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Abstract: Magnetron sputtering has become an effective method in Sb2Se3 thin film photovoltaic.
Research found that post-selenization treatments are essential to produce stoichiometric thin films
with desired crystallinity and orientation for the sputtered Sb2Se3. However, the influence of the
sputtering process on Sb2Se3 device performance has rarely been explored. In this work, the working
pressure effect was thoroughly studied for the sputtered Sb2Se3 thin film solar cells. High-quality
Sb2Se3 thin film was obtained when a bilayer structure was applied by sputtering the film at a
high (1.5 Pa) and a low working pressure (1.0 Pa) subsequently. Such bilayer structure was found
to be beneficial for both crystallization and preferred orientation of the Sb2Se3 thin film. Lastly,
an interesting power conversion efficiency (PCE) of 5.5% was obtained for the champion device.

Keywords: thin film solar cell; Sb2Se3; magnetron sputtering; working pressure; post-selenization;
substrate configuration

1. Introduction

Antimony selenide (Sb2Se3) has become a promising material for new-generation thin film solar
cells as power conversion efficiency (PCE) of the device increased from 1.9% to 9.2% in only a few
years [1–4]. Compared with traditional thin film solar cells such as CIGS, CdTe, CZTS, and perovskite,
Sb2Se3 possesses some intrinsic advantages. First of all, the material has excellent optoelectronic
properties, for instance, an ideal optical band gap (1.1–1.3 eV), outstanding absorption coefficient
(>105 cm−1), decent carrier mobility (~10 cm2V−1s−1), and long carrier lifetime (~60 ns), making it as
a suitable light absorption layer for efficient thin film solar cells [3–5]. Second, unlike multielement
compound thin film solar cells such as CGIS and CZTS, Sb2Se3 gets rid of complex composition control
and unwanted impurity phases during the deposition and crystallization procedures, as the material
has only one single phase of orthorhombic structure. Further, another major distinct advantage of
Sb2Se3 over the most well-developed thin film solar cells, i.e., CIGS and CdTe, is the material is
low-cost and environment-friendly since both Sb and Se are earth-abundant and low-toxicity elements.
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Hence, it is reasonable to suppose that Sb2Se3 technology will become a strong candidate for the mass
production of thin film photovoltaic modules.

As being one of the most competitive absorber candidates for the next-generation thin film
photovoltaic, Sb2Se3 has attracted much attention and thereby various deposition techniques;
thus, electrochemical [6], solution [7–9], thermal evaporation [1,2,5,10], vapor transport deposition
(VTD) [3,11–13], close-spaced sublimation (CSS) [4,14], and sputtering [15–19] have been thoroughly
explored to enhance the PCE of the devices. Among these deposition approaches, magnetron sputtering
is a straightforward technique that is widely used in conventional thin-film photovoltaic technologies
such as CIGS and CZTS [20,21]. The method is well-known for its merits of good uniformity,
full-vacuum operation, and excellent composition transfer of the target materials, although to date,
for Sb2Se3 photovoltaic, devices with the highest PCEs have been fabricated via VTD and CSS [3,4].
Magnetron sputtering has been proven as an effective method to produce highly efficient Sb2Se3 solar
cells by our group as well. Liang reported a decent PCE of 3.35% for sputtered Sb2Se3 followed by
a in situ heating treatment [16]. Chen presented an efficient quasi-homojunction Sb2Se3 thin-film
prepared using the sputtering method [17]. Very recently, a competitive PCE of 6.06% was achieved by
selenizing sputtered amorphous Sb2Se3 thin-film by our group [22], suggesting a huge potential of the
magnetron sputtering technique for producing efficient Sb2Se3 thin film solar cells.

