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Abstract: Thermogravitational convective thermal transmission, inside a square differentially-heated
chamber with a nanoliquid, has been examined in the presence of internal adiabatic or a
thermally-conducting solid body. A single-phase nanoliquid approach is employed, based on
the experimentally-extracted relations for nanofluid heat conductivity and dynamic viscosity. The
governing equations have been written using non-primitive parameters such as stream function and
vorticity. Such approach allows a decrease in computational time due to a reduction of equation
numbers. One of the main challenges in such a technique is a determining the stream function
magnitude at the inner body walls. A solution of this problem has been described in detail in this
paper. Computational scrutinizing has been performed by employing the finite difference technique.
The mesh sensitivity analysis and comparison with theoretical and experimental results of other
researchers have been included. An influence of the Rayleigh number, nanoparticles concentration,
internal block size, heat conductivity ratio and non-dimensional time on nanofluid motion and energy
transport has been studied.
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1. Introduction

The investigation of heat-driven liquid motion and energy transfer in chambers is a significant
subject due to its huge applications in practice, including thermal collectors, thermal exchangers,
microelectronic gears, phenomena within buildings and many others [1,2]. Now there are many
published papers and books on thermal convection within chambers. For example, a great review on
thermal convective energy transport can be found in [3], where the complex nature of free convection
phenomena in enclosures is discussed. An analysis is presented for two-dimensional (2D) convection
flow, subjected by the buoyancy force on the liquid in a domain. Major efforts are directed to the
various motion modes that can happen and the energy transport across the liquid area between the two
flat parallel vertical surfaces. The rectangular chamber topic is considered as the most wide-spread
benchmark task in numerical liquid flow and energy transport literature. This not only arises from
theoretical benchmark data, but also for its practical applications where both, the liquid circulation
and energy transport are within the chamber.

Nanoliquids play an essential role in energy transport applications with promising parameters
that can be managed. Nanosuspensions have significant properties that allow performing analysis by
many scientists to model new thermal systems for various practical applications. Mono-nanoliquids,
created using a single sort of nanoadditives, have essential benefits due to defining nanoliquids,
which is the combination of tiny-sized solid particles in conventional fluids, many experimental and
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numerical investigations have demonstrated use of these kind of liquids. Choi [4] studied the process of
suspending nano-sized solid particles in the host liquid and considered this liquid as a nanoliquid. The
most essential feature of nanoliquid is that coagulation can be stopped. The homogeneous distribution
of solid particles and introduction of necessary surfactant can stop the formation of set of conglutinated
particles (Babu et al. [5]). Many investigations about energy transport intensification using nanoliquids
have been published. Papers and books on energy transport in nanoliquids can be found in [6–21].

The objective of this research is to computationally scrutinize the free convective energy transport
of nanofluid in a differentially-heated chamber, having internal blocks, using the mathematical
nanofluid model based, on single-phase nanofluid approach. We have described, in detail, a technique
for the definition of stream function magnitude at an inner body surface in a double-connected domain.
It should be noted that the present paper deals with an analysis of heat transfer performance of
nanoliquid in a cavity with internal solid block. Such problem can be found in the case of optimization
of the electronics cooling system, where the electronic cabinet includes different solid blocks. In the
case of simple geometry an investigation of the internal body size and thermal conductivity has been
conducted for various nanoadditives concentration. Moreover, nowadays scientists use primitive
variables for analysis to solve convective heat transfer problems, within multi-connected domains, and
as a result, there are have been no problems with the definition of the velocity at internal solid block
surface. In the case of non-primitive variables, such as stream function and vorticity, it is necessary
to develop a special algorithm for definition of the stream function at internal solid block surface,
and such algorithm has been developed in the present study. It is well-known that employing the
non-primitive variables reduces the number of governing equations, and as a result, the computational
time. By using this developed method, it is possible to conduct an effective analysis of the velocity and
temperature fields within electronic cabinet having adiabatic of heat-conducting solid block. Different
structure of the inner body can be used for an intensification of the convective heat transfer under the
influence of nano-sized particles volume fraction.

