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Abstract: Methyl tert-butyl ether (MTBE) is a widely used gasoline additive that has high water
solubility, and is difficult to separate from contaminated ground and surface waters. We present the
development in functionalized carbon nanotube-immobilized membranes (CNIM-f) and graphene
oxide-immobilized membranes (GOIM) for enhanced separation of MTBE via sweep gas membrane
distillation (SGMD). Both types of modified membranes demonstrated high performance in MTBE
removal from its aqueous mixture. Among the membranes studied, CNIM-f provided the best
performance in terms of flux, removal efficiency, mass transfer coefficients and overall selectivity.
The immobilization f-CNTs and GO altered the surface characteristics of the membrane and enhanced
partition coefficients, and thus assisted MTBE transport across the membrane. The MTBE flux
reached as high as 1.4 kg/m2 h with f-CNTs, which was 22% higher than that of the unmodified PTFE
membrane. The maximum MTBE removal using CNIM-f reached 56% at 0.5 wt % of the MTBE in
water, and at a temperature of 30 ◦C. With selectivity as high as 60, MTBE recovery from contaminated
water is very viable using these nanocarbon-immobilized membranes.

Keywords: MTBE separation; functionalized carbon nanotube immobilized membranes (CNIM-f);
graphene oxide immobilized membranes (GOIM); sweep gas membrane distillation (SGMD);
flux enhancement

1. Introduction

Over 20 million tons of methyl tert-butyl ether (MTBE) is produced and used as a fuel additive
around the world every year, and it has contaminated ground and surface water all across the globe [1,2].
Its impact on the environment and human health has been a great concern in the USA and other
countries as well [3–9]. MTBE is highly water soluble, has a low Henry’s Law constant and low
sorption constants [2]. These properties also enhance the mobility of MTBE, and make it difficult to
separate from water. Methods such as air stripping, adsorption, oxidation processes and pervaporation
have been used for MTBE removal [10–12]. Air stripping is the conventional method for separating
MTBE from water. However, this approach works well only at high temperature, which is energy
extensive, and lowering the temperature of MTBE-contaminated feed water can reduce the efficiency
of this technology significantly. Additionally, the technology is often not practical if the air stream
has to be treated [13]. Although the adsorption of low concentration MTBE on activated carbon can
be a challenge, this approach also requires a desorption step [14,15]. Advanced oxidation processes
have also been tested, but they can lead to the formation of toxic by-products. Membrane-based
processes can overcome some of the shortcomings of the conventional processes mentioned above,
and are gaining interest [10]. Membrane-based pervaporation has been applied for MTBE separation
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from water [16,17]. The results show a high separation factor for MTBE [17], however, the process has
relatively low permeate flux [18].

Membrane distillation (MD) is a thermally-driven, membrane-based process, which has been
utilized for desalination and wastewater treatment, including volatile compound separation [19–21].
The main advantages of MD include high rejection of non-volatile species and relatively low membrane
fouling. Furthermore, a low-grade energy, such as solar/geothermal energy, and industrial waste
heat, have been efficiently used as a heat source, since MD can be operated at low temperature
(30–70 ◦C) [20,22,23]. A key element of the MD system is the membrane, which directly influences the
separation performances. This MD process exploits the differential partial vapor pressure between feed
and permeate side as the driving force to transport the vapor molecules through the membrane, where
the liquid/membrane interface needs to be hydrophobic to prevent membrane pore blocking and wetting.
Understanding these interactions at the membrane interface is important for tailoring the membrane
properties [24]. A variety of modification methods have been used to promote the hydrophobicity of the
membrane surface [25]. For example, a hydrophobic styrene–butadiene rubber was chemically-coated
polyamide [26], while tetrafluoromethane was employed to modify the surface of polyethersulfone
membranes by vacuum plasma modification [27]. The hydrophobic materials, such as polypropylene
(PP), polyvinylidenefluroride (PVDF), polyethylene (PE) and polytetrafluoroethylene (PTFE) have
been used to synthesize MD membranes [28]. However, they tend to be very hydrophobic, and show
little affinity for MTBE. We have reported a membrane modification approach using carbon nanotubes
(CNTs), f-CNTs and GO [29–33] to improve the characteristics of the membrane, and have shown an
excellent adsorption and transport of solutes, leading enhanced flux and selectivity in desalination,
as well as the separation of organic solvents from aqueous mixtures [21,23,31]. Although several
techniques have been tested for MTBE removal from aqueous solution, few studies have investigated
the removal using vacuum MD [34,35]. MTBE separation using SGMD with a nanocarbon-modified
membrane at low temperature has much potential for performance improvement, and has not been
studied. The objective of this project was to study the removal of MTBE from water via SGMD,
using carbon nanotube and a graphene oxide-immobilized membrane.

