣∣∣∣∣∣
c11 c12 c13

c21 c22 c23

c31 c32 c33

∣∣∣∣∣∣∣∣∣ (17)

For FG-CNTRC-CSs under an axial load, it is P1 = P2 = 0, while Taxcr
1SDT is defined as follows:

Taxcr
1SDT =

c41Γ1 + c43Γ3 + c44Γ4

Γ2EchcT
(18)

Differently, for FG-CNTRC-CSs under a uniform lateral pressure, it is Tax = P1 = 0; P2 = PL,
whereas the expression for PLcr

1SDT based on the FSDT is as follows:

PLcr
1SDT =

c41Γ1 + c43Γ3 + c44Γ4

Γ2EccPL

(19)
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For FG-CNTRC-CSs under a uniform hydrostatic pressure, it is Tax = 0, P1 = P2 = PH, and
PHcr

1SDT is defined as

PHcr
1SDT =

c41Γ1 + c43Γ3 + c44Γ4

Γ2EccPH
(20)

where cPH is a parameter depending on the hydrostatic pressure, as defined in Appendix B.
For a combined axial load/lateral pressure, and a combined axial load/hydrostatic pressure acting

on an FG-CNTRC-CS based on the FSDT, the following relation can be used [47]:

T1

Taxcr
1SDT

+
P1L

PLcr
1SDT

= 1 (21)

and
T1

Taxcr
1SDT

+
P1H

PHcr
1SDT

= 1 (22)

where
T1 = T/Ech, P1L = PL/Ec, P1H = PH/Ec (23)

Under the assumptions T1 = ηP1L and T1 = ηP1H, in Equations (21) and (22), we get the
following expressions:

PLcbcr
1SDT =

Taxcr
1SDTPLcr

1SDT

ηPLcr
1SDT + Taxcr

1SDT

(24)

and

PHcbcr
1SDT =

Taxcr
1SDTPHcr

1SDT

ηPHcr
1SDT + Taxcr

1SDT

(25)

where η ≥ 0 is the dimensionless load-proportional parameter.
From Equations (24) and (25), we obtained the expressions for the critical loads Taxcr

1CST, PLcr
1CST,

PHcr
1CST, PLcbcr

1CST, PHcbcr
1CST , while neglecting the shear strains.

5. Results and Discussion

5.1. Introduction

In this section, a poly methyl methacrylate (PMMA) reinforced with (10,10) armchair Single Walled
CNTs (SWCNTs) was considered for the numerical investigation. The effective material properties
of CNTs and PMMA matrix are reported in Table 1 (see [46]), along with the efficiency parameters
for three volume fractions of CNTs. The shear stress quadratic shape functions are distributed as
u1(z) = u2(z) = z − 4z3/3h2 [46]. The critical CL values for FG-CNTRC-CSs are determined for
different magnitudes of a, within a coupled stress theory (CST) context, in order to check for the effect
of the FSDT on the critical loading condition. After a systematic numerical computation, it is found
that for freely supported FG-CNTRC-CSs, the critical values of a CL were reached for a = 2.4.

Table 1. Properties of CNTs and matrix.

CWCNT Matrix (PMMA)

Geometrical properties L̃ = 9.26 nm, r̃ = 0.68 nm, h̃ = 0.067 nm

Material properties
ECN

11 = 5.6466 TPa, ECN
22 = 7.0800 TPa

GCN
12 = 1.9445 TPa,

µCN
12 = 0.175;ρCN = 1400 kg/m3

Em = 2.5 Pa,
µm = 0.34,

ρm = 1150 kg/m3

CNT efficiency parameter
η1 = 0.137, η2 = 1.022, η3 = 0.715 for V∗CN = 0.12;
η1 = 0.142, η2 = 1.626, η3 = 1.138 for V∗CN = 0.17;
η1 = 0.141, η2 = 1.585, η3 = 1.109 for V∗CN = 0.28.
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5.2. Comparative Evaluation

As a first comparative check, the critical lateral pressure, axial load, and combined load of shear
deformable CNTRC-CYLSs with an FG-X profile is evaluated as in [33]. The CNTRC-CS reverts to a
CNTRC-CYLS, when γ tends to zero. The CNTRC-CYLS has radius r and length L1 with the following
geometrical properties: r/h = 30, h = 2 mm, and L1 =

√
300rh, whereas the material properties are

assumed as in Table 1, for T = 300 K, see [33]. The magnitudes of the critical loading for CNTRC-CYLSs
were obtained for a = 0. Based on Table 2, a good agreement between our results and predictions by
Shen and Xiang [33] is observable for the critical lateral pressure, axial load, and CL.