2. Mathematical Model

It is important to consider the transient natural convective heat transport in 2D differentially-heated
nanoliquid chamber of height L in the presence of inner adiabatic or thermally-conducting block. It is
supposed that the left border is hot with temperature Th, whilst the right border is cold with temperature
Tc. The horizontal boundaries are thermally insulated (∂T/∂y) = 0 (Figure 1). For the description of
the transport processes within a nanoliquid the single-phase model with effective parameters is used.
Such approach illustrates that the nanoadditives are uniformly included in the host liquid. Moreover,
using the single-phase model with experimentally-based correlations for physical properties is more
effective in comparison with two-phase nanoliquid models and experimental data [22,23].Nanomaterials 2020, 10, x FOR PEER REVIEW 3 of 17 
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Using the Boussinesq approach, the basic equations managing these phenomena can be formulated
in dimensional form as [24]:

∂u
∂x

+
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∂y

= 0 (1)
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In the case of internal heat-conducting block an additional heat conduction equation has been
included in the following form [25]:

(ρc)s
∂T
∂t

= ks

∂2T

∂x2 +
∂2T

∂y2

. (5)

Additional relations for the considered problem are:

t = 0: u = v = 0, T = Tc at 0 ≤ x ≤ L, 0 ≤ y ≤ L;
t > 0: u = v = 0, T = Th at x = 0, 0 ≤ y ≤ L;

u = v = 0, T = Tc at x = L, 0 ≤ y ≤ L;
u = v = 0, ∂T

∂y = 0 at y = 0, L, 0 ≤ x ≤ L

u = v = 0, ∂T
∂n = 0 at internal adiabatic block Tn f = Ts

kn f
∂Tn f
∂n = ks

∂Ts
∂n

at internal heat-conducting block

(6)

The nanoliquid properties are [24,26]:

ρn f = (1−φ)ρ f + φρp (7)

(ρc)n f = (1−φ)(ρc) f + φ(ρc)p (8)

(ρβ)n f = (1−φ)(ρβ) f + φ(ρβ)p. (9)

The nanoliquid thermal conductivity was defined using the experimental data [27]:

kn f = k f
(
1 + 2.944φ+ 19.672φ2

)
. (10)

in the case of nanoliquid dynamic viscosity the following correlation was used [27]:

µn f = µ f
(
1 + 4.93φ+ 222.4φ2

)
. (11)

These correlations are valid for 1% ≤ φ ≤ 4%.
The non-dimensional parameters are used,

x = x/L, y = y/L, τ = V0t/L, u = u/V0, v = v/V0, θ = (T − Tc)/(Th − Tc),
ψ = ψ/(V0L), ω = ωL/V0, V0 =

√
gβ(Th − Tc)L

(12)
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and employing the non-dimensional stream function ψ, which is determined as u = ∂ψ/∂y and
v = −∂ψ/∂x, as well as non-dimensional vorticity ω (ω = ∂v/∂x− ∂u/∂y) we obtain:

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (13)

∂ω
∂τ

+ u
∂ω
∂x

+ v
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∂y
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µn f

µ f

ρ f

ρn f

√
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(
∂2ω

∂x2 +
∂2ω

∂y2

)
+

(ρβ)n f

ρn fβ f

∂θ
∂x

(14)

∂θ
∂τ

+ u
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+ v
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=
1

√
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kn f

k f

(
ρcp

)
f(

ρcp
)
n f

(
∂2θ

∂x2 +
∂2θ

∂y2

)
. (15)

In the case of internal heat-conducting solid body we should add to the previous system of
equations the following non-dimensional heat conduction equation:

∂θ
∂τ

=
1

√
Ra · Pr

ks

k f

(ρc) f

(ρc)s

(
∂2θs

∂x2 +
∂2θs

∂y2

)
. (16)

Initial and boundary relations for the obtained equations are:

τ = 0: ψ = 0, ω = 0, θ = 0.5 at 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;

τ > 0: ψ = 0, ∂ψ∂x = 0, θ = 1 at x = 0, 0 ≤ y ≤ 1;