2. Materials and Methods

2.1. Chemicals and Materials

Methyl tert-butyl ether (MTBE) (99.8%) was purchased from Sigma Aldrich (Sigma-Aldrich Inc,
St. Louis, MO, USA). Flat sheet polytetrafluoroethylene (PTFE) membrane with a polypropylene (PP)
supporting layer (0.2 µm pore size, 119 µm thickness, and 74% porosity) was obtained from Adventec Toyo
Kaisha, Ltd., (Tokyo, Japan). Multi-walled carbon nanotubes (MWCNTs) (OD 20–30 nm, length 10–30 µm,
purity > 95%) were purchased from Cheap Tubes Inc., (Brattleboro, VT, USA). Graphene oxide (GO) was
obtained from Graphenea Inc., (Cambridge, MA, USA). Deionized water was used in all experiments.

2.2. CNIM-f and GOIM Fabrication and Characterization

The functionalized CNTs (f-CNTs) were prepared by bonding the carboxyl functional group on
the MWCNT sidewall through microwave-induced reaction in a Microwave Accelerated Reaction
System (CEM Mars), as stated in our previous paper [36].

CNIM-f was fabricated by the procedure, as explained in our recent paper [23]. 1.5 mg of f-CNTs
was mixed with 8 g of acetone and uniformly dispersed by an ultrasonic bath for 4 h. The PVDF
solution used as a binder was separately prepared by dissolving 0.2 mg of PVDF in 2 g of acetone and
added to f-CNTs solution. Immobilization of f-CNTs on the membrane was performed by drop casting
of the f-CNTs-PVDF mixture on the membrane surface. The modified membrane was dried under the
fume hood overnight. GOIM was also fabricated with the same procedure, except sonication for 10 h.

The membrane morphology and the deposition of CNTs and GO on the membranes were
characterized using the scanning electron microscope (SEM, model JSM-7900F, JEOL USA Inc, Peabody,
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MA, USA). The plain membrane, CNIM-f and GOIM were further characterized by Raman spectroscopy
(DXR Raman microscope, Thermo Fisher Scientific, Waltham, MA, USA). The instrument was operated
by using 532 nm diode-pumped, solid state (DPSS) laser with laser power of 8 mW, and five scans,
with each for 2 s, were performed. The thermal stability of the membranes was examined via thermal
gravimetric analysis (TGA, model TGA 8000, PerkinElmer Inc, Hopkinton, MA, USA) using N2 in
the temperature range of 30–620 ◦C, with a heating rate of 10 ◦C/min. Contact angle measurement
used to illustrate the hydrophobic/hydrophilic property of the membrane surfaces was obtained by
the water drop method. Water and 2.5% MTBE solution were used in the contact angle measurement.
A micro syringe (Hamilton 0−100 µL) was employed to create 2 µL droplets for the measurement as
the method described in our previous paper [23]. Surface free energy of the unmodified and modified
membranes was calculated from contact angle data following the Owens−Wendt (extended Fowkes)
model [37] by using water, ethylene glycol, glycerol and propanol as test liquids [38].

