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Abstract: In this paper, we propose a high-sensitivity optical sensor at terahertz frequencies based
on a composite structure containing a one-dimensional photonic crystal (1D PC) coated with a
layer of monolayer graphene. Between the 1D PC and the graphene there is a sensing medium.
This high-sensitivity phenomenon originates from the excitation of optical resonance between the
graphene and the 1D PC. The proposed sensor is highly sensitive to the Fermi energy of graphene,
the thickness and refractive index of the sensing medium, and the number of graphene layers.
By selecting appropriate parameters, the maximum sensitivity (407.36◦/RIU) is obtained. We believe
the proposed configuration is promising for fabricating graphene-based biosensor- or gas-sensor
devices and other related applications in the terahertz band.
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1. Introduction

An optical sensor, a classical sensor type based on optical principles, can sensitively monitor
measured information and convert the information into optical signals or other forms of data according
to certain rules [1]. Owing to its advantages (e.g., non-contact and non-destructive measurement,
little interference and high sensitivity), the optical sensor supports a wide range of applications in
the realm of food safety [2,3], environmental monitoring [4], drug testing [5], medical analysis [6,7],
biochemical tests [8,9] and so on. The realization and control means of high-sensitivity optical sensors,
especially related optical sensor devices, play a key role in optical measurement and biosensors.
In particular, a micro-nano optical sensor, the size of an integrated chip, is the key to information
detection and monitoring. Therefore, the realization and testing methods of micro-nano optical
sensors have become the center of attention in recent years. For example, scholars have conducted
extensive research into carbon nanotubes [10], photonic crystal [11], and graphene/waveguide hybrid
structures [12]. In addition, due to the low photon energy in the terahertz band and the distinctive
spectral signatures of most biomolecules in the terahertz band, optical sensors working in the
terahertz band are also widely used. It is worth mentioning that surface plasmon resonance (SPR)
is very sensitive to changes in any boundary environment owing to the boundary propagation
of surface plasmon wave. For this reason, SPR-based optical sensors have also become a main
focus of attention among researchers. Various high-sensitivity optical sensors have been proposed
on the basis of SPR technology [13–15]. Recently, graphene has started to play an active role
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in the realization of high-sensitivity optical sensors due to its excellent optoelectronic properties
such as SPR support [16], tunability of optical conductivity [17], broadband [18], etc. In this
respect, graphene-based SPR sensors [19,20], hybrid graphene/gold plasmonic fiber-optic sensors [21],
mid-infrared plasmonic biosensing with graphene [22], and multi-channel graphene sensors [23],
and graphene-based Bloch-like surface wave sensors [24] have been proposed. Recently, Sun et al.,
reported the application of inorganic/polymer-graphene hybrid gel as a versatile electrochemical
platform for an electrochemical capacitor and biosensor [25]. Sun et al., demonstrated the sensitivity
enhancement of SPR biosensor based on graphene and barium titanate layers [26]. It can be predicted
optimistically that graphene-based or 2D materials-based optical sensors will be one of the most
promising application trends [27–29]. Although the basic theory of optical sensors is relatively
mature, the implementation of optical sensors with a simple structure, high sensitivity and dynamic
controllability still remains challenging. Optical sensors with new materials or novel structures and
working mechanisms have become the main direction of research in the optical sensor industry.

We know that the generation of optical resonance has a very positive effect on the realization of
high-sensitivity sensor detection. At present, many optical-sensor schemes are mainly realized by the
exciting of SPR. This is mainly due to the fact that SPR can produce a very obvious resonance peak,
thus creating conditions for sensitive sensor detection. Recently, optical Tamm states (OTSs), a kind of
surface wave confined on the contact surface of two different media, have attracted attention in the
field of optical sensing [30,31]. It is essentially an interface state. Compared with SPR, OTSs can be
excited without a specific angle of incidence, as well as being directly excited by transverse electric
(TE) polarization. More importantly, the excitation of OTSs is very sensitive to the change of boundary
environment [32]. Therefore, the implementation of optical sensors based on OTSs is very attractive
and promising. For example, Zhang et al., proposed a novel concept of a refractive index sensor based
on a metal-distributed Bragg reflector [33]. However, the excitation of conventional OTSs is mainly
based on a metal-Bragg reflector structure, which does not have dynamic tunability, thus limiting
its application in the terahertz band. Graphene not only has excellent tunability and broadband
characteristics, but also presents some metal-like properties under certain conditions. This makes it
possible to combine graphene and the typical OTS structure to realize a dynamically tunable THz
sensor. For example, Ye et al., proposed a graphene-based composite structure to realize a tunable and
highly sensitive optical biosensor by exciting OTSs [34]. In this paper, we propose a novel terahertz
sensor based on a graphene Bragg reflector composite structure to realize high sensitivity. We find
that the high sensitivity of a terahertz sensor is a product of the abnormal reflectance peaks caused by
optical resonance. In addition, the tunable conductivity of graphene provides a basis for the design
of tunable sensing characteristics in the proposed structure. We believe this electronically-tunable
terahertz sensor based on a vertically stacked structure with graphene could offer great potential for
applications in the biosensor field.