It has to be pointed out that in previous works where Sb2Se3 devices were fabricated using
magnetron sputtering, efforts were mainly focused on investigations of heat treatment processes.
However, the influences of sputtering parameters, for instance, sputtering power, working pressure,
target-to-substrate distance, etc., on the photovoltaic performance of the devices were seldom reported.
Working pressure was discovered to be an essential factor for both metal and semiconductor sputtering
in thin-film solar cell fabrications [23,24]. Severe problems such as pinholes, blistering, and even
delamination occur once an improper working pressure is applied. In this work, the effect of working
pressure on Sb2Se3 thin-film solar cells has been thoroughly studied. By tuning the working pressure
during the deposition process, an interesting PCE of 5.52% has been obtained for the champion device
in substrate configuration of glass/Mo/Sb2Se3/CdS/ITO/Ag.

2. Experimental Details

2.1. Deposition of Sb2Se3 Thin Film

Sb2Se3 powder with high purity (>99.99%) was ball milled and sintered to prepare a dense Sb2Se3

sputtering target first. Mo-coated glass substrates were subsequently cleaned in an ultrasonic bath
using detergent, ethanol, and deionized water, prior to sputtering deposition. The background pressure
of the sputtering vacuum chamber was evacuated below 7.0 × 10−4 Pa after sample loading. The
sputtering power and duration were fixed at 35 W and 90 min, respectively, for all samples. The
working pressure was adjusted from 0.1 Pa to 2.0 Pa to investigate the effect of working pressure
on device performance. Homogeneous amorphous Sb2Se3 films were obtained once the sputtering
process was finished. The as-deposited samples were then transferred into a vacuum tubular furnace
for post selenization treatment. A graphite container with 0.15 g of selenium powder in it was utilized
to store the amorphous Sb2Se3 films. The tubular furnace was evacuated to a relatively low background
pressure prior to the selenization; after that, high-purity Ar (>99.999%) was pumped into the furnace
and the working pressure was kept at 5 × 104 Pa during the whole annealing process. The furnace
temperature was then ramped up to 350 ◦C at a heating rate of 20 ◦C/min. The selenization duration
was fixed at 15 min for each sample. The furnace was naturally cooled down to room temperature
after the heating program was finished.

2.2. Device Fabrication

CdS buffer layer was deposited onto the crystallized Sb2Se3 films using chemical bath deposition
(CBD). Magnetron sputtered ITO was deposited for 40 min with a DC power of 60 W onto the CdS
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layer. The device surface was scribed into small squares with identical area by knife, and Ag electrodes
were deposited onto the ITO surface via thermal evaporation to form metallic contact (the active area
of each device is 0.15 cm2). A substrate configuration of glass/Mo/Sb2Se3/CdS/ITO/Ag was assembled
for our Sb2Se3 solar cells.

2.3. Characterization of the Sb2Se3 Films and Devices

The surface and cross-sectional microstructures of the Sb2Se3 films were characterized using a
scanning electron microscope (SEM, SUPRA 55, Zeiss, Oberkochen, Germany). X-ray diffraction (XRD,
Ultima-iv, Rigaku, Tokyo, Japan, CuKα radiation under operation conditions of 40 kV and 40 mA
from 10◦ to 60◦) was utilized to investigate the crystal orientation of the Sb2Se3 films. The current
density–voltage (J–V) curves of the Sb2Se3 devices were measured under 100 mW/cm2 AM 1.5 G light
illumination using a class AAA solar simulator at room temperature. The external quantum efficiency
(EQE) spectra were measured using a Zolix SCS101 system (Zolix Instruments, Beijing, China) and a
Keithley 2400 source meter (Keithley Instruments, Solon, OH, USA).