The liquid entry pressure (LEP) of PTFE and modified membranes was measured by a procedure
mentioned in the article [39]. The membrane module was connected to a stainless steel chamber (Alloy
Products Corp, 185 Psi Mawp) filled with the MTBE solution, by the high-pressure tubing (Masterflex
Transfer Tubing, PTFE, 1/8” ID × 1/4” OD). Compressed N2 gas was used to build up the pressure in
the chamber, and the increased pressure forced the liquid going into the tube. The pressure that drives
the liquid, first entering through the membrane pores, is LEP. The triple measurement was carried out
to ensure reproducibility.

2.3. Experimental Setup

The sweep gas membrane distillation (SGMD) configuration was employed in this study.
The MTBE solution was recirculated around the feed side of the membrane, while a dried-inert
gas swept the vapor on the permeate side of the membrane. Before being passed through the permeate
side, the sweep air was treated according to the procedure in our previous paper [21]. The SGMD
setup in this experiment is shown as the schematic diagram in Figure 1. The MD module had an
active contact area of 11.94 cm2. An enclosed feed chamber was used to prevent sample loss via
evaporation. A peristaltic pump (Cole-Parmer, Masterflex L/S compact pump model 77240-00) was
used to recirculate the feed solution. The constant temperature water bath (NESLAB Instruments, Inc.,
Water Bath Model GP 200) was used to control the temperature of the feed. The temperature sensors
(Cole-Parmer, Four-channel data logger thermometer) were employed to continuously monitor the
inlet and outlet temperatures of the feed side.
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Figure 1. Schematic diagram of the experimental setup for the sweep gas membrane distillation 
(SGMD). 

2.4. Experimental Procedure 

MTBE feed solutions with different concentrations (w/w) were prepared by adding weighed 
amounts of MTBE to deionized water. The performances of PTFE and modified membranes were 
measured under different conditions, i.e., concentrations (0.5, 1.5 and 2.5 wt% MTBE), temperatures 
(21, 30 and 40 ºC), and feed flow rates (20, 30 and 40 mL/min). The air flow rate on the permeate side 
was kept constant at 2 L/min for all experiments. The change in the feed amount was measured by 
subtracting the initial and final weight. The concentrations of the MTBE solution were analyzed by a 
UV Spectrophotometer (UV-1800 UV-Vis Spectrophotometer, Shimadzu Inc, Canby, OR, USA) with 
λmax at 194 nm. The concentration and weight of the feed solutions before and after the experiments 
were used to calculate the flux and the selectivity of the membranes. Each experiment was carried 
out in triplicate to confirm the reproducibility. 

3. Results and Discussion 

The SEM images of the plain PTFE membrane, GOIM and CNIM-f are illustrated in Figure 2. 
Figures 2a and b show the biaxially stretched microporous structure of the feed and the permeate 
side of the original PTFE membrane, while Figures 2c and d present the morphology of the feed side 
of the membranes after modification by GO and f-CNTs, respectively. Uniform deposition of GO and 
f-CNTs was found over the entire membrane surface. Figure 3 presents the Raman spectra of PTFE 
membrane, GOIM and CNIM-f. The Raman spectrum of the PTFE membrane showed the dominant 
peaks at 294, 389, 735 and 1383 cm−1 [40]. These peaks can also be seen in the spectrum of GOIM and 
CNIM-f, together with the signature bands of graphitic materials at ~1350 cm−1and ~1595 cm−1, called 
the D and G-band, respectively [41]. 
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Figure 1. Schematic diagram of the experimental setup for the sweep gas membrane distillation (SGMD).
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2.4. Experimental Procedure

MTBE feed solutions with different concentrations (w/w) were prepared by adding weighed
amounts of MTBE to deionized water. The performances of PTFE and modified membranes were
measured under different conditions, i.e., concentrations (0.5, 1.5 and 2.5 wt % MTBE), temperatures
(21, 30 and 40 ◦C), and feed flow rates (20, 30 and 40 mL/min). The air flow rate on the permeate side
was kept constant at 2 L/min for all experiments. The change in the feed amount was measured by
subtracting the initial and final weight. The concentrations of the MTBE solution were analyzed by a
UV Spectrophotometer (UV-1800 UV-Vis Spectrophotometer, Shimadzu Inc, Canby, OR, USA) with
λmax at 194 nm. The concentration and weight of the feed solutions before and after the experiments
were used to calculate the flux and the selectivity of the membranes. Each experiment was carried out
in triplicate to confirm the reproducibility.