Table 2. Comparative response of shear deformable CNTRC-CYLSs with the FG-X profile under a
separate or combined axial load and lateral pressure.

Taxcr
SDT (MPa) PLcr

SDT(MPa)
PLcbcr

SDT (MPa)

η = 750 η = 140

V∗CN Shen and Xiang [33]

0.12 118.848 0.285 0.112 0.218

0.17 196.376 0.484 0.190 0.370

0.28 247.781 0.616 0.242 0.470

Present study

0.12 117.840 0.281 0.111 0.2181

0.17 197.515 0.479 0.188 0.3711

0.28 247.062 0.613 0.2414 0.4756

In Table 3, the values of PLcr
SDT of FG-CNTRC-CSs with different profiles and half-vertex angles are

compared with results by [37], based on the GDQ method. A FG-CNTRC is considered for V∗CN = 0.17,
L =

√
300R1h, R1/h = 100, and h = 1 mm. Based on Table 3, the correspondence between our

values of PLcr
SDT and predictions by Jam and Kiani [37], verifies the consistency of our formulation.

Table 3. Comparative response of shear deformable CNTRC-CSs with the different profiles under
lateral pressure for a different half-vertex angle.

PLcr
SDT (in kPa), (ncr)

γ 10◦ 20◦ 30◦

Jam and Kiani [37]

UD 31.11(8) 24.31(9) 19.00(9)

FG-X 34.53(8) 27.24(9) 21.38(9)

FG-V 32.41(8) 25.19(9) 19.52(10)

Present study
UD 31.01(8) 23.91(9) 18.23(10)

FG-X 34.38(8) 26.69(9) 20.49(10)

FG-V 32.40 (8) 24.97 (9) 19.77 (10)

5.3. Analysis of Combined Buckling Loads

In what follows, we analyze the sensitivity of the critical loading to FG profiles, volume fractions

of CNT, and FSDT formulation, by considering the ratios 100%×
Pcbcr

FG−CN−Pcbcr
UD

Pcbcr
UD

and 100%×
Pcbcr

1CST−Pcbcr
1SDT

Pcbcr
1CST

.

One of the main parameters affecting a critical CL is represented by the load-proportional parameter.
In Figures 3 and 4, we plot the variations of PLcbcr

1SDT, PLcbcr
1CST, as shown in Figure 3, PHcbcr

1SDT and PHcbcr
1CST , as

shown in Figure 4, vs. the dimensionless load-proportional parameter η, for UD- and FG-CNTRCs.
Based on both figures, for all profiles, the magnitudes of the critical CL decrease for an increasing
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dimensionless load-proportional parameter η. This sensitivity is more pronounced for a FG−Λ profile,
compared to a FG-V or FG-X profile. The strong influence of the FG profiles, VCN, and shear strains on
the critical CLs depends on the dimensionless load-proportional parameter.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 20 
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A pronounced sensitivity of PLcbcr
1SDT and PHcbcr

1SDT to the FG-CNTRC types, was noticed for η ranging
between 100 and 800, whereas a certain influence was observed in a horizontal sense, as η > 800, for
a fixed V∗CN. This last phenomenon can be explained by the fact that, for large values of η, the axial
load prevails over the external pressure. For a fixed value of V∗CN = 0.12, the effect of a FG profile
(i.e., FG-V, FG −Λ, FG-X, respectively) on the PLcbcr

1SDT is estimated as (−10%), (−14.9%), (+14.4%) for
η = 100; (−17%), (−21.4%), (+21.8%) for η = 800; (−17.04%), (−21.4%), (+21.9%) for η = 1000. Compared
to a uniform distribution (UD), the highest sensitivity of PLcbcr

1SDT is noticed for V∗CN = 0.28 in the FG-X
profile, whereby a FG-V type distribution features the lowest sensitivity for the same fixed value of
V∗CN = 0.28.

A small influence of the shear strain is observable for an increasing value of η and a FG-X profile.
This influence continues to decrease by almost 2%–3%, for a FG-V and FG−Λ profile with different
V∗CN, while reaching the lowest percentage at V∗CN = 0.17 for a FG−Λ profile.