3. Results and Discussions

Sb2Se3 thin films sputtered under various working pressures were denoted as 2.0-Sb2Se3,
1.5-Sb2Se3, 1.0-Sb2Se3, 0.5-Sb2Se3, and 0.1-Sb2Se3, respectively. Bilayer deposition using a mixture
of two different working pressures is a common technique utilized in Mo sputtering to produce
conductive Mo back contact with good adhesion [25]. Herein, in order to study the effect of mixed
working pressure, a working pressure of 1.5 Pa was firstly applied for 20 min to sputter the bottom
layer, then the working pressure was decreased to 1.0 Pa and the sputtering process was further
carried out for 70 min to deposit the top layer. The sample was denoted as mixed-Sb2Se3 accordingly.
The thicknesses of the as-deposited thin films were measured as 260 nm, 480 nm, 660 nm, 690 nm,
810 nm and 630 nm for the 2.0-Sb2Se3, 1.5-Sb2Se3, 1.0-Sb2Se3, 0.5-Sb2Se3, 0.1-Sb2Se3, and mixed-Sb2Se3,
respectively, by using a stylus profilometer. SEM top-view images of the as-deposited and annealed
Sb2Se3 thin films via various working pressures are displayed in Figures 1 and 2, respectively. As can
be seen from the figures, the as-deposited 2.0-Sb2Se3, 1.5-Sb2Se3, 1.0-Sb2Se3, and mixed-Sb2Se3 thin
films showed very similar surface morphologies. No distinct crystal grain could be observed on
the surfaces of these samples. However, cracks appeared on the surface of the 0.5-Sb2Se3 sample
(Figure 1d). When the working pressure was low, the number of argon atoms decreased and, as a
result, the probability of collision between the sputtered Sb2Se3 molecules and argon atoms decreased
too, thereby leading to an excessive rate of the thin film deposition. Such rapid deposition might
enhance the defect density and stress within the as-deposited Sb2Se3 thin films, which might induce
crack formation within the bulk film. Once the working pressure was too low, i.e., 0.1 Pa, a slightly
different surface morphology could be observed for the 0.1-Sb2Se3 sample in Figure 1e where the thin
film surface seemed to be getting rougher and irregular, possibly due to partial crystallization of the
deposited film caused by the ultrahigh energy.
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Figure 1. Scanning electron microscope (SEM) top-view images of as-deposited Sb2Se3 thin films 
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Figure 2. SEM top-view images of crystallized Sb2Se3 thin films sputtered under 2.0 Pa (a), 1.5 Pa (b), 

1.0 Pa (c), 0.5 Pa (d), mixed pressures (e), and 0.1 Pa (f). The red scale bars at the left bottom corner of 

(a–e) read 1 µm. The black scale bar at the left bottom corner of (f) reads 10 µm. 

For the annealed samples, it is apparent that the grain size of the Sb2Se3 thin film increased 

when the working pressure was decreased from 2.0 Pa to 1.0 Pa, as shown in Figure 2a–c. The 

change could be attributed to the elevated energies of the sputtered Sb2Se3 molecules under low 

working pressures, which would facilitate the crystallization of the thin films. Pinholes appeared on 

the surfaces of the 1.0-Sb2Se3 and 0.5-Sb2Se3 samples (Figure 2c,d), which is probably due to the 

higher defect density and stresses within the amorphous films caused by overly high deposition 

rates. Significant blistering was clearly observed for the 0.1-Sb2Se3 sample (Figure 2f), possibly owing 

to the sudden release of the excessive compressive stress during the selenization process. 

Interestingly, a pinhole-free surface consisted of large crystal grains could be seen for the 

mixed-Sb2Se3 sample, as shown in Figure 2e. We attribute this optimal morphology to the bilayer 

structure of the sample, where the lattice mismatch between the Mo substrate and the Sb2Se3 thin 

film could be suppressed by the Sb2Se3 bottom layer sputtered at 1.5 Pa, whilst the Sb2Se3 top layer 

sputtered at 1.0 Pa contributed to the crystallization promotion.  

Figure 1. Scanning electron microscope (SEM) top-view images of as-deposited Sb2Se3 thin films
sputtered under 2.0 Pa (a), 1.5 Pa (b), 1.0 Pa (c), 0.5 Pa (d), 0.1 Pa (e), and mixed pressures (f). The red
scale bar at the left bottom corner of each figure reads 1 µm.
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Figure 2. SEM top-view images of crystallized Sb2Se3 thin films sputtered under 2.0 Pa (a), 1.5 Pa (b),
1.0 Pa (c), 0.5 Pa (d), mixed pressures (e), and 0.1 Pa (f). The red scale bars at the left bottom corner of
(a–e) read 1 µm. The black scale bar at the left bottom corner of (f) reads 10 µm.