3. Results and Discussion

The SEM images of the plain PTFE membrane, GOIM and CNIM-f are illustrated in Figure 2.
Figure 2a,b show the biaxially stretched microporous structure of the feed and the permeate side of the
original PTFE membrane, while Figure 2c,d present the morphology of the feed side of the membranes
after modification by GO and f-CNTs, respectively. Uniform deposition of GO and f-CNTs was found
over the entire membrane surface. Figure 3 presents the Raman spectra of PTFE membrane, GOIM
and CNIM-f. The Raman spectrum of the PTFE membrane showed the dominant peaks at 294, 389, 735
and 1383 cm−1 [40]. These peaks can also be seen in the spectrum of GOIM and CNIM-f, together with
the signature bands of graphitic materials at ~1350 cm−1 and ~1595 cm−1, called the D and G-band,
respectively [41].Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 17 
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membranes seemed relatively stable. The decomposition of PP resulted in the initial weight loss of 
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Figure 2. Scanning electron microscopy (SEM) images of (a) the feed side of original PTFE membrane,
(b) the permeate side of original PTFE membrane, (c) graphene oxide-immobilized membranes (GOIM)
and (d) functionalized carbon nanotube-immobilized membranes (CNIM-f).
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Figure 3. Raman spectra of PTFE membrane, GOIM and CNIM-f.

The TGA and the derivative thermogravimetry curves of the PTFE membrane, GOIM and CNIM-f
are shown in Figure 4a,b, respectively. At moderate temperatures (T < 150 ◦C), all membranes seemed
relatively stable. The decomposition of PP resulted in the initial weight loss of the membranes at the
temperature of ~350 ◦C [42], with significant weight change at the temperature of the 450–500 ◦C
range. The significant weight loss was noticed again at a temperature of ~500 ◦C, and the major weight
loss was seen at temperatures between 550 and 600 ◦C. This was due to the degradation of PTFE [43].
Overall, the TGA of modified membranes clearly shifted upward from the plain membrane, especially
the CNIM-f. This may be implied that the modified membranes have a higher thermal stability than the
unmodified ones. Higher thermal stability or the reduction of the thermal degradation of GOIM and
CNIM-f could be attributed to the role of GO and CNTs that act as a radical scavenger and sacrificial
agent, and their ability in inducing the barrier effect and high thermal conductivity [44,45]. However,
between GOIM and CNIM-f, the latter had higher thermal stability. This is in accordance with the
thermal stability of GO and CNTs, as reported in the previous publication [46].

The contact angles of pure water and aqueous MTBE solution on the membrane surface, along with
their photos, are presented in Figure 5. The presence of GO and f-CNTs clearly resulted in the alteration
of the contact angle of the drops on the PTFE membrane. Testing with deionized water, the contact
angle for the plain membrane was 118◦, which decreased to 108◦ and 112◦ for GOIM and CNIM-f,
respectively. The reduction in the contact angle for GOIM and CNIM-f were attributed to the polar
epoxy, carboxyl and hydroxyl functional groups on GO, and the carboxylic groups of f-CNTs. These
enhanced the hydrophilicity of the membranes. This is in line with the previous publications [23,31,33].
For the MTBE solution, the contact angle for all membranes reduced as expected due to incorporation
of the organic moiety in the aqueous solution, which decreased surface tension and eventually led
to lower contact angles. For GOIM and CNIM-f, similar contact angle values of 94◦ and 95◦ were
observed, and it was 107◦ for the plain membrane. Furthermore, the additional reduction of the contact
angles for GOIM and CNIM-f compared to that for the plain membrane was attributed to the enhanced
interaction of the organic moiety with GO and f-CNTs. Surface free energy of the original PTFE
membrane and modified membranes was investigated using the contact angles of different liquids,
as mentioned before. The surface free energy showed an increase with the membrane modification,
using GO and f-CNTs. The surface free energy was 5.54 mJ/m2 for the plain membrane, and rose to
8.77 and 7.64 mJ/m2 for GOIM and CNIM-f, respectively. Although the surface energy of a particular
material depends upon various factors, in general, the high surface free energy of modified membranes
signify strong molecular attractions, while the low surface free energy of plain membrane indicates
weaker attractive forces between the liquid and the membrane surface.
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Figure 4. Thermogravimetric analysis (TGA) (a) and the derivative thermogravimetry (b) of the PTFE
membrane, GOIM and CNIM-f.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 17 