ψ = 0, ∂ψ∂x = 0, θ = 0 at x = 1, 0 ≤ y ≤ 1;

ψ = 0, ∂ψ∂y = 0, ∂θ∂y = 0 at y = 0, 1, 0 ≤ x ≤ 1

ψ = γ, ∂ψ∂n = 0, ∂θ∂n = 0 at internal adiabatic block

ψ = γ, ∂ψ∂n = 0,

 θn f = θs
kn f
ks

∂θn f
∂n = ∂θs

∂n

at internal heat-conducting solid block

(17)

τ > 0: ψ = γ,
∂ψ

∂n
= 0,

∂θ
∂n

= 0 at internal adiabatic block (18)

τ > 0: ψ = γ,
∂ψ

∂n
= 0,

 θn f = θs
kn f
ks

∂θn f
∂n = ∂θs

∂n

at internal heat-conducting solid block (19)

Here Ra =
g(ρβ) f (ρcp) f (Th−Tc)L3

µ f k f
is the Rayleigh number, Pr =

(µcp) f
k f

is the Prandtl number,

additional factors in vorticity Equation (14) are
µn f
µ f

ρ f
ρn f

=
1+4.93φ+222.4φ2

1−φ+φρp/ρ f
,
(ρβ)n f
ρn f β f

=
1−φ+φ(ρβ)p/(ρβ) f

1−φ+φρp/ρ f
, a

factor in energy Equation (15) is
kn f
k f

(ρc) f

(ρc)n f
=

1+2.944φ+19.672φ2

1−φ+φ(ρc)p/(ρc) f
, while

kn f
ks

=
(
1 + 2.944φ+ 19.672φ2

)
K is

a factor for temperature boundary condition of forth kind in Equation (19). Here K = k f /ks is the heat
conductivity ratio.

As a result, the boundary-value problem of thermogravitational convection in a double-connected
domain having isolated internal body includes Equations (13)–(15), with conditions (17) and (18), while
for the internal thermally-conducting solid body, Equations (13)–(16) need to be solved with additional
relations (17) and (19).

For description of the overall energy transfer the local Nusselt number at heated wall was
defined as,

Nu = −
kn f

k f

∂θ
∂x

∣∣∣∣∣
x=0

(20)
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and the average Nusselt number
(
Nu

)
can be considered as:

Nu =

1∫
0

Nu dy. (21)

3. Numerical Technique

The written governing Equations (13)–(16), with additional relations (17)–(19), were worked
out by the finite difference technique [8]. The steady solution was defined as a solution of the
time-dependent problem. A discretization of the convective members was performed by Samarskii
monotonic scheme [28] and for the diffusive members the central differences were employed. The
parabolic Equations (14)–(16) were worked out using the Samarskii locally one-dimensional scheme [28].
The obtained set of linear equations was worked out by the Thomas algorithm. The stream function
equation was approximated using the central differences for the second derivatives. The received set
of linear equations was worked out by the successive over relaxation technique. The computations
were stopped when the residuals for the stream function get bellow 10−7.

For definition of the stream function magnitude at the inner body boundary the special procedure
was used [29]. Namely, we introduce the condition that the pressure p should be single-valued along
the internal block surface. This condition is expressed by:∫

∂p
∂η

dσ = 0. (22)

Here η is the unit tangential vector along the boundary, σ is the internal block surface.
Taking into account the considered domain of interest (Figure 1) we can define the internal block

surface presented in Figure 2:
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Using governing Equations (2) and (3) in non-dimensional form as well as non-slip boundary
conditions for velocity at internal block surface, ∂p/∂η can be defined as:
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Taking into account the condition (22) we have:

∫
σ

dp =

B∫
A

∂p
∂x

dx +

C∫
B

∂p
∂y

dy +

D∫
C

∂p
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dx +

A∫
D

∂p
∂y

dy = 0. (25)

Introducing Equations (23) and (24) in (25) we have:

B∫
A

∂ω
∂y

dx−

C∫
B

∂ω
∂x

dy +

D∫
C

∂ω
∂y

dx−

A∫
D

∂ω
∂x

dy =
(ρβ)n f

(ρβ) f

µ f

µn f

√
Ra
Pr


C∫

B

θ dy +

A∫
D

θ dy

. (26)

Using Equation (26) and interpreting the correlation between vorticity at internal body surface
and stream function, the considered value can be found. Such technique was used in the present study
for determining the stream function magnitude at inner body boundary.