2. Materials and Methods

We consider a terahertz sensor by inserting a sensing medium between a polymethylpenten
(TPX)/SiO2 Distributed Bragg Reflector (DBR) and a monolayer graphene film in a vertically stacked
structure, with a TPX/SiO2 DBR structure underneath and a monolayer graphene film on the top,
as illustrated in Figure 1. Graphene can be transferred to the silicon substrate with holes in consideration
of the practically-possible device fabrication. A one-dimensional photonic crystal (1D PC) is formed
by alternately stacking dielectric A and dielectric B at a period of N = 20. The center wavelength λc

is set as 300 µm; the materials of dielectric A and B are selected respectively as SiO2 with refractive
index na = 1.46 and TPX with refractive index nb = 1.9; the thickness of each 1D PC layer is
d = λc/4n. The refractive index and original thickness of the sensing medium are, respectively, set as
ns = 1.33 + ∆ns and ds = 390 µm; ∆ns is the change of refractive index of the sensing medium due
to the absorption of biomolecules on the surface of graphene. The thickness of graphene, written as
dg = L× 0.34 nm, is neglected in our calculation; L stands for the number of graphene layers. Here,
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in order to obtain the physical mechanism more easily and to simplify the calculation, we assume
that the refractive indexes of the above materials are dispersionless in the terahertz band. In practice,
absorption in the sensing medium cannot be completely avoided, especially in the terahertz band.
Therefore, in the next section, we will also briefly discuss the possible influence of the absorption in the
sensing layer on the sensitivity performance of the sensor. Besides, the inter-conductivity of graphene
is negligible under terahertz band and random phase approximation. According to a Drude-like
formula, the conductivity of graphene can be approximately expressed as:

σ ≈
ie2EF

π}2(ω+ i/τ)
, (1)

where } is the reduced Planck’s constant, EF is the Fermi energy closely related to carrier density
(n2D), and EF = }νF

√
πn2D (vF ≈ 106m/s represents the Fermi velocity of the electron). It creates

conditions for us to adjust the conductivity of graphene by controlling the gate voltage. ω is the angular
frequency of the incident beam; e and τ represent the elementary electric charge and the relaxation time,
respectively. It can be noted that there are some similarities between the above composite structure
and the model in Reference [34]. However, the structure of the two is essentially different. In Ref. [34],
the incident light needs to pass through the 1D PC with band gap characteristics first, and then contact
the sensing medium. The excitation of OTSs has more stringent requirements on the 1D PC. For
example, the period of 1D PC cannot be too large, otherwise the incident light cannot penetrate the 1D
PC. However, in this work, the incident light first acts on graphene and the sensing medium. At this
time, the function of 1D PC is equivalent to the Bragg reflector, and its period needs to be set to a larger
value. In addition, the sensing medium in Reference [34] is under the 1D PC, so the influence of the
absorption of the sensing medium on the sensitivity of the sensor is much smaller. In our structure,
the absorption of the sensing medium has an influence on the sensing performance.
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Figure 1. Schematic diagram of the proposed terahertz sensor, where the graphene is coated on the
sensing medium and fastened by a fixing device, while a one-dimensional photonic crystal (1D PC) is
beneath the sensing medium.

A transfer matrix is applied to calculate the reflectance of the proposed vertically stacked
structure [35]. For simplicity, we only consider transverse magnetic (TM) polarization. Then,
the transfer matrix between air and the sensing medium can be expressed as:

Dvt =
1
2

[
1 + ηvs + ξvs 1− ηvs − ξvs

1− ηvs + ξvs 1 + ηvs − ξvs

]
, (2)

where ηvs = εvksz/εskvz and ξvs = σksz/ε0εsω; kvz and ksz are the wave vector components of light
wave propagating in air and sensing medium, respectively. Combined with the propagation matrix of
light in dielectric layer P(d)(d is the thickness of the dielectric), the transfer matrix of the whole system
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can be expressed as: M = Dv→sP(ds)Ds→a[P(da)Da→bP(db)Db→a]
N, where N is the period of 1D PC.