Nanomaterials 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nanomaterials 

values of 94° and 95° were observed, and it was 107° for the plain membrane. Furthermore, the 
additional reduction of the contact angles for GOIM and CNIM-f compared to that for the plain 
membrane was attributed to the enhanced interaction of the organic moiety with GO and f-CNTs. 
Surface free energy of the original PTFE membrane and modified membranes was investigated using 
the contact angles of different liquids, as mentioned before. The surface free energy showed an 
increase with the membrane modification, using GO and f-CNTs. The surface free energy was 5.54 
mJ/m2 for the plain membrane, and rose to 8.77 and 7.64 mJ/m2 for GOIM and CNIM-f, respectively. 
Although the surface energy of a particular material depends upon various factors, in general, the 
high surface free energy of modified membranes signify strong molecular attractions, while the low 
surface free energy of plain membrane indicates weaker attractive forces between the liquid and the 
membrane surface. 

 
Figure 5. Photographs and contact angle of water and aqueous MTBE (2.5 wt%) drops on PTFE 
membrane, GOIM and CNIM-f. 

The measurement of liquid entry pressure (LEP) for plain and modified membranes was made 
using DI water and 2.5% of the MTBE solution as feed solutions. The LEP of the membranes tested 
with DI water were 67, 63 and 64 psig, and reduced to 37, 29 and 34 psig when MTBE was used as a 
feed for the plain membrane, GOIM and CNIM-f respectively. The reduction of LEP of the 
membranes when tested with MTBE was attributed to decrease in the surface tension of the liquid 
and the contact angle. This is due to the fact that LEP is proportional to the surface tension of the 
liquid and the degree of contact angle, as described in the literature [47]. The LEP of GOIM and 
CNIM-f were lower than that of the plain PTFE membrane, due to their lower contact angles due to 
the reasons given above. 

3.1. SGMD Performance Using GOIM, CNIM-f and PTFE Membrane 

In this study, MTBE permeate flux and MTBE removal efficiency were used to evaluate the 
performance of the modified membranes and compared to a plain PTFE membrane. The overall 
permeate flux of MTBE (JMTBE), across the membrane can be expressed as: 

 𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  =  (𝑊𝑊0−𝑊𝑊𝑡𝑡)
𝐴𝐴∗𝑡𝑡

 (1) 

Figure 5. Photographs and contact angle of water and aqueous MTBE (2.5 wt %) drops on PTFE
membrane, GOIM and CNIM-f.



Nanomaterials 2020, 10, 578 7 of 16

The measurement of liquid entry pressure (LEP) for plain and modified membranes was made
using DI water and 2.5% of the MTBE solution as feed solutions. The LEP of the membranes tested
with DI water were 67, 63 and 64 psig, and reduced to 37, 29 and 34 psig when MTBE was used as a
feed for the plain membrane, GOIM and CNIM-f respectively. The reduction of LEP of the membranes
when tested with MTBE was attributed to decrease in the surface tension of the liquid and the contact
angle. This is due to the fact that LEP is proportional to the surface tension of the liquid and the degree
of contact angle, as described in the literature [47]. The LEP of GOIM and CNIM-f were lower than
that of the plain PTFE membrane, due to their lower contact angles due to the reasons given above.