4. Validation

The created numerical code was verified employing the numerical results of Karki et al. [30]
for convective heat transfer in a square cavity with isothermal vertical walls and centered
thermally-insulated body. Figures 3 and 4 demonstrate a good concordance for considered isolines for
different Ra in comparison with numerical data of Karki et al. [30].
Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 17 

 

 

Figure 3. Isolines of ψ and θ for Ra = 105, δ = 0.5. 

 

Figure 4. Isolines of ψ and θ for Ra = 106, δ = 0.5. 

The second benchmark problem was free convective energy transport in a rectangular chamber 
with two bottom border-mounted adiabatic blocks [31]. Figure 5 presents a very good concordance 
for the average Nu at the hot boundary compared with data of Ben-Nakhi and Chamkha [31]. 

The third benchmark problem was free convective energy transport of Al2O3-H2O nanoliquid 
inside a differentially-heated chamber. Table 1 illustrates a very good concordance for the mean Nu 
at heated wall, in dependence on the nanoadditives concentration, in comparison with experimental 
results [27]. 

A mesh independence test was performed employing four different grid parameters (100 × 100, 
200 × 200, and 400 × 400) for Ra = 105, Pr = 6.82, φ = 0.02, δ = 0.5. Using Figure 6 it is possible to 
conclude that the deviations of the average Nu for 200 × 200 and 400 × 400 are negligible (at about 
1.5%). Therefore, a uniform grid of 200 × 200 was used for investigations. 

Figure 3. Isolines of ψ and θ for Ra = 105, δ = 0.5.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 17 

 

 

Figure 3. Isolines of ψ and θ for Ra = 105, δ = 0.5. 

 

Figure 4. Isolines of ψ and θ for Ra = 106, δ = 0.5. 

The second benchmark problem was free convective energy transport in a rectangular chamber 
with two bottom border-mounted adiabatic blocks [31]. Figure 5 presents a very good concordance 
for the average Nu at the hot boundary compared with data of Ben-Nakhi and Chamkha [31]. 

The third benchmark problem was free convective energy transport of Al2O3-H2O nanoliquid 
inside a differentially-heated chamber. Table 1 illustrates a very good concordance for the mean Nu 
at heated wall, in dependence on the nanoadditives concentration, in comparison with experimental 
results [27]. 

A mesh independence test was performed employing four different grid parameters (100 × 100, 
200 × 200, and 400 × 400) for Ra = 105, Pr = 6.82, φ = 0.02, δ = 0.5. Using Figure 6 it is possible to 
conclude that the deviations of the average Nu for 200 × 200 and 400 × 400 are negligible (at about 
1.5%). Therefore, a uniform grid of 200 × 200 was used for investigations. 

Figure 4. Isolines of ψ and θ for Ra = 106, δ = 0.5.

The second benchmark problem was free convective energy transport in a rectangular chamber
with two bottom border-mounted adiabatic blocks [31]. Figure 5 presents a very good concordance for
the average Nu at the hot boundary compared with data of Ben-Nakhi and Chamkha [31].
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Figure 5. Mean Nu at hot border compared with computations [31] for different heights of the obstacles
(B) and Rayleigh numbers.

The third benchmark problem was free convective energy transport of Al2O3-H2O nanoliquid
inside a differentially-heated chamber. Table 1 illustrates a very good concordance for the mean Nu
at heated wall, in dependence on the nanoadditives concentration, in comparison with experimental
results [27].

Table 1. Values of mean Nu at hot border.