Table 4 summarizes the variation of the critical CLs, based on a FSDT and CST, for a FG-V and
FG-X profile, and different R1/h ratios. The geometrical data for numerical computations are provided
in the same table. Please note that the critical CL decreases monotonically, along with a gradual
increase of the circumferential wave numbers, for an increased value of R1/h.

An irregular effect of the FG-V and FG-X profile on the PLcbcr
1SDT and PHcbcr

1SDT is observed with R1/h, for
a fixed V∗CN. When the dimensionless R1/h ratio increases from 30 up to 90, the influence of an FG-V
profile on the CL values tends to decrease, whereas the effect of a FG-X profile on the CL increases,
for an increasing value of R1/h from 30 to 70. After this value, the effect decreases slightly. The shear
strains reduce significantly the influence of FG-V and FG-X profiles on both CLs. For example, the
effect of a FG-V profile on PLcbcr

1SDT is less pronounced than PLcbcr
1CST by about 3%–12%. This difference

becomes meaningful and varies from 3% up to 23% for a FG-X profile, depending on the selected
R1/h ratio. Note that the highest FG effect on the PLcbcr

1SDT occurs for a FG-X profile (+35.47%), at R1/h=

90 and V∗CN = 0.28, while the lowest effect (−11.69%) is found for a FG-V profile, at R1/h = 90 and
V∗CN = 0.17. These effects are more pronounced for a combined axial load and hydrostatic pressure
(PHcbcr

1SDT), compared to a combined axial load and lateral pressure (PLcbcr
1SDT). The influence of the shear

strain on PLcbcr
1SDT for an FG-X and FG-V profile decreases for each fixed value of V∗CN, and remains

significant for an increased value of R1/h up to 90. A similar sensitivity to the shear strain was observed
for PHcbcr

1SDT, but was less pronounced than the one for PLcbcr
1SDT. The highest shear strain effect on PLcbcr

1SDT is
observed for an FG-X profile (-52.8%), at R1/h = 30 and V∗CN = 0.28, whereas the lowest shear strain
influence on PHcbcr

1SDT is noticed for an FG-V profile (+1.54%), at R1/h = 70 and V∗CN = 0.28. An increased
value of V∗CN yields an irregular effect of the shear strains on the critical CL.

The variation of the critical CL for UD- and FG-CNTRC-CSs with different profiles is plotted in
Figures 5 and 6, vs. γ. It seems that the critical value of the CL decreases for an increased value of γ.
As γ increases from 15◦ to 60◦, the effect of FG-V and FG-X distributions on the critical magnitude of
the CL decreases slightly, whereby it decreases rapidly as γ > 60◦ for all values of V∗CN. Furthermore,
the effect of CNT distribution on PLcbcr

1SDT and PHcbcr
1SDT maintains almost the same for different γ. The

shear strain effect on the critical CL depends on the selected CNT profile, especially for a FG-X profile.
A remarkable shear strain influence of (+55.56%) on the critical value of the CL occurs at V∗CN = 0.28
and γ = 75◦.
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Table 4. Variation of the critical CLs for UD- and FG-CNTRC-CSs based on first order shear deformation
theory (FSDT) and coupled stress theory (CST) with different V∗CN and R1/h ratios. L/R1 = 0.5,
γ = 30

◦

, η = 500.

V*
CN R1/h Types PcbLcr

1SDT (ncr) PcbLcr
1CST (ncr) PcbHcr

1SDT (ncr) PcbHcr
1CST (ncr)

0.12

30
UD 178.227(8) 273.320(7) 172.051(8) 263.619(6)

FGV-V 149.371(7) 196.380(5) 144.088(7) 189.196(5)

FGV-X 215.601(9) 393.913(8) 208.297(9) 380.032(7)

50
UD 83.296(9) 96.267(9) 78.996(9) 91.297(9)

FGV-V 68.684(8) 72.655(8) 65.013(8) 68.772(8)

FGV-X 107.856(10) 134.647(10) 102.492(10) 127.951(10)

70
UD 44.157(11) 46.897(11) 41.493(11) 44.068(11)

FGV-V 37.515(10) 37.035(10) 35.124(9) 34.636(9)

FGV-X 57.660(12) 63.714(12) 54.360(12) 60.067(12)

90
UD 26.050(12) 26.743(12) 24.320(12) 24.967(12)

FGV-V 22.882(11) 21.902(11) 21.266(11) 20.355(11)