Thus the reflectance of the structure can be obtained by R = M21/M11. In this paper, the reflectance
of this structure is strongly sensitive to the variation in the refractive index of the sensing medium.
Therefore, the sensitivity of this structure can be expressed as:

S =
∆θ
∆ns

, (3)

where ∆θ represents the change of the resonance angle of the proposed structure, and it is caused by
the variation in the refractive index of the sensing medium. In addition, the figure of merit (FOM)
can be described as: FOM = S ·DA, where the quality factor (DA) is defined as DA = 1/FWHM (full
width at half maxima).

3. Results and Discussion

This section focuses on the sensing characteristics of the proposed structure. In essence,
the configuration in Figure 1 can be seen as an asymmetrical cavity consisting of a graphene layer on
the left side and a Bragg reflector on the right side, with the sensing medium located inside the cavity.
The Fabry–Perot mode can be excited at a certain structural parameter and there is a dip appearing in
the reflectance spectrum owing to the excitation of the Fabry–Perot mode. The resonance angle of mode
is sensitive to the change of ambient refractive index (ns). Therefore, the sensitivity can be calculated
by Formula (3). To better illustrate the physics mechanism, the reflectance of the structure with and
without graphene are illustrated in Figure 2a. It is found that there is a band gap at a wavelength in the
range of 273 µm to 333 µm in the absence of graphene. However, when the sensing medium is coated
with graphene, an obvious reflection dip appears at a wavelength of about 300 µm within the band gap.
The physical origin of the optical resonance modes observed in Figure 2a can be explained by using
the Fabry–Perot mode. However, it is known that graphene is intrinsically a semimetal with some
metallic properties under certain conditions. Therefore, the above optical resonance phenomenon can
also be explained from the perspective of excitation of OTSs. It is well-known that the excitation of
OTSs should satisfy rgrarDBRe(2iφ) = 1, where rDBR is the reflection coefficient of the incident light
beam on the sensing medium and the photonic crystal interface, rgra is the reflection coefficient of
the incident light beam on the interface of graphene and the sensing medium, and φ is the phase
change of the light beam impinging at two interfaces of the proposed structure. The resonance
frequency position of OTSs excitation can be estimated based on the above formula. Accordingly,
rDBR = −1− 0.001i and rgra = 2/(1 + η+ ξ) − 1 can be obtained around 300 µm by calculation, where
η = εvksz/εskvz = 1.335 and ξ = σksz/ε0εsω. When there is no graphene (namely σ = 0 and

∣∣∣rgra
∣∣∣≤ 1),

it will be impossible to excite OTSs. In contrast, the introduction of graphene will bring about ξ , 0
and the formula rgrarDBRe(2iφ)

≈ 1 can be obtained. Furthermore, the excitation of OTSs should also
satisfy Arg(rgrarDBRe(2iφ)) = 0. As shown in Figure 2b, we obtain Arg(rgrarDBRe(2iφ)) ≈ 0 around
300 µm and this result coincides with the dip in Figure 2a.

In order to further illustrate the relevance of graphene to the strong excitation of the resonance
mode, we cover the sensing medium with monolayer graphene and draw the normalized electric field
distributions in Figure 3a. The normalized electric field distributions in the absence of graphene are
plotted in Figure 3b for comparison. The position of graphene is set as z = 0. It is shown that the light
beam impinges on the interface between the graphene and the sensing medium, and the sharp rise of
the electric field near the graphene coincides precisely with the abnormal dip of reflectance in Figure 2a.
When the light beam penetrates the photonic crystal, the electric field decays rapidly with the increase
of PC periods. The local field intensity is enhanced significantly in the structure coated with graphene.
These results have proved that graphene plays a positive role in the excitation of resonance mode and
the realization of a high sensitivity of the proposed structure.
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Figure 3. (a) The normalized electric field distributions in the proposed structure in absence of
monolayer graphene. (b) The normalized electric field distributions in the proposed strcture coated
with monolayer graphene.