For the annealed samples, it is apparent that the grain size of the Sb2Se3 thin film increased when
the working pressure was decreased from 2.0 Pa to 1.0 Pa, as shown in Figure 2a–c. The change
could be attributed to the elevated energies of the sputtered Sb2Se3 molecules under low working
pressures, which would facilitate the crystallization of the thin films. Pinholes appeared on the surfaces
of the 1.0-Sb2Se3 and 0.5-Sb2Se3 samples (Figure 2c,d), which is probably due to the higher defect
density and stresses within the amorphous films caused by overly high deposition rates. Significant
blistering was clearly observed for the 0.1-Sb2Se3 sample (Figure 2f), possibly owing to the sudden
release of the excessive compressive stress during the selenization process. Interestingly, a pinhole-free
surface consisted of large crystal grains could be seen for the mixed-Sb2Se3 sample, as shown in
Figure 2e. We attribute this optimal morphology to the bilayer structure of the sample, where the
lattice mismatch between the Mo substrate and the Sb2Se3 thin film could be suppressed by the Sb2Se3
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bottom layer sputtered at 1.5 Pa, whilst the Sb2Se3 top layer sputtered at 1.0 Pa contributed to the
crystallization promotion.

Figure 3 demonstrates the cross-sectional morphologies of the Sb2Se3 devices sputtered under
different working pressures. As can be seen from the figures, sputtering the Sb2Se3 thin films at high
working pressures, e.g., 2.0 Pa and 1.5 Pa, would produce compact crystal grains for the samples. On
the other hand, the thin film thicknesses were hindered owing to slow deposition rates at high working
pressures, restricting the sizes of the Sb2Se3 grains. Pinholes at the Sb2Se3/Mo junction are clearly
seen for those samples sputtered at 1.0 Pa and 0.5 Pa, consistent with the SEM top-view images. It
is also noted that an overly thick MoSe2 interfacial layer could be clearly observed between the Mo
substrate and the Sb2Se3 thin film for these two samples. We speculate that the pinholes within these
samples would act as tunnels to accelerate the diffusion of Se vapor towards the Sb2Se3/Mo interface,
inducing the formation of the thick MoSe2 interfacial layer during the selenization treatment. Large
vertically-oriented Sb2Se3 grains without visible pinholes are observed for the annealed mixed-Sb2Se3

sample. No apparent bilayer structure could be seen within the bulk film, suggesting excellent grain
continuity across the whole film after crystallization. Figure 3f displays the cross-sectional image of
the 0.1-Sb2Se3 sample. Complete delamination between the Sb2Se3 absorber layer and the Mo back
contact is clearly observed due to the blistering effect, which would definitely lead to device failure.
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Figure 3. SEM cross-sectional images of Sb2Se3 devices sputtered under 2.0 Pa (a), 1.5 Pa (b), 1.0 Pa (c),
0.5 Pa (d), mixed pressures (e), and 0.1 Pa (f). The red scale bars at the left bottom corner of (a–e) read
1 µm. The black scale bar at the left bottom corner of (f) reads 2 µm.

It is well known that film orientation plays as an essential role in the photovoltaic performance of
Sb2Se3 thin film solar cells. Reports have shown that transport of photogenerated carriers would be
facilitated within the bulk film once the Sb2Se3 grains are in vertical orientations, as the carriers could
travel readily within the covalently bonded ribbons in this case. On the other hand, the photogenerated
carriers would have to hop between the Sb2Se3 ribbons held together by van der Walls forces when the
Sb2Se3 grains are in improper orientations (hk0), making the carrier transport difficult [2–5]. Therefore,
it is vital to optimize the film orientation in order to obtain better device performance. XRD results
of the annealed Sb2Se3 thin films at various working pressures are illustrated in Figure 4a. All the
samples demonstrate vertical orientations, as evidenced by the prominent diffraction peaks of (211)
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and (221). Texture coefficients (TC) of the diffraction peaks were calculated using the equation below
to quantitatively investigate the orientation preference (Figure 4b) [26]:

TChkl =
I(hkl)

I0(hkl)
/(

1
N

N∑
i=1

I(hikili)
I0(hikili)

) (1)

where I(hkl) and I0(hkl) are the diffraction peak intensities of (hkl) planes in the measured and standard XRD
pattern of Sb2Se3 (JCPDS 15-0861), respectively. Large TC value of a diffraction peak indicates preferred
orientation along this particular direction [26]. As can be seen from the figure, the mixed-Sb2Se3 sample
shows the highest overall TC values for the (hkl, l,0) planes and the lowest TC values for the (hk0)
planes among all the samples, indicating the optimal growth orientation of the film. Such preferential
vertically oriented Sb2Se3 grains significantly improved carrier transport within the film and thus
enhance the device performance. In contrast, the TC values of the (hk0) planes, namely, (120), (230),
and (240), were much larger for the other samples, leading to device deterioration due to high series
resistance [2].
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The current density–voltage (J–V) curves, external quantum efficiency (EQE), and detailed
performance parameters of the Sb2Se3 devices prepared at various working pressures are summarized
in Figure 5 and Table 1. The champion mixed-Sb2Se3 device offered a short-circuit current density
(JSC) of 24.95 mA/cm2, an open circuit voltage (VOC) of 448 mV, and a fill factor (FF) of 53.2%, thus
achieving an interesting PCE of 5.5%. It can be seen that although other devices presented decent
VOC values, the final PCEs of these devices were restricted by the low FF and especially the poor JSC,
which were far inferior to that of the champion mixed-Sb2Se3 device. We attribute the unsatisfied
JSC of the devices sputtered at low working pressures (below 1 Pa) to the shunt paths caused by the
pinholes within the films, whilst the low JSC of the devices sputtered at elevated working pressures
(above 1.5 Pa) could be attributed to the insufficiently thick absorber layer at such high working
pressures, as shown in SEM images. In addition, the undesired grain orientations of other films (as
already demonstrated quantitatively by the XRD results) prepared under improper working pressures
would increase the series resistance of the devices and thus lead to poor FF and JSC [2]. In order to
analyze the photoresponses of the devices fabricated under various working pressures, EQE spectra
were measured for all the devices. Apparently, the EQE curve of the mixed-Sb2Se3 device was much
higher than that of the other samples in the wavelength region from 500 nm to 850 nm, suggesting
less recombination losses of photogenerated carriers not only within the bulk film but also at the
Sb2Se3/CdS heterojunction [3].
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Figure 5. Device performances. Current density–voltage (J–V) curves (a), and external quantum
efficiency (EQE) and integrated JSC (b) of Sb2Se3 devices fabricated under various working pressures.

Table 1. Device performance parameters of the Sb2Se3 devices prepared at various working pressures.

Samples Voc (mV) Jsc (mA/cm2) FF (%) Eff (%)

2.0-Sb2Se3 408 8.76 43.1 1.51
1.5-Sb2Se3 430 19.64 49.7 4.10
1.0-Sb2Se3 434 21.01 48.4 4.22
0.5-Sb2Se3 448 15.44 45.7 3.10

mixed-Sb2Se3 448 24.95 53.2 5.52

4. Conclusions

In summary, the influence of working pressure on the device performance of sputtered Sb2Se3 thin
film solar cells has been investigated in this work. High-quality Sb2Se3 thin film was obtained when
a bilayer structure was applied by sputtering the film at a high (1.5 Pa) and a low working pressure
(1.0 Pa) subsequently. Such bilayer structure was found to be beneficial for both crystallization and
preferred orientation of the Sb2Se3 thin film. Further, shunt leakages induced by pinholes within the
bulk film could be effectively hindered by using the bilayer structure. Finally, an interesting PCE of
5.5% was obtained for the champion device.
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