ϕ Ra Pr Experimental Data [27] Present Study

0.01 7.74547 × 107 7.0659 32.2037 30.6533

0.02 6.6751180 × 107 7.3593 31.0905 30.5038

0.03 5.6020687 × 107 7.8353 29.0769 30.2157

A mesh independence test was performed employing four different grid parameters (100 × 100,
200 × 200, and 400 × 400) for Ra = 105, Pr = 6.82, φ = 0.02, δ = 0.5. Using Figure 6 it is possible to
conclude that the deviations of the average Nu for 200 × 200 and 400 × 400 are negligible (at about
1.5%). Therefore, a uniform grid of 200 × 200 was used for investigations.

Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 17 

 

 

Figure 5. Mean Nu at hot border compared with computations [31] for different heights of the 
obstacles (B) and Rayleigh numbers. 

Table 1. Values of mean Nu at hot border. 

φ Ra Pr Experimental data [27] Present study 
0.01 7.74547 × 107 7.0659 32.2037 30.6533 
0.02 6.6751180 × 107 7.3593 31.0905 30.5038 
0.03 5.6020687 × 107 7.8353 29.0769 30.2157 

 

 

Figure 6. Time profiles of average Nu for various mesh parameters. 

5. Results and Discussion 

Computational investigations have been conducted for Rayleigh number (Ra = 104–106), the 
nanoadditives concentration (φ = 0.0–0.04), internal body size (δ = 0.3–0.7), and a thermal 
conductivity ratio (K = 10−3–1). Effects of the mentioned characteristics on circulation field, 
temperature field and profiles of Nu are presented in Figures 7–15. 

Figure 7 demonstrates the considered isolines within the cavity having internal adiabatic block 
for various Ra. In the case of small magnitude of the buoyancy force (see Figure 7a) one global 
circulation can be found reflecting an appearance of upstream flows next to the left hot boundary 
and downstream circulations at the right cold boundary. Temperature field illustrates a formation of 
heat conduction regime over and under the internal block, where temperature isolines are parallel to 
vertical boundaries. At the same time, isotherms near the isothermal walls characterize low intensive 

Figure 6. Time profiles of average Nu for various mesh parameters.



Nanomaterials 2020, 10, 588 8 of 16

5. Results and Discussion

Computational investigations have been conducted for Rayleigh number (Ra = 104–106),
the nanoadditives concentration (φ = 0.0–0.04), internal body size (δ = 0.3–0.7), and a thermal
conductivity ratio (K = 10–3–1). Effects of the mentioned characteristics on circulation field, temperature
field and profiles of Nu are presented in Figures 7–15.

Figure 7 demonstrates the considered isolines within the cavity having internal adiabatic block for
various Ra. In the case of small magnitude of the buoyancy force (see Figure 7a) one global circulation
can be found reflecting an appearance of upstream flows next to the left hot boundary and downstream
circulations at the right cold boundary. Temperature field illustrates a formation of heat conduction
regime over and under the internal block, where temperature isolines are parallel to vertical boundaries.
At the same time, isotherms near the isothermal walls characterize low intensive circulation. A rise
of Ra (see Figure 7b) reflects more intensive liquid motion with an appearance of thin temperature
boundary layers near the vertical borders. Isolines of stream function present a formation of weak
recirculations zones near the internal block, namely, close to the left bottom corner and close to the right
upper corner. This considered heat transfer mode demonstrates less intensive cooling and heating of
the cavity from isothermal walls. Further increment of the buoyancy force bulk results in an expansion
of secondary vortices close to the internal body surface. Such circulations reflect the temperature
stratification in these zones, where heating occurs from the top portion till the lower part. An addition
of nanoadditives (φ = 0.04) leads to a reduction of liquid circulation strength, while more essential
difference in isotherms can be found for low values of Ra (see Figure 7a). As a result an inclusion of
nanoparticles allows enhancing the heat conduction regime.