To enhance the sensitivity and to expand the measuring range of the proposed terahertz refractive
index sensor, we also take the major parameters of graphene, and the thickness and refractive index of
the sensing medium into consideration. The variations in the reflectance at different levels of Fermi
energy with respect to the incident angle are plotted, as shown in Figure 4. For a sensing medium
containing biomacromolecules, we select aqueous solution with a refractive index of 1.33; τ and L
are set to be 0.5 ps and 1, respectively. Graphene, in comparison with a metal surface, also shows
strong and stable absorption to biomolecules. For the calculation of sensitivity, the change of the
refractive index of the sensing medium is assumed to be ∆ns = 0.005. The optical properties of
graphene are represented by electrical conductivity, and the conductivity of graphene can be regulated
by adjusting the Fermi energy and relaxation time. Furthermore, we regulate the Fermi energy of
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graphene by adjusting the external voltage. The sensitivity of the proposed structure is as high
as 299.57◦/RIU when EF = 1 eV, as shown in Figure 4d. Through research, the optimal Fermi
energy of graphene should be 1 eV. It is worth mentioning that the above sensitivity performance is
calculated without considering the absorption of the sensing medium. In fact, the influence of the
absorption coefficient of the sensing medium on the sensing characteristics also needs to be considered,
especially in the terahertz band. Therefore, based on the structure of Figure 1, we further calculate the
sensitivity performance of the terahertz refractive index sensor in three cases: (1) when the sensing
medium is an aqueous solution, the dielectric function of water can be expressed by a triple Debye

function: εwater(ω) =
3∑

i=1
∆εi/(1 + jωτi) + ε∞, where ∆ε1 = 69.1, ∆ε2 = 2.01, ∆ε3 = 2.08, τ1 = 9.02 ps,

τ2 = 0.8 ps, τ3 = 0.05 ps [36]. It is found that the resonance phenomenon cannot occur obviously
because the aqueous solution has a large absorption coefficient in the terahertz band. Therefore,
it is difficult to use aqueous solution as sensing medium in terahertz band. (2) We also calculated
the sensing characteristics when the sensing medium is a liquid with low absorption coefficient (for
example, the absorption of nonpolar solution is generally low in the terahertz band). Take n-propanol
as an example in the calculation (EE = 0.8 eV, τ = 0.7 ps, ds = 390 µm, with other parameters having
the same values as those in Figure 4) [37]. It is found that the resonance phenomenon can still be
realized and the sensitivity of about 400◦/RIU can be obtained. (3) Furthermore, when the sensing
medium is gas (where the refractive index is close to 1 and absorption can be ignored), the structure
in the manuscript can be further developed into a THz gas sensor. In the case of similar structural
parameters as before, the resonance phenomenon is very obvious and the sensitivity above 500◦/RIU
can be obtained. The above results indicate that a high-sensitivity terahertz refractive index sensor
based on this structure is feasible.
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Figure 4. Variations of reflectance with respect to the incident angle under (a) EF= 0.7 eV, (b) EF= 0.8 eV,
(c) EF= 0.9 eV, (d) EF= 1.0 eV. The relaxation time and number of graphene layers are set as τ = 0.5 ps
and L = 1, respectively. The sensing medium is set as ds = 390µm.

It can be seen from the formula of graphene conductivity that the relaxation time also has an
obvious effect on conductivity. However, there are sometimes obstacles to regulating the relaxation
time of graphene, because it is difficult to change the relaxation time once the graphene is prepared.
Nevertheless, it is necessary to evaluate systematically the effects of relaxation time on the sensing
properties of the proposed structure, as shown in Figure 5. The variations of the sensitivity and FOM
with respect to the relaxation time of graphene are plotted in Figure 5a. It is found that the narrower
the FHWM is, the higher the structural sensitivity would be. Meanwhile, Figure 5b shows the variation
of reflectance as a function of the incident angle when τ = 1.0 ps and τ = 0.5 ps. When τ = 1.0 ps,
the highest sensitivity of the proposed structure (407.36◦/RIU) is obtained. It can be observed that
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the sensitivity and FOM vary monotonously with the relaxation time, mainly because the increase of
relaxation time has a strong influence on the real part of the conductivity but is barely effective for
the imaginary part, and this is reflected in narrower and deeper reflectance curves. Consequently,
the sensitivity and FOM of the proposed structure are affected. The FHWM of the reflectance at
τ = 0.5 ps is obviously smaller than that at τ = 1.0 ps, thus producing the highest FOM (65 RIU−1).
In summary, the effect of relaxation time on sensitivity is more significant than that on Fermi energy.
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The thickness of sensing medium is also an important factor in the sensitivity of the proposed
structure. Therefore, we plot the curves of sensitivity according to the thickness of the sensing medium,
as shown in Figure 6a,b. From the point of view of OTSs mode, it is commonly known that the
thickness of the sensing medium is very important to the excitation of OTSs. The thickness of the
sensing medium and the excitation of OTSs should satisfy: ds = d0 + m × λ/2nb, where d0 is the
minimum value of OTSs observed at λ, and m is a natural number. When ds = 390 µm, we can get
the maximum sensitivity (376.56◦/RIU) of the proposed structure. Accordingly, the reflectance as a
function of the incident angle is plotted. Since the resonance angle of OTSs excitation is highly sensitive
to the thickness of sensing medium, we set ds as 390 µm to ensure higher overall sensitivity and a
feasible design of the structure. To conclude, ds is no doubt an important factor in the design of the
terahertz refractive index sensor. In order to expand the detection range of the refractive index sensor,
we plot a curve to describe the relevance between the sensitivity of refractive index sensor and the
refractive index of the sensing medium, as shown in Figure 6c. It is found that the refractive index
of the sensing medium shows the same trend as its thickness. Additionally, the sensitivity varies
monotonously with ns, thus ensuring a large measuring range of ns. A sensitivity of 138.59◦/RIU can
be achieved even if the ns of the sensing medium increases to 1.42.