3.1. SGMD Performance Using GOIM, CNIM-f and PTFE Membrane

In this study, MTBE permeate flux and MTBE removal efficiency were used to evaluate the
performance of the modified membranes and compared to a plain PTFE membrane. The overall
permeate flux of MTBE (JMTBE), across the membrane can be expressed as:

JMTBE =
(W0 −Wt)

A ∗ t
(1)

where, W0 and Wt are the total mass of MTBE of the feed at the beginning of the experiment and after
collection time t, respectively. A is the active membrane surface area. The MTBE removal efficiency
can be measured according to the equation below.

% MTBE removal =
(W0 −Wt)

W0
× 100 (2)

The results of varying feed concentration on MTBE flux and percent MTBE removal are shown in
Figure 6a,b, respectively. The MTBE feed concentrations of 0.5 wt %, 1.5 wt % and 2.5 wt %, with a
constant feed flow rate of 20 mL/min and a temperature of 30 ◦C, were examined. From Figure 6a,
it can be seen that the MTBE flux increased substantially with an increase in feed concentration for
all membranes, and the flux of CNIM-f and GOIM were superior to that of the original membrane.
The higher flux for CNIM-f and GOIM may be explained by the fact that f-CNTs and GO are the
exceptional sorbents for the organic molecule [48], and lead to the improvement of the partition
coefficient of MTBE. However, the high flux of CNIM-f over GOIM may be ascribed to the activated
diffusion via adsorption and desorption on the CNT surface that facilitate faster MTBE transfer across
the membrane [32,49]. The highest MTBE flux from CNIM-f was 1.4 kg/m2 h at the feed concentration of
2.5 wt %, while the maximum enhancement of 21.7% and 11% was obtained at the feed concentration of
0.5 wt %, compared to the PTFE membrane and GOIM, respectively. As shown in Figure 6b, the percent
MTBE removal declined with the increment of the feed concentrations for all membranes. Both CNIM-f
and GOIM still provided the higher percent removal than the plain membranes. The highest removal
of 56% was observed for CNIM-f at the feed concentration of 0.5%.

The effects of the feed flow rate on MTBE flux and percent MTBE removal at 30 ◦C feed temperature
and concentration of 1.5 wt % MTBE are shown in Figure 7a,b, respectively. The feed flow rate was
varied between 20–40 mL/min. As can be seen in Figure 7a, it is clear that the MTBE flux steadily rose
with an increase in the feed flow rate in all membranes. The increment of the feed flow rate increased
the amount of MTBE and the availability of vapor into the MD module per unit time. The increased
velocity also led to the reduction of temperature and concentration polarization, and consequently
resulted in the permeate flux enhancement [50]. The modified membranes gave higher flux than the
original membrane for all flow rates. The CNIM-f yielded the highest permeate flux of 0.98 kg/m2 h at
the 40 mL/min feed flow rate, while the largest enhancements found at the feed flow rate of 20 mL/min,
which were 11% and 4%, equated to the PTFE membrane and GOIM, respectively. Like the permeate
flux, the percent MTBE removal increased with an increase in the feed flow rate as shown in Figure 7b.
The CNIM-f presented the most percent removal, it was 39% at the same feed flow rate.
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Figure 6. (a) Effect of feed concentration on MTBE flux, and (b) % MTBE removal as the function of
feed concentration at the feed temperature of 30 ◦C and the feed flow rate of 20 mL/min.