FGV-X 33.770(13) 35.488(13) 31.663(13) 33.274(13)

0.17

30
UD 277.753(7) 403.421(6) 267.928(7) 388.892(6)

FGV-D 216.472(7) 285.441(6) 208.815(7) 275.161(6)

FGV-X 337.997(8) 582.930(7) 326.283(8) 562.312(7)

50
UD 127.380(9) 144.108(9) 120.804(9) 136.614(8)

FGV-V 104.824(8) 108.979(8) 99.222(8) 103.074(7)

FGV-X 166.556(10) 202.672(9) 157.999(9) 192.209(9)

70
UD 67.718(10) 71.100(10) 63.421(10) 66.589(10)

FGV-V 57.633(9) 56.330(9) 53.797(9) 52.580(9)

FGV-X 89.216(11) 97.309(11) 83.834(11) 91.439(11)

90
UD 40.167(12) 40.992(12) 37.468(11) 38.204(11)

FGV-V 35.470(11) 33.809(11) 32.965(11) 31.366(10)

FGV-X 52.637(13) 54.879(13) 49.194(12) 51.292(12)

0.28

30
UD 379.351(8) 632.214(7) 366.204(8) 609.852(7)

FGV-V 319.603(7) 446.857(6) 308.298(7) 430.763(6)

FGV-X 437.545(9) 927.004(8) 422.721(9) 894.878(8)

50
UD 182.000(10) 218.225(10) 172.950(10) 207.373(10)

FGV-V 148.010(9) 162.024(8) 140.108(8) 153.364(8)

FGV-X 234.684(10) 314.925(11) 223.013(10) 299.268(10)

70
UD 96.385(12) 104.268(12) 90.694(11) 98.163(11)

FGV-V 79.650(10) 80.897(10) 74.597(10) 75.765(10)

FGV-X 128.856(12) 148.054(12) 121.480(12) 139.579(12)

90
UD 56.322(13) 58.452(13) 52.808(13) 54.805(13)

FGV-V 47.930(12) 47.203(11) 44.628(11) 43.870(11)

FGV-X 76.299(13) 82.031(14) 71.538(13) 76.978(13)
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6. Conclusions

The buckling of FG-CNTRC-CSs subjected to a combined loading was here studied based on a
combined Donnell-type shell theory and FSDT. The FG-CNTRC-CS properties were assumed to vary
gradually in the thickness direction with a linear distribution of the volume fraction VCN of CNTs. The
governing equations were converted into algebraic equations using the Galerkin procedure, and the
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analytical expression for the critical value of the combined loading was found. The solutions were
compared successfully with results in the open literature, thus confirming the accuracy of the proposed
formulation. A novel buckling analysis was, thus, performed for both a uniform distribution and FG
distribution of CNTs, while determining the effect of the volume fraction and shell geometry on the
critical value of the combined loading condition, as useful for practical engineering applications.

Author Contributions: Conceptualization, A.H.S., N.K., R.D. and F.T.; Formal analysis, A.H.S., N.K., R.D. and
F.T.; Investigation, A.H.S., N.K. and F.T.; Validation, N.K., R.D. and F.T.; Writing—Original Draft, A.H.S., N.K.,
R.D. and F.T.; Writing—Review & Editing, R.D. and F.T. All authors have read and agreed to the published version
of the manuscript.
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Appendix A

More details for Li j(i, j = 1, 2, . . . , 4) differential operators are here defined as follows:

L11 = t12h ∂4

∂x4 +
(t11−t31)h

x2
∂4

∂x2∂α2 +
(3t31−3t11−t21)h

x3
∂3

∂x∂α2 +
(t11−t22+t12)h

x
∂3

∂x3 ,

+
(t22−t11−t12−t21)h

x2
∂2

∂x2 +
3(t21+t11−t31)h

x4
∂2

∂α2 +
2t21h

x3
∂
∂x ,

L12 = −t13
∂4

∂x4 −
t14+t32

x2
∂4

∂x2∂α2 +
3t14+3t32+t24

x3
∂3

∂x∂α2 −
t13+t14−t23

x
∂3

∂x3 ,

+
t13+t14−t23+t24

x2
∂2

∂ x2 −
3(t14+t24+t32)

x4
∂2

∂α2 −
2t24
x3

∂
∂x ,

L13 = t15
∂3

∂x3 +
t15−t25

x
∂2

∂x2 +
t35
x2

∂3

∂x∂α2 − F3
∂
∂x −

t15−t25
x2

∂
∂x −

t35
x3

∂2

∂α2 ,

L14 =
t38+t18

x
∂3

∂x2∂α
−

t28+t18+t38
x2

∂2

∂x∂α +
2t28
x3

∂
∂α ,

(A1)