In the case of internal heat-conducting solid body (see Figure 8) flow structures and temperature
patterns are changed. Regardless of the Rayleigh number the global circulation formed within the
chamber is the same like presented in Figure 7, but the temperature field and secondary vortices have
another structure. Thus, isotherms characterize the temperature change within the internal solid block
from the left and right sides, where internal isotherm (θ = 0.5) is almost parallel to vertical walls.
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In the case of Ra = 105 isotherms within the internal solid body become parallel to horizontal walls
illustrating heating from the top till bottom, while the cooling process occurs in the opposite direction.
Also, a stronger circulation characterizes a diminution of the boundary layers thickness, due to the
interaction between the hot and cold fluxes. It is interesting to note that a consideration of internal
heat-conducting body characterizes a vanishing of the weak recirculations near the block surface for
Ra = 105 mentioned for adiabatic case and for Ra = 106 these vortices have another shape and location
of cells. It is worth noting that strong upstream flow close to the left border and a strong downstream
one near the right boundary lead to formation of clockwise circulations far from the origin of these
flows. An absence of such strong flows in the case of adiabatic block allows forming vortices elongate
along the vertical walls of the internal block.

Figure 9 demonstrates the behavior of the local and mean Nu at hot border with Ra, thermal
conductivity ratio and time. An increment of Ra characterizes a raise of the local Nu. An interaction
of the hot and cold heat fluxes near the lower portion of the left border reflects a presence of high
Nu values in this zone. A rise of y-coordinate illustrates a decrease of Nu. Moreover, with Ra the
maximum value of Nu approaches the left boundary. Value K = ∞ reflects the presence of internal
adiabatic body. A growth of the heat conductivity of internal body material characterizes a diminution
of the temperature drop in the lower portion and a rise of this temperature difference in the upper
zone. The time dependence of the average Nusselt number (Figure 9b) demonstrates a fast reaching
the steady state value. An increment of Ra reflects a rise of time for the steady state. A diminution
of the heat conductivity ratio from adiabatic case (K = ∞) till high internal body material thermal
conductivity reflects a reduction of the mean Nu. Therefore, in the case of adiabatic internal body one
can reveal the maximum energy transport strength.
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A reduction in the mean Nu with nanoadditives is presented in Figure 10. It is possible to intensify
the energy transport with φ only for low Ra, where heat conduction is a dominated energy transport
mode. Also, only for this regime, the heat transfer enhancement can be found with a rise of the internal
body material thermal conductivity for the case of high nanoparticles concentration.

Effect of the internal body size on streamlines and isotherms for adiabatic and heat-conducting
blocks is presented in Figures 11 and 12. In the case of adiabatic internal block (Figure 11), an increment
of δ results in the attenuation of convective motion with a formation of secondary circulations near
the internal body surface. A growth of the internal block size from δ = 0.3 till δ = 0.5 characterizes
an elongation of secondary vortices near the solid block surface, while for δ = 0.7 these vortices are
decreased essentially. At the same time, an increment of δ reflects a vertical displacement of the
left eddy core in negative y-coordinate direction, while the right eddy core displaces vertically in
positive y-coordinate direction. Temperature fields illustrate the thermal stratification. Moreover,
the presence of the adiabatic body divides the temperature isolines into two parts and these two parts
are similar to the original isotherms without a solid body. The addition of nanoparticles reflects a
modification of temperature field near the horizontal walls, while streamlines are differed in the zone
of secondary vortices.

In the case of internal heat-conducting block (see Figure 12), an introduction of solid block
characterizes also a rise in size of two secondary vortices but in the top portion of the left body boundary
and near the bottom portion of the right body boundary. The reason for such a difference between
adiabatic and heat-conducting bodies was discussed above. Moreover, for δ ≤ 0.5 heating/cooling of the
internal block occurs in vertical direction, while for δ = 0.7, temperature profiles can be found within the
solid block that are not parallel to horizontal walls. The addition of nanoparticles reduces the convective
flow strength due to a growth of nanofluid viscosity (see Equation (11)). Significant difference in
isotherms can be found within the solid body due to different heat fluxes at solid body surface.
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Effect of internal block size and heat conductivity ratio on Nu and Nu is demonstrated in Figure 13.
As it has been described above, a rise of the heat conductivity of solid block material results in a
diminution of the mean Nu. At the same time, the growth of the solid block size illustrates a rise of
the temperature drop at the lower portion of the heated wall and an increment of the internal block
material thermal conductivity results in strong diminution of local Nu at the lower portion of left
border. The internal body length has a non-monotonic impact on the mean Nu. Therefore, it is possible
to reveal an optimal magnitude of δ for high value of Nu. At the same time, a rise of δ characterizes
more essential impact of K on the mean Nu.