The results of varying feed temperature on MTBE flux and percent MTBE removal are presented in
Figure 8a,b, respectively. The membrane performances were investigated at three different temperatures:
21, 30 and 40 ◦C at a constant feed flow rate of 20 mL/min, and at a feed concentration of 1.5%. As shown
in Figure 8a, there is a clear trend of increasing the MTBE flux with an increase in temperature for all
membranes. This is due to the fact that the vapor pressure rises with an increase in the temperature,
according to Antoine’s equation, and then results in the extended vapor pressure difference between
feed and permeate side, and consequently the enhancement in permeate flux [51]. Overall, the modified
membranes showed better performance than that of the unmodified membrane for all temperatures.
The highest flux of 0.97 kg/m2 h was obtained by CNIM-f at 40 ◦C, while the maximum enhancements
found at 21 ◦C were 14% and 10%, over the PTFE membrane and GOIM, respectively. From Figure 8b,
the percent MTBE removal also raised with the increment of temperature. CNIM-f reached the
maximum efficiency with 39% removal at 40 ◦C, while GOIM and the pristine membrane were 37%
and 34%, respectively.
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Figure 7. (a) Effect of feed flow rate on MTBE flux, and (b) % MTBE removal as the function of feed
flow rate at the feed concentration of 1.5 wt % and the feed temperature of 30 ◦C.

The selectivity of MTBE separation can be expressed as:

Selectivity =
y/(1− y)
x/(1− x)

(3)

where x and y are the weight fractions of MTBE in the feed and the permeate, respectively.
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Figure 8. (a) Effect of feed temperature on MTBE flux, and (b) % MTBE removal as the function of feed
temperature at the feed concentration of 1.5 wt % and the feed flow rate of 20 mL/min.

The effect of feed concentrations and temperatures on the MTBE selectivity of the membranes are
presented in Figure 9a,b. In general, the MTBE selectivity of the modified membranes were superior to
the original membrane for all operating parameters, and the MTBE selectivity of CNIM-f on average
was higher than that of GOIM. The high selectivity of CNIM-f and GOIM over the original membrane
is attributed to the facilitated transport of MTBE via f-CNTs and GO across the membrane that promote
the membrane selectivity. As shown in Figure 9a, the selectivity of all membranes decreased with the
increment of feed concentration. This was ascribed to the negative effect of viscosity [50]. The maximum
selectivity of 54 was obtained for CNIM-f at the feed concentration of 0.5 wt %, while the average
selectivity of CNIM-f, GOIM and the plain membrane were 41, 36 and 31, respectively. As can be seen
from Figure 9b, the selectivity of the membrane, except GOIM, trended to reduce with an increase
in the temperature. This may be due to the reduction in sorption capacity with temperature, which
affects the overall selectivity. It is also possible that the negative effect of viscosity compensated for the
effect of temperature increase, and lead to the selectivity decrease as mentioned in the articles [21,50].
The highest selectivity of 38 was also achieved by CNIM-f. Although the selectivity of GOIM had
an opposite tendency to the others, its average selectivity did not have a significant difference from
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that of CNIM-f. The selectivity of GOIM was 33, whereas the selectivity of CNIM-f and the pristine
membrane were 34 and 23, respectively.
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Figure 9. Effect of (a) feed concentration and (b) feed temperature on MTBE selectivity of membranes.

3.2. Mass Transfer Coefficients

The mass transfer coefficient (k) can be expressed as:

k =
JMTBE(

P f − Pp
) (4)

where JMTBE is the flux, Pf and Pp are the partial vapor pressures of the MTBE in the feed and permeate
side, respectively. The partial pressure of MTBE on the feed side at a particular temperature was
obtained from the calculation following Raoult’s Law. Since the permeate side of the membrane was
dry air, the partial vapor pressure was considered as close to be zero.
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The permeate flux can be expressed by an Arrhenius-type equation, and the activation energy of
the transport (Ea) can be calculated from this equation [52,53].