Therefore, it is proved that proper selection of the sensing medium thickness (ds) and the refractive
index (ns) can produce high sensitivity.

Next, the relationship between the number of graphene layers and the sensitivity of this structure
is also investigated, as shown in Figure 7. According to Figure 7a, when the number of graphene layers
increases from 1 to 5, the resonance angle tends to shift to a lower position. The variations of sensitivity
and FOM as a function of the number of graphene layers are illustrated in Figure 7b. The increase in
the number of graphene layers could greatly enhance the local electric field at the interface between the
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graphene and the sensing medium, which would further change the position of the resonance angle as
well as the depth and width of the reflectance, thus improving the sensitivity and FOM. The highest
sensitivity (∼ 446.56◦/RIU) is obtained when the number of graphene layers increases to 5, and the
corresponding FOM would reach 461.59 RIU−1. However, it is noteworthy that a continuous increase
in the number of graphene layers would lead to a drop in the depth of the reflectance curve, and this
would cause difficulties in calculating resonance mode measurements.
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We know that numerous approaches to creating a terahertz refractive index sensor have been
reported. Lastly, in order to more intuitively reflect the sensing characteristics of the refractive
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index sensor in this paper, we compiled a table and compared our results with some typical and
high-performance previous works, as shown in Table 1. From the table we can see that the main
advantages of our design compared to other refractive index sensor are that its sensitivity is higher
(although its sensitivity is lower than the grating combining technique scheme of Koju et al. [24],
it is at a high level in many recent refractive index-sensitive sensor schemes) and its sensitivity
characteristics are much more easily tuned. Also, it needs no phase-matching mechanisms as in the
cases of conventional SPR structures. It is also observed that the proposed graphene-covered Bragg
reflector structure sensor has a FOM with the same order of magnitude as the majority of schemes
reported in the cited references, albeit not as high as structures exhibiting ultra-narrow resonances.
Nowadays, the fabrication of 1D PCs and the transfer of graphene are mature technologies, and it is
not hard to fabricate the proposed structure as shown in Figure 1. Hence, the proposed structure is a
feasible and simple terahertz refractive index sensor method.

Table 1. Comparison between different refractive index sensing methods.

Ref. Mechanism Structure Sensitivity
(◦/RIU) FOM Frequency Range Tunability

[24] Bloch surface wave sensor Grating-photonic crystal structure 2500 / Visible light No
[26] SPR sensor Kretschmann structure 257 45 Visible light Yes
[38] SPR sensor Grating structure 237 95 Near Infra-red No
[39] Waveguide sensor Silicon waveguide 120 / Near Infra-red No
[40] SPR sensor Otto structure 34.11 1150 THz Yes
[41] SPR sensor Otto structure 147 / THz Yes
[42] Bloch surface wave sensor Prism-photonic crystal structure 117 283 THz Yes

This work OTSs sensor Graphene–Bragg reflector structure 400 60 THz Yes

4. Conclusions

In this paper, we propose a terahertz refractive index sensor based on a graphene–Bragg reflector
composite structure and strong resonance mode excitation to provide higher sensitivity at the terahertz
band. The findings have shown that the sensitivity and FOM of the proposed structure are heavily
dependent on the thickness and refractive index of the sensing medium and the optical parameters of
graphene, mainly because these parameters markedly affect the position of the resonance angle as
well as the depth and width of the reflectance curve. Proper settings of the parameters could offer a
maximal sensitivity of 407.36◦/RIU. To our best knowledge, angle-sensitive sensors have rarely been
reported in recent years. This sensitivity is at a high level in all kinds of sensor schemes with the same
sensitivity expression. This new graphene–Bragg reflector device offers good potential for practical
applications in the optical biosensor industry.
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