Diminution of the mean Nu with nanoadditives concentration is presented in Figure 14. More
essential reduction can be found for high value of the internal block material thermal conductivity.
In this case for δ = 0.5 we have maximum Nu.
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An impact of the heat conductivity ratio on the considered isolines is shown in Figure 15.
A reduction of this parameter illustrates modification of temperature field, where one can reveal a rise
of the temperature wave speed within the solid block and as a result a density of isotherms rises near
the solid block surface. At the same time, a reduction and displacement of the secondary convective
cells cores occur with a decrement of K.
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6. Conclusions

Numerical investigation of thermogravitational convection inside a differentially-heated domain
with inner adiabatic or thermally-conducting block has been performed. Investigations have been
carried out using the developed computational code based on the non-primitive variables. The detailed
description of the numerical procedure for the determining the stream function magnitude the inner
body surface has been provided. It should be noted that using the non-primitive variables decreases the
number of governing equations due to an exclusion of the pressure field from the momentum equation.
Such an approach results in the reduction of computational time. Therefore, using the non-primitive
variables allows reducing computational time for various problems. In the case of present study the
effective numerical algorithm has been developed for the multi-connected domains. This algorithm has
been employed to investigate conjugate natural convection inside the differentially-heated chamber
filled with a nanosuspension.
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As a result, an analysis of the Rayleigh number, thermal conductivity ratio, internal block size,
and nano-additives concentrations has been conducted. It has been ascertained that:

• a decrease in heat conductivity ratio from adiabatic case until high internal body material thermal
conductivity illustrates a reduction of the mean Nu;

• an internal block size has a non-monotonic impact on the mean Nu. Therefore, it is possible
to reveal an optimal value of δ (0.5 for the present analysis) for high value of Nu. A rise of δ
illustrates stronger impact of K on Nu;

• an increment of the nanoadditives concentration characterizes the energy transport degradation,
while it is possible to enhance the energy transport with φ only for low Ra, where thermal
conduction is a dominated thermal transmission mode.

The performed analysis allows intensifying the heat transfer within the chamber in the case of
optimal selection of the inner block size, thermal conductivity of this block material and concentration
of nano-sized additives within the host fluid.

The developed numerical algorithm and computational code will be used in future for analysis of
the cooling effect in the case of heat-generating internal solid block that can be considered an electronic
chip within the electronic cabinet. Moreover, the developed computational technique will be used
for an investigation of the effects of several internal heat-generating blocks in order to optimize the
location of such an element inside the electronic cabinet. The mentioned analysis will be conducted in
the case of a single or hybrid nanoliquid impact.
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Nomenclature

c heat capacity
g gravity force acceleration
K heat conductivity ratio
k heat conductivity
L length and height of the chamber
Nu local Nusselt number
Nu average Nusselt number
p non-dimensional pressure
p dimensional pressure
Pr Prandtl number
Ra Rayleigh number
T dimensional temperature
t dimensional time
Tc cold boundary temperature
Th hot boundary temperature
u, v non-dimensional velocity projections
u, v dimensional velocity projections
V0 dimensional reference velocity
x, y non-dimensional Cartesian coordinate
x, y dimensional Cartesian coordinates



Nanomaterials 2020, 10, 588 15 of 16

Greek symbols
β heat expansion parameter
δ non-dimensional size of the internal solid block
θ non-dimensional temperature
µ dynamic viscosity
ρ density
ρc thermal capacitance
ρβ buoyancy parameter
τ non-dimensional time

γ
non-dimensional magnitude of the stream function at inner body
borders

φ nano-sized particles volume fraction
ψ stream function
ψ non-dimensional stream function
ω dimensional vorticity
ω non-dimensional vorticity
Subscripts
c cold
f fluid
h hot
nf nanofluid
p (nano)particle
s solid
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