L21 = t21h
x3

∂4

∂α4 +
(t22−t31)h

x
∂4

∂x2∂α2 +
t21h
x2

∂3

∂x∂α2 ,

L22 = − t32+t23
x

∂4

∂x2∂α2 −
t24
x3

∂4

∂α4 −
t24
x2

∂3

∂x∂α2 ,

L23 = t25+t35
x

∂3

∂x∂α2 +
t35
x2

∂2

∂α2 ,

L24 = t38
∂3

∂x2∂α
+ 2t38

x
∂2

∂x∂α +
t28
x2

∂3

∂α3 − F4
∂
∂α ,

(A2)

L31 =
q11h
x4

∂4

∂α4 +
(2q31+q21+q12)h

x2
∂4

∂x2∂α2 −
2(q31+q21)h

x3
∂3

∂x ∂α2 ,

+
2(q31+q21+q11)h

x4
∂2

∂α2 +
q11h
x3

∂
∂x −

q11h
x2

∂2

∂x2 +
(q21+2q22−q12)h

x
∂3

∂x3 + q22h ∂4

∂x4 ,

L32 = −
q14
x4

∂4

∂α4 +
2q32−q13−q24

x2
∂4

∂x2∂α2 +
2(q24−q32)

x3
∂3

∂x∂α2 +
2(q32−q24−q14)

x4
∂2

∂α2 ,

−
q14
x3

∂
∂x +

( q14
x2 +

cotγ
x

)
∂2

∂x2 +
q13−q24−2q23

x
∂3

∂x3 − q23
∂4

∂x4 ,

L33 =
2q35+q15

x2
∂3

∂x∂α2 + q25
∂3

∂x3 +
2q25−q15

x
∂2

∂x2 ,

L34 =
q18
x3

∂3

∂α3 +
2q38+q28

x
∂3

∂x2∂α
+

2q38−q18
x2

∂2

∂x∂α +
q18
x3

∂
∂α ,

(A3)

L41 = h
x tanγ

∂2

∂x2 , L42 = −x tanγ
[
P1

∂2

∂x2 + P2
(

1
x
∂2

∂α2 +
∂
∂x

)]
,

L43 = F3
(
∂
∂x + 1

x

)
, L44 = F4

x
∂
∂α .

(A4)
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where F3 = F4 = f
(

h
2

)
− f

(
−

h
2

)
and the following definitions are assumed:

t11 = k1
11q11 + k1

12q21, t12 = k1
11q12 + k1

12q21, t13 = k1
11q13 + k1

12q23 + k2
11

t14 = k1
11q14 + k1

12q24 + k2
12, t15 = k1

11q15 + k1
12q25 + k1

15, t18 = k1
11q18 + k1

12q28 + k1
18,

t21 = k1
11q11 + k1

22q21, t22 = k1
22q12 + k1

12q22, t23 = k1
21q13 + k1

22q23 + k1
21,

t24 = k1
22q14 + k1

22q24 + k2
22, t25 = k1

21q15 + k1
22q25 + k1

25, t28 = k1
21q18 + k1

22q28 + k1
28,

t31 = k1
66q31, t32 = k1

66q32 + 2k2
66, t35 = k1

35 − k1
66q35, t38 = k1

38 − k1
66q38,
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k0

22
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12
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22
Π , q14 =

k0
12k1

22−k1
12k0

22
Π ,

q15 =
k0
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22
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21
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12k0
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15k0
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28k0
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(A5)

with

ki
11 =

h/2∫
−h/2

E11(z)zidz, ki
12 =

h/2∫
−h/2

E12(z)zidz =
h/2∫
−h/2

E21(z)zidz = ki
21,

ki
22 =

h/2∫
−h/2

E22(z)zidz, ki
66 =

h/2∫
−h/2

E66(z)zidz, i = 0, 1, 2.

ki1
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h/2∫
−h/2

zi1F1(z)E11(z)dz, ki1
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h/2∫
−h/2

zi1F2(z)E12(z)dz,

ki1
25 =

h/2∫
−h/2

zi1F1(z)E21(z)dz, ki1
28 =

h/2∫
−h/2

zi1F2(z)E22(z)dz,

ki1
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h/2∫
−h/2

zi1F1(z)E66(z)dz, ki1
38 =

h/2∫
−h/2

zi1F2(z)E66(z)dz, i1 = 0, 1.