J = A exp [−
Ea

RT
] (5)

where J is permeate flux (mol m−2 h−1), R is the gas constant (J mol−1 K−1), and T is feed temperature (K).
Table 1 shows the variation of the mass transfer coefficients (k) of 1.5 wt % MTBE at various feed

temperatures, and at a constant feed flow rate of 20 mL/min. With an increase in the feed temperatures,
the k values of MTBE tended to decline. The CNIM-f offered the highest mass transfer coefficient,
followed by GOIM and the plain PTFE membrane. The larger k values for CNIM-f was ascribed to
the activated diffusion of MTBE on the f-CNT surface. The mass transfer coefficient enhancement of
CNIM-f varied from 10% to 14%, compared to the plain membrane. The activation energy (Ea) for
MTBE was calculated from the equation (5). The activation energies of PTFE membrane, CNIM-f and
GOIM were 9, 8.6 and 7.9 kJ/mol, respectively. Although the Ea values for MTBE were lower than
that has been reported for chloroform and butanol using MD [54,55], a direct comparison to those
values may not be relevant due to the variations in the nature of chemicals, membranes and process
parameters. At the same time, significantly lower values in the range of 1–3 kJ/mol have been reported
for THF and methanol for pervaporative separation [56,57]. However, what is important is that the
activation energy dropped with the CNT and GO modifications, indicating facilitated transport with
these modifications.

Table 1. Mass transfer coefficient of 1.5% MTBE feed solution at various feed temperatures with a feed
flow rate of 20 mL/min.

Temperature (◦C) Mass Transfer Coefficient (kg/m2 s Pa) × 10−6

PTFE Membrane GOIM CNIM-f

21 2.19 ± 0.08 2.41 ± 0.08 2.51 ± 0.09
30 1.70 ± 0.02 1.77 ± 0.02 1.88 ± 0.03
40 1.29 ± 0.04 1.38 ± 0.04 1.45 ± 0.07

3.3. Membrane Stability

The thermal stability of the membranes was investigated by TGA as mentioned before. The results
showed that there is no significant change happening with the membranes at the temperatures
below 150 ◦C, which indicates the safe use of membranes at the operating temperatures of this study.
The membrane wetting and change in the MTBE flux were also studied to evaluate the operational
stability of the membranes for 30 days (8 hrs/day). No solvent leakage, as well as a change in MTBE
flux, were observed over the period of time.

4. Proposed Mechanism

The modified membranes, namely CNIM-f and GOIM, showed a significant enhancement in MTBE
removal performance over the unmodified one. This could be attributed mainly to the fact that the
f-CNTs and GO are excellent adsorbents for volatile organics [48]. The engineered nanocarbon provided
high specific surface area, and served as sorption sites. In addition, the surface functional groups,
such as the carboxylic group on f-CNTs, and epoxy, carboxyl, carbonyl and hydroxyl groups for GO,
also play a major role as interaction sites for polar organic compounds like MTBE. Although it has been
reported that, compared to CNTs, GO has a higher specific surface area [58], the CNIM-f provided the
larger MTBE flux for this study. The formation of stacked graphene oxide layers on the membrane [59]
could reduce the effective sorption sites and hinder the MTBE transport across GOIM, whereas the
array of f-CNTs is expected to form as the pathway on CNIM-f, and fast adsorption-desorption on
the CNT surface brings about the activated diffusion, and consequently enhances MTBE separation
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performances [60]. The proposed mechanism for MTBE flux enhancement by CNIM-f and GOIM is
shown in Figure 10.
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5. Conclusions

MTBE flux enhancement was achieved by using f-CNTs and GO-modified membranes. CNIM-f
performance was superior to both GOIM and the original PTFE membrane in terms of flux, percent
recovery, and mass transfer coefficients for all parameter variations. CNIM-f yielded the maximum flux
of 1.4 kg/m2 h at the feed concentration of 2.5 wt %, and the highest percent enhancement and percent
MTBE removal were 22% and 56% at the feed concentration of 0.5 wt %, respectively. Incorporation of
nanomaterials also improved the membrane selectivity for MTBE, and the overall MTBE selectivity of
CNIM-f was highest among the membranes. Immobilization of f-CNTs and GO on the plain membrane
significantly enhanced partition coefficients, and that was confirmed by the reduction of the contact
angle, which played a part in high MTBE transport. However, the higher MTBE flux for CNIM-f was
attributed to the formation of f-CNTs array on the membrane and fast adsorption-desorption on the
frictionless f-CNT surface that led to the activated diffusion.
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