(A6)

Appendix B

The parameters ci j(i, j = 1, 2, 3, 4) are defined as follows:

c11 = −
n2

1ϑa−0.5

4x3
2

{
t12

[
3(a− 1)(a + 1)3 + 2n2

1(a + 4)(a + 1) − n4
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)}
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{
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]
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1

]
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1

)
+(4t14 − 4t23 − 7t13 + t24)

[
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(2a− 1)a + 2n2

1

]}
−

n1ϑa−0.5
8x3

2

{
−F3

[
a(1 + 2a) + 2n2

1

]
x2

2 + t35(2a + 1)n2
2

}
c14 =

n2n2
1ϑa−0.5

8x3
2

{
2(t38 + t18)

[
(1− a)a− n2

1

]
− 2t18 + 3t28 − 2t38

}
(A7)
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c21 =
n2

2n2
1ϑa

4x2
2

[
t21n2

2 + (t22 − t31)
(
a2
− 1 + n2

1

)
− t31 + t22 − t21

]
c22 =

n2
1n2

2ϑa−0.5

8x3
2

{
2(t32 + t23)

[
(a− 1)a + n2

1

]
+ 2t24n2

2 + t32 + t23 − t24
}

c23 = n1n2
2

{
(t25+t35)[(2a−1)a+2n2

1]ϑa−0.5

8x3
2

+ at35ϑa
4x2

2

}
c24 = −

n2
1n2
4

{
[t38(n2

1+a2)+t28n2
2]ϑa

x2
2

+ F4ϑa+1

}
(A8)

c31 =
n2

1ϑa

4x3
2

{
q11n4

2 + (q31 + q21 + q12)n2
2

(
a2
− 1 + n2

1

)
+ (2q31 + 3q21 + q12)n2

2

−(q31 + 2q21 + 2q11)n2
2 + q22

[
n4

1 − (a + 1)3(3a− 1) − 2(a + 3)(a + 1)n2
1

]
+(4q22 + q12 − q21)

(
2n2

1a− 1 + 3a2 + 3n2
1 + 2a3

)
−(5q22 + 3q12 − 3q21 − q11)

(
n2

1 + a2
− 1

)
+ 2(q11 + q21 − q22 − q12)

}
c32 = −

n2
1ϑa−0.5

8x4
2

{
−2q14n4

2 + 2(q32 − q13 − q24)
(
a2
− a + n2

1

)
− (q13 − 2q32 + 3q24)n2

2

−2(q32 − 2q24 − 2q14)n2
2 − 2q23

[
(2− 3a)a3

− 2n2
1a(a + 1) + n4

1

]
−(q13 − q24 + 4q23)

(
4a3
− 3a2 + 4n2

1a + n2
1

)
− 2(q14 − 3q13 + 3q24 − 5q23)

(
a2
− a + n2

1

)
+(q14 − 3q13 + 3q24 − 5q23)

}
+

n2
1(a

2+n2
1)ϑa cotγ

4x3
2

c33 =
(a2+n2

1)n1ϑa

4x3
2

[
(q35 + q15)n2

2 − q25
(
a2
− n2

1

)
− (q25 + q15)a− q15

]
c34 =

n2
1ϑa

4x3
2

[
q18n2 − q18n3

2 − (q38 + q28)n2
(
n2

1 + a2
)]

(A9)

c41 = −
(a2+n2

1)n2
1ϑa cotγ

4x2
2

c42 = −P1cP1 − P2cP2

c43 = −
n1ϑa+0.5

4x2

{
F3

[
(a + 0.5)a + n2

1

]
+ F4(a + 0.5)

}
c44 =

F4n2
1n2ϑa+0.5

4x2

(A10)

with
cP1 = −

n2
1(2n2

1+2a2+2a−1)ϑa+0.5
8x2 cotγ ,

cP2 = −
(2n2

2+1)n2
1ϑa+0.5

8x2cotγ

cPH = cP1 + cP2 = −
[2n2

1+2a2+2a+1+4n2
2]n

2
1ϑa+0.5

16x2cotγ

(A